Phillip B. Gibbons
Tarek Abdelzaher

James Aspnes
Ramesh Rao (Eds.)

Distributed Computing
in Sensor Systems

Second IEEE International Conference, DCOSS 2006
San Francisco, CA, USA, June 2006
Proceedings

LNCS 4026

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4026

Phillip B. Gibbons Tarek Abdelzaher
James Aspnes Ramesh Rao (Eds.)

Distributed Computing
in Sensor Systems

Second IEEE International Conference, DCOSS 2006
San Francisco, CA, USA, June 18-20, 2006
Proceedings

@ Springer

Volume Editors

Phillip B. Gibbons

Intel Research

4720 Forbes Avenue, Suite 410, Pittsburgh, PA 15213, USA
E-mail: phillip.b.gibbons @intel.com

Tarek Abdelzaher

University of Illinois at Urbana-Champaign, Department of Computer Science
Urbana, IL 61801, USA

E-mail: zaher@cs.uiuc.edu

James Aspnes

Yale University, Department of Computer Science

51 Prospect Street, New Haven, CT 06520-8285, USA
E-mail: aspnes @cs.yale.edu

Ramesh Rao

University of California at San Diego

9500 Gilman Drive, La Jolla, CA 92093-0436, USA
E-mail: rrao @ucsd.edu

Library of Congress Control Number: 2006927240

CR Subject Classification (1998): C.2.4,C.2,D.4.4,E.1,F2.2,G.2.2, H4

LNCS Sublibrary: SL 5 — Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-35227-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35227-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11776178 06/3142 543210

Message from the General Chair

Welcome to DCOSS 2006 — the second version of the meeting series. DCOSS
focuses on distributed computing issues in large-scale networked sensor systems,
including systematic design techniques and tools, algorithms, and applications.

I am indebted to the Program Chair, Phil Gibbons, for his efforts in handling
the review process and composing the technical program. I appreciate his lead-
ership in putting together a strong and diverse Technical Committee to address
various aspects of this interdisciplinary area. I would also like to thank him for
his input in resolving a number of meeting-related issues.

I would like to thank all of the authors who submitted papers, our invited
speakers, the external referees we consulted, the Vice Chairs and the members
of the Program Committee.

I would like to thank Sotiris Nikoletseas for his efforts as the Workshop Chair
for DCOSS 2006.

Several volunteers assisted me in putting together the meeting. I would like to
thank Jim Reich for handling the poster session, Wendi Heinzelman for publiciz-
ing the event, Amol Bakshi for handling Web-based publicity, Loren Schwiebert
for handling the student scholarships, Jie Wu for interfacing with IEEE TCDP
for student scholarships and Yang Yu for his assistance in putting together these
proceedings. Special thanks go to Amol Bakshi for his invaluable input in decid-
ing the meeting focus, format and local arrangements.

I would like to thank Jose Rolim, DCOSS Steering Chair for inviting me to
be the General Chair. Indeed, it was a pleasure working with him and with Jie
Wu, Vice General Chair. Their invaluable input in putting together the meeting
program and in shaping the meeting series is gratefully acknowledged.

I would like to acknowledge support from the IEEE Technical Committee on
Distributed Processing and from the Centre Universitaire d’Informatique of the
University of Geneva.

Rosine Sarafian, our administrative coordinator, deserves special thanks for
her assistance with local arrangements.

The field of networked sensor systems is rapidly evolving. It is my contin-
ued hope that this meeting series serve as a forum for researchers from various
aspects of this interdisciplinary field to interact and in particular to offer oppor-
tunities for those working in algorithmic, theoretical and high-level aspects to
interact with those addressing challenging issues in complementary areas such as
wireless networks, communications and systems composed of these underlying
technologies.

I hope you enjoy the technical sessions as well as San Fransisco.

June 2006 Viktor K. Prasanna

Message from the Program Chair

This volume contains the 33 full papers presented at the Second IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS 2006),
which took place in San Francisco, California, during June 18-20, 2006. These
papers were selected by the Program Committee from 87 submissions received
in response to the call for papers. Submissions were received from 18 countries
across b continents, and directed to one of three tracks: algorithms, applications,
or systems. Each track had its own Program Committee that reviewed the pa-
pers and recommended either “accept”, “reject”, or “accept if room”. In a joint
meeting between the Vice Chairs and myself we reviewed and discussed this
latter category of papers to arrive at the final program.

DCOSS 2006 presentations were arranged into seven sessions, ranging from
Data Aggregation and Dissemination to Programming Support and Middleware
to Lifetime Maximization. Papers from the three tracks were intermixed within
the sessions. Other highlights of the conference included keynote talks by Leo
Guibas and Bill Kaiser, two workshops and a poster session.

I would like to add my thanks to Viktor’s to all the DCOSS organizers,
the authors, the external reviewers, and the Program Committee members. I
am especially indebted to the Program Vice Chairs Tarek Abdelzaher, James
Aspnes, and Ramesh Rao for their efforts in forming and running the three track
Program Committees. The 44 Program Committee members are at universities
and research labs from 12 different countries, further evidence that DCOSS is
truly an international conference. The quality of the program reflects positively
on the expertise and dedication of the Vice Chairs and Program Committee
members.

Finally, it was a pleasure working with Viktor Prasanna, General Chair, and
José Rolim, Steering Committee Chair, who both worked tirelessly to ensure the
success of DCOSS 2006.

June 2006 Phillip B. Gibbons

Organization

General Chair

Viktor K. Prasanna University of Southern California, USA

Vice General Chair

Jie Wu Florida Atlantic University, USA

Program Chair

Phillip B. Gibbons Intel Research, Pittsburgh, USA

Program Vice Chairs

Algorithms

James Aspnes Yale University, USA

Applications

Ramesh Rao University of California at San Diego and
Calit2, USA

Systems

Tarek Abdelzaher University of Illinois, Urbana Champaign, USA

Steering Committee Chair

Jose Rolim University of Geneva, Switzerland

Steering Committee

Sajal Das University of Texas at Arlington, USA

Josep Diaz UPC Barcelona, Spain

Deborah Estrin University of California, Los Angeles, USA

Phillip B. Gibbons Intel Research, Pittsburgh, USA

Sotiris Nikoletseas University of Patras and CTI, Greece

Christos Papadimitriou University of California, Berkeley, USA

Kris Pister University of California, Berkeley, and Dust,
Inc., USA

Viktor Prasanna University of Southern California, Los Angeles,

USA

VIII Organization

Poster Chair

Jim Reich Palo Alto Research Center, USA

Workshops Chair

Sotiris Nikoletseas University of Patras and CTI, Greece

Proceedings Chair

Yang Yu Motorola Labs, USA

Publicity Co-chairs

Wendi Heinzelman University of Rochester, USA
Amol Bakshi University of Southern California, USA

Finance Chair

Germaine Gusthiot University of Geneva, Switzerland

Student Scholarships Chair

Loren Schwiebert Wayne State University, USA

Sponsoring Organizations

IEEE Computer Society Technical Committee on Parallel Processing
(TCPP)

IEEE Computer Society Technical Committee on Distributed Processing
(TCDP)

Held in Cooperation with

ACM Special Interest Group on Computer Architecture (SIGARCH)
ACM Special Interest Group on Embedded Systems (SIGBED)

European Association for Theoretical Computer Science (EATCS)
IFIP WG 10.3

Organization X

Program Committee

Costas Busch Rensselaer Polytechnic Institute, USA
Edgar Chavez University of Michoacana, Mexico

Bogdan Chlebus University of Colorado at Denver, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Alfredo Ferro University of Catania, Italy

Stefan Fischer University of Luebeck, Germany
Mohamed Gouda University of Texas at Austin, USA

Tian He University of Minnesota, USA

Wendi Heinzelman University of Rochester, USA

Jennifer Hou University of Illinois, Urbana Champaign, USA
Anura Jayasumana Colorado State University, USA

Dariusz Kowalski University of Liverpool, UK

Bhaskar Krishnamachari University of Southern California, USA
Phil Levis Stanford University, USA

Jie Liu Microsoft Research, USA

Julia Liu Palo Alto Research Center, USA
Chenyang Lu Washington University in St. Louis, USA
Haiyun Luo University of Illinois, Urbana Champaign, USA
Rajeev Motwani Stanford University, USA

C. Siva Ram Murthy IIT Madras, India

Radhika Nagpal Harvard University, USA

Suman Nath Microsoft Research, USA

Sotiris Nikoletseas University of Patras and CTI, Greece
Boaz Patt-Shamir Tel-Aviv University, Israel

Pino Persiano University of Salerno, Italy

John Regehr University of Utah, USA

Andrea Richa Arizona State University, USA

Kurt Rothermel University of Stuttgart, Germany

Andreas Savvides Yale University, USA

Christian Scheideler Technical University of Munich, Germany
Maria Jose Serna UPC Barcelona, Spain

Devavrat Shah Massachusetts Institute of Technology, USA
Vikram Srinivasan National University of Singapore, Singapore
Mani Srivastava University of California, Los Angeles, USA
Jack Stankovic University of Virginia, USA

Ivan Stojmenovic University of Ottawa, Canda

Gaurav Sukhatme University of Southern California, USA
Violet R. Syrotiuk Arizona State University, USA

Nalini Venkatasubramanian University of California, Irvine

Chieh-Yih Wan Intel Research, USA

Stephen Wicker Cornell University, USA

Peter Widmayer ETH Zurich, Switzerland

Yinyu Ye Stanford University, USA

Ying Zhang Palo Alto Research Center, USA

X Organization

Referees

Rida Bazzi
Karthik Dantu
Hen Fitoussi
Yinnon Haviv
Ronen Kat
Philip Kuryloski
Michael Margaliot
Pedro Marron
Darryl Morrel
Melih Onus
Sameer Pai

Rami Puzis

Hui Qu

Marina Sadetsky
Elad Schiller
Allon Shafrir
Christina Tavoularis
Hector Tejeda
Nir Tzachar
Donglin Xia
Reuven Yagel
Xin Zhang

Limor Lahiani

Olga Brukman

Bodhi Priyantha
Toannis Chatzigiannakis
Tassos Dimitriou
Athanassios Kinalis
Dennis Pfisterer
Young-ri Choi

Maria Blesa

Table of Contents

Evaluating Local Contributions to Global Performance in Wireless
Sensor and Actuator Networks
Christopher J. Rozell, Don H. Johnson 1

Roadmap Query for Sensor Network Assisted Navigation in Dynamic
Environments

Sangeeta Bhattacharya, Nuzhet Atay,

Gazihan Alankus, Chenyang Lu, O. Burchan Bayazit,

Gruia-Catalin Romam 17

Stabilizing Consensus in Mobile Networks
Dana Angluin, Michael J. Fischer,
Hong Jiang 37

When Birds Die: Making Population Protocols Fault-Tolerant
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraous,
Eric Ruppert o1

Stochastically Consistent Caching and Dynamic Duty Cycling for
Erratic Sensor Sources
Shanzhong Zhu, Wei Wang,
Chinya V. Ravishankar i 67

Distributed Model-Free Stochastic Optimization in Wireless Sensor
Networks
Daniel Yagan, Chen-Khong Tham 85

Agimone: Middleware Support for Seamless Integration of Sensor
and IP Networks
Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman,
Chenyang Luo e 101

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks
Limin Wang, Sandeep S. Kulkarni 119

The Virtual Pheromone Communication Primitive
Leo Szumel, John D. QWENSot e 135

Logical Neighborhoods: A Programming Abstraction for Wireless
Sensor Networks
Luca Mottola, Gian Pietro Picco 150

XII Table of Contents

Y-Threads: Supporting Concurrency in Wireless Sensor Networks
Christopher Nitta, Raju Pandey,

Yann Ramin

Comparative Analysis of Push-Pull Query Strategies for Wireless
Sensor Networks

Shyam Kapadia, Bhaskar Krishnamachari

Using Data Aggregation to Prevent Traffic Analysis in Wireless Sensor
Networks
William Conner, Tarek Abdelzaher,

Klara Nahrstedt e

Efficient and Robust Data Dissemination Using Limited Extra Network
Knowledge
Ioannis Chatzigiannakis, Athanasios Kinalis,

Sotiris NIkoletseas

Distance-Sensitive Information Brokerage in Sensor Networks
Stefan Funke, Leonidas J. Guibas, An Nguyen,

Yusu Wang ...

Efficient In-Network Processing Through Local Ad-Hoc Information
Coalescence
Onur Savas, Murat Alanyali,

Venkatesh Saligrama

Distributed Optimal Estimation from Relative Measurements for
Localization and Time Synchronization
Prabir Barooah, Neimar Machado da Silva,

Joao P. Hespanha i,

GIST: Group-Independent Spanning Tree for Data Aggregation in
Dense Sensor Networks
Lujun Jia, Guevara Noubir, Rajmohan Rajaraman,

Ravi Sundaram e

Distributed User Access Control in Sensor Networks

Haodong Wang, Qun Li

Locating Compromised Sensor Nodes Through Incremental Hashing
Authentication
Youtao Zhang, Jun Yang, Lingling Jin,

Weigia Li . ..o

Table of Contents XIII

COTA: A Robust Multi-hop Localization Scheme in Wireless Sensor
Networks
Yawen Wei, Zhen Yu, Yong Guan 338

Contour Approximation in Sensor Networks
Chiranjeeb Buragohain, Sorabh Gandhi, John Hershberger,
Subhash SUTto 356

A Distortion-Aware Scheduling Approach for Wireless Sensor Networks
Periklis Liaskovitis, Curt Schurgers 372

Optimal Placement and Selection of Camera Network Nodes for Target
Localization

Ali O. Ercan, Danny B. Yang, Abbas El Gamal,

Leonidas J. Guibas 389

An Optimal Data Propagation Algorithm for Maximizing the Lifespan
of Sensor Networks
Aubin Jarry, Pierre Leone, Olivier Powell,
Jos€ Rolim o 405

Lifetime Maximization of Sensor Networks Under Connectivity and
k-Coverage Constraints
Wei Mo, Daji Qiao, Zhengdao Wang, 422

Network Power Scheduling for TinyOS Applications
Barbara Hohlt, Eric Brewer 443

Approximation Algorithms for Power-Aware Scheduling of Wireless
Sensor Networks with Rate and Duty-Cycle Constraints
Rajgopal Kannan, Shuangging Wei 463

MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in
Sensor Networks
Jun Luo, Jacques Panchard, Michat Pidrkowski,
Matthias Grossglauser, Jean-Pierre Hubauz 480

SenCar: An Energy Efficient Data Gathering Mechanism for Large
Scale Multihop Sensor Networks
Ming Ma, Yuanyuan Yang 498

A Distributed Linear Least Squares Method for Precise Localization
with Low Complexity in Wireless Sensor Networks
Frank Reichenbach, Alexander Born, Dirk Timmermann,
Ralf Bill ... 514

X1V Table of Contents

Consistency-Based On-line Localization in Sensor Networks
Jessica Feng, Lewis Girod, Miodrag Potkonjak 529

The Robustness of Localization Algorithms to Signal Strength Attacks:

A Comparative Study
Yingying Chen, Konstantinos Kleisouris, Xiaoyan Li, Wade Trappe,
Richard P. Martin 546

Author Index 565

Evaluating Local Contributions to Global
Performance in Wireless Sensor and Actuator
Networks

Christopher J. Rozell and Don H. Johnson*

Department of Electrical and Computer Engineering
Rice University, Houston, TX 77025-1892
{crozell, dhj}@rice.edu

Abstract. Wireless sensor networks are often studied with the goal of
removing information from the network as efficiently as possible. How-
ever, when the application also includes an actuator network, it is advan-
tageous to determine actions in-network. In such settings, optimizing the
sensor node behavior with respect to sensor information fidelity does not
necessarily translate into optimum behavior in terms of action fidelity.
Inspired by neural systems, we present a model of a sensor and actua-
tor network based on the vector space tools of frame theory that applies
to applications analogous to reflex behaviors in biological systems. Our
analysis yields bounds on both absolute and average actuation error that
point directly to strategies for limiting sensor communication based not
only on local measurements but also on a measure of how important each
sensor-actuator link is to the fidelity of the total actuation output.

1 Introduction

Recent interest in wireless sensor networks has fueled a tremendous increase in
the study of signal and information processing in distributed settings. Energy
conservation is very important for most interesting applications, which generally
translates into minimizing the communication among sensors to preserve both
individual node power and total network throughput. Consequently, recent sen-
sor network research has primarily focused on adapting well-known signal pro-
cessing algorithms to distributed settings where individual nodes perform local
computations to minimize the information passed to distant nodes (e.g., [1,2,3]).

The goal of many proposed sensor network algorithms has been to get the
information out of the network (via a special node connected directly to a more
traditional data network) with a good trade-off between fidelity and energy ex-
pended. However, in many applications the implicit assumption is that the infor-
mation coming out of the network will be used to monitor the environment and
take action when necessary. A significant and natural extension to the sensor
network paradigm is a wireless sensor and actuator network (WSAN). A WSAN
consists of a network of sensor nodes that can measure stimuli in the environment

* This work was supported by the Texas Instruments Leadership University Program.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 1-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 C.J. Rozell and D.H. Johnson

and a network of actuator nodes capable of affecting the environment. While one
possible strategy summarizes information for a system outside the network to
determine actuator behaviors, greater efficiency should be achieved by determin-
ing actions through in-network processing. A more subtle issue is that processing
and communication strategies optimizing sensor data fidelity may not yield the
best results when actuation performance fidelity is the desired metric.

While WSANSs are often discussed, quantitative analysis of their performance
has not received much attention. Existing work can be found in areas such as
software development models for WSANs [4] and heuristic algorithms for re-
source competition based on market models [5]. Other recent work [6] has used
techniques from causal inference to evaluate specific actuation strategies. Most
relevant is the recent work of Lemmon et al. [7] analyzing distributed control
systems while considering the underlying communication network. A control sys-
tem approach is certainly appropriate for some WSAN application models, but
may use more communication resources (especially from actuators to sensors)
and may require the sensors and actuators to operate in the same signal space.

Merging sensed information directly into actions without centralizing the in-
formation and decision making has rarely been considered in man-made systems.
Fortunately, we have examples from biology that demonstrate the effectiveness
of this strategy. Neural systems perform a chain of tasks very similar to the
needs of WSANS: sensing, analysis, and response. Furthermore, evidence indi-
cates that neural systems represent and process information in a distributed way
(using groups of neurons) rather than centralizing the information and decision
making in one single location. This shrewd strategy avoids creating a single point
of vulnerability, so the system can function in the presence of isolated failures.

In neural systems, two types of behaviors exist, depending on whether there is
“thinking” involved, which we call conscious and reflex behaviors. In conscious
behavior, biological systems gather sensory information, make inferences from
that information about the structure of their environment, and generate actions
based on that inferred structure. In reflex behavior, a sensed stimulus directly
generates an involuntary and stereotyped action in the peripheral nervous system
before the brain is even aware of the stimulus [8]. An obvious example of a reflex
behavior is the knee-jerk reaction achieved by a doctor’s well-placed tap below
the kneecap. A more subtle example is the eye position correction that allows
our vision to stay focused on an object even when our head is moving.

WSAN applications have an analogous division, which we call object-based and
measurement-based network tasks. For example, the canonical target tracking
scenario is an object-based task because it involves using sensory measurements
to infer information about objects in the environment. On the other hand, an
application such as agricultural irrigation is a measurement-based task because
sensor measurements directly contain all the necessary information — there is
no underlying environmental object to try and infer. In this work we consider
models of measurement-based WSAN applications. While measurement-based
systems are simpler and possibly more limited than object-based systems, they
provide an entry point for analyzing and designing WSAN algorithms.

Evaluating Local Contributions to Global Performance 3

WSANSs are complex systems with many interacting layers of operation. There
are significant communication and networking challenges in these systems that
are the focus of current research efforts. While the biological reflex systems de-
scribed earlier do not appear to adaptively change their communication strategy
on short time scales, the nature of wireless networking may necessitate dynamic
decisions to employ different communication strategies based on current net-
work conditions. Networking strategies to limit communication in the system
must weigh the cost of executing individual communication links against the
detrimental effect of performing suboptimal information processing. The role of
our present research is to analyze a distributed WSAN model for a broad class of
applications. We want to determine the optimal information processing strategy
and to quantify the effects of suboptimal strategies resulting from eliminating
communication links. As a simple starting place for our analysis, we will use
vector space methods to model sensors and actuators, leveraging the notion of
frame theory to analyze systems of nodes with overlapping influence.

2 Sensors and Actuators

As an example reflex behavior that will shape our thinking about WSANs, we
consider the crayfish visual system. The crayfish has a dorsal light reflex [9]
where light movement in the visual field elicits predictable reflex movement in
the eyestalk that attempts to keep a constant orientation of the visual field. The
main visual representation (in neurons called “sustaining fibers”) is comprised
of sensory elements that sum light activity in overlapping spatial regions. All of
the information available to the creature about the light stimulus is contained
in this collection of sustaining fiber responses.

The crayfish eyestalk movement is controlled by a set of motorneurons, which
send signals to several small muscles. Each muscle generates movement in one
specific direction. As with the sensory units, the muscle movement directions
also overlap in the movement space (i.e., muscle movements are not “orthogo-
nal”). Most importantly, the activity in each motorneuron is determined directly
from a processed combination of some sustaining fiber inputs. Though all of
the motorneurons have to be coordinated to produce the desired total action,
their distributed individual responses are generated directly from the distributed
sustaining fiber representation and without a centralized decision-making struc-
ture. Previous research has shown that even in this critical behavior, the con-
tributions of each sensory unit to the total action are simple and essentially
linear [10].

Our WSAN model will follow the principles seen in this example from the
crayfish. Though the constraints facing biological systems are different from
the constraints imposed by wireless networking, neural systems must also be
very resource efficient and try to minimize communication (each neural signal
generated means expending more metabolic energy). Biological systems must
have solutions that do a good job (some would even argue optimal) at trading-
off performance and efficiency, and we use them as a rough guide.

4 C.J. Rozell and D.H. Johnson

In our model, a collection of sensors measuring overlapping spatial regions
gather information about a stimulus field. A collection of actuators have indi-
vidual environmental effects that overlap and must be coordinated. Each ac-
tuator determines its individual contribution to a behavioral goal through a
combination of the sensor measurements. We start with the simplest scenario
where only this direct sensor-to-actuator communication is allowed. By elim-
inating inter-sensor and inter-actuator communication, we also eliminate the
communication overhead necessary for such a scenario. It may be possible to
improve system performance by allowing additional communication and coop-
eration, depending on the specific networking model and communication costs
involved.

A major goal in any information processing strategy for WSANSs is retaining
good performance in the total actuation while reducing the communication bur-
den from the sensors to the actuators. To analyze the performance of a WSAN
under different design decisions, we use mathematical models based in the fa-
miliar tools and terminology of vector spaces.

2.1 Vector Space Models of Sensors and Actuators

Sensor network models often begin with a collection of sensors distributed over a
2-D spatial field limited to the spatial domain W (e.g., W = [0, 1]2). Sensors are
indexed by k € K, and are located either irregularly or on a regular grid. The
spatial region being sensed contains a stimulus field, denoted by z(w), where
w € W is a vector indicating location in the field.

Sensor measurement models often consist of averaging the stimulus field over
non-overlapping spatial regions surrounding each sensor [11]. We generalize that
notion by representing each sensor by a receptive field si(w) over W that per-
forms a weighted average over a spatial region. The sensor receptive fields are
defined by the physics of the devices and could indicate sensors that are direc-
tional or have varying sensitivity over a region. Sensor measurements of the field
are therefore given by

my = /W z(w) sk (w)dw. (1)

We will not assume any particular arrangement or shape of the sensor fields; in
general we expect sensors to be irregularly spaced and have highly overlapping
receptive fields. The measurement form given in equation (1) includes the special
case of sensors averaging the field over disjoint local regions.

Recasting equation (1), the sensor measurements can be written as an inner
product over the field W, my = (z,sg). This vector space view of the sensor
measurements indicates that with no further processing the measurements can
represent any stimulus signal in the space H, = span ({s;}). The space H,
represents a restricted class of fields that is consistent with the resolution of
the sensors. For example, H, may be a space of spatially bandlimited functions
over W. The actual stimulus field in the environment may not be in H,, but
the sensors have a limited resolution (depending on design and placement of
the sensors) that precludes them from sensing an unrestricted class of signals.

Evaluating Local Contributions to Global Performance 5

Therefore, we assume that © € H,, though in reality = only represents the
component of the true environmental field within the sensing resolution of the
network.

Just as individual sensors have local but overlapping regions of sensitivity,
actuator networks are composed of individual actuators that each affect the en-
vironment through (possibly overlapping) local regions of influence. Actuators
are indexed by [€ L, and again are located either irregularly or on a regular grid.
Whereas each sensor is represented by a receptive field, each actuator is repre-
sented by a influence field over W, denoted by a function a;(w). An actuator’s
influence field depends on the physics of the specific problem, and again may
indicate actuators that are directional or have varying influence over a region.

Each actuator responds with an intensity that indicates how strongly it acts
on the environment. We will model an actuator’s intensity d; as weighting its
influence function. The resulting total actuation field over W is y = >, diay,
where, for simplicity (and to emphasize the vector space view), we drop the ex-
plicit notation of spatial location w € W from the actuator influence function
a;(w) and the total actuation field y(w). The collection of actuators can there-
fore cause any actuation field y in the space H, = span ({a;}). The space H,
represents a restricted class of fields that is consistent with the resolution and
placement of the actuators (e.g., a class of spatially bandlimited signals, etc.).

It is critical to note here that the collection of sensors {s;} and actuators {a; }
do not share many characteristics; they can have different numbers of elements
at different locations over W. Most importantly, individual sensor and actuator
functions can have different shapes and even involve different modalities (e.g.,
temperature sensors and water delivery actuators). Consequently, H, and H,
can be very different functions spaces, and using general vector space definitions
allows us to connect sensed inputs to actuation outputs.

In order to design effective communication strategies between sensors and ac-
tuators, we need methods to analyze the relationship between individual node
activity (my and d;) and the resulting impact on signals in H, and H,. The
analysis is complicated because of the overlap between both individual sensor
receptive fields and actuator influence fields; in short, the representational el-
ements are not orthogonal. We appeal to the tools of frame theory to analyze
systems of linearly dependent sensor and actuator functions.

2.2 Frame Theory

In section 2.1 we described the sensor measurement process as a projection of a
stimulus field onto a collection of sensor representation functions. Similarly, we
described actuators generating an effect as a weighted sum of individual actuator
representation functions. In both the collections of sensors and actuators, the ba-
sic functions form a representation for a signal space (H, and H,, respectively).
The notion of representing a signal in terms of a collection of orthonormal basis
(ONB) vectors is one of the most fundamental ideas in signal processing. Though
the situation here is more complicated than an ONB, the collections of sensors
and actuators are vectors that form a similar representation for their associated

6 C.J. Rozell and D.H. Johnson

signal spaces. In this section, we will consider a general collection of vectors {¢;}
indexed over J. Fundamental results about this generic collection of vectors will
be applied to the sensor and actuator representations in section 3.

An orthonormal basis has the property that any energy represented by the pro-
jection onto one vector will not be present in the projections onto any other vec-
tors. As a consequence, reconstructing the signal from the projections is trivial;
the projection coefficients simply weight the same vectors in the reconstruction.
However, in general, collections of sensor receptive fields and actuator influence
fields will not be orthogonal. In fact, in the most general case, these collections
of functions may be linearly dependent and no longer form a basis.

A collection of M vectors {¢;} forms a frame [12] for H if there exist constants
0 < A < B < o so that Parseval’s relation is bounded for any = € H,

Allal? < 3 ey, o) < Bllz|l®
jeg

In general, there will be more vectors than are necessary to represent H (M > N,
where N = dim (H)), meaning that the frame is redundant. When the frame
vectors are normalized ||¢>j||2 = 1 (which we assume here), the frame bounds
measure the minimum and maximum redundancy of the system and satisfy
A< A]\/{ < B. Frames were originally introduced in 1952 in the context of nonhar-
monic Fourier series [13] and later played a key role in wavelet theory [14]. They
have recently been used in many other areas, including filterbanks [15], image
processing [16], communications [17], coding [18] and machine learning [19].

The frame condition given above guarantees that the analysis coefficients ob-
tained from projecting a signal onto the frame vectors contains all of the informa-
tion necessary to synthesize (or reconstruct) the signal. Mathematically, the anal-
ysis coefficients are generated through the frame analysis operator @ : H — [2,
which is given by (@x)j = ¢; = (¢j,x). In vector notation, the collection of
all analysis coefficients 1s given by ¢ = @z. For finite dimensional frames (as in
practical systems), the operator @ is a matrix multiplication.

The adjoint of the frame analysis operator is the frame synthesis operator,

' 12 — H , given by &'c = ZjeJde)j. Because of the dependency present

between frame vectors, the same set of vectors cannot generally be used for both
analysis and synthesis. Even though &’ and @ are inverse operations in an ONB,
in general @ will not have a unique inverse. Therefore, the usual reconstruction
will not work, = # ¢'Px = je J{, ¢;)¢;. Instead, the pseudoinverse operator
@* = (@'P) " @' is used for reconstruction, z = &*dx = (¢'P) " > ier (T 95)9;.
Equivalently, we can view the reconstruction as using a different set of vectors
{¢;} called the dual set, z = 3, ;(z, ¢;)¢;. While there are an infinite num-
ber of sets of dual vectors that will work, the canonical dual set is given by
¢>J = (¢) ¢;. These dual vectors are also a frame for H, with lower and
upper frame bounds (, A), respectively. Importantly, the frame and dual set
are interchangeable in the reconstruction equation,

= (g 2)b; =D (0.)05

jeJ JjeJ

Evaluating Local Contributions to Global Performance 7

The frame bounds are related directly to the eigenstructure induced by the
frame vectors: A = Apin and B = ||&'P|| = Apax, where {\;} are the eigen-
values of (9'®). When a collection of vectors has frame bounds that are equal,
A=B= %7 it is called a tight frame. When a frame is tight, the dual vectors are

simply rescaled versions of the frame vectors, @ = }1@" A collection of vectors
is an orthonormal basis if and only if it is a tight frame with A = B = 1.

In an ONB, perturbing a measurement coefficient (including removing it en-
tirely) has a proportional impact on the reconstruction — the energy in the
reconstruction error is the same as the energy in the perturbation. The redun-
dancy present in a frame can provide a measure of robustness to perturba-
tions that is not present in orthonormal systems, but it also makes the effect
of such perturbations harder to analyze. When we apply frame theoretic mod-
els to the analysis of sensor and actuator networks, we want to know the im-
pact of reducing communication costs by using approximate coefficients in the
reconstruction.

Stated generally, we need to calculate a bound on the maximum error when
a perturbation p; is added to each frame coefficient ¢; in the reconstruction,

=73 cs(ci+pj) ¢;. Perturbations may include removing the coefficient from
the reconstruction, p; = — (¢;). The error resulting from these perturbations is

2
o = &[1* = {|>_pids| - (2)

jeJ

We recall that the dual set {%} is also a frame for H,;, and we denote the analysis
operator for the dual frame to be @. Note that the error signal recast in matrix

notation is (z — &) = 5’197 where p is the perturbation vector p = [plpg .. .lel] .

Linear algebra can yield a bound on the error,
2

= 2

[#'s]] Alpll*.

= ’<p, 55’@‘ < H@f’

Note that because the singular values of @ are the square roots of the eigenvalues
of both ({5{5’) and (5’5), it follows that Hii’ = H%’%

is a frame for H with upper frame bound (}) and because of the relationship

‘. Because the dual set

between the eigenvalues of (5’ 5) and the frame bounds, we can finally write a

useful bound (alluded to in [20]) on the reconstruction error

2
~112 ||P||

z—z||° < . 3

o=l <) (3)

In words, the perturbation energy is reduced in the reconstruction by at least

the minimum redundancy in the set of frame analysis vectors {¢j}. The upper

bound in equation (3) is consistent with probabilistic robustness results when
stochastic noise is added to frame coefficients [18].

8 C.J. Rozell and D.H. Johnson

3 Connecting Sensors to Actuators

Following our example of reflex behavior, actuators must generate activity using
received sensors measurements without communicating with other actuators.
The overlapping actuator influence fields prevent a purely greedy approach where
each actuator generates the locally optimal activity. Nearby actuators could be
nearly identical and wildly overcompensate their actions in a greedy approach.
Sensors must coordinate behavior (without communication) to account for the
the action field components covered by the other sensors.

3.1 Generating Optimal Actuation

To formalize this notion of coordination, we draw on our discussion of frame
theoretic models for sensors and actuators in section 2.2. We assume that the
collection of sensors represented by {sy} form a frame for H, with frame bounds
(As, Bs) and with dual functions given by {§x}. Similarly, we assume that the
collection of actuators represented by {a;} form a frame for H, with frame
bounds (A,, B,) and with dual functions given by {a;}. Note that the dual
sets {8x} and {a;} aren’t realized directly in physical systems. For example, the
sensor receptive field dual functions {5;} may have spatial characteristics that
would be impossible to build into any type of real-world sensor.

To generate coordinated behavior in the actuator network, we must neces-
sarily start with the ideal solution for generating actions. Each WSAN has
an application specific goal that defines its existence. For example, a system
might use sensed rainfall to order the diversion of floodwater or the deliv-
ery of irrigation to meet specified conditions. Though the actions necessary
to achieve the goal depend on the specific observed stimulus, the goal itself
is stimulus independent. To quantify this application goal, we assume that for
any measured stimulus field = there is a mapping T : H, — H, that defines
the ideal action field response, y = Tx. The mapping T would be determined
as a design specification for the WSAN in advance. While it may be possi-
ble to reconfigure a WSAN to perform a different application (with a differ-
ent goal) on long time scales, we assume that the goal (as quantified by T)
stays fixed.

An ideal actuator network would have each node determine action coefficients
{di} to generate the optimal response T'v =), ; dja;. Drawing on the frame
theory results from section 2.2, the coefficients weighting the action influence
field vectors are given by the inner products between the action dual vectors and
the action signal that we are trying to generate,

dl = <(~ll,T1'>. (4)

To determine the optimal action coefficients, consider first the reconstruction
equation for the stimulus field based on the sensor measurements,

T = Z mySk. (5)

keK

Evaluating Local Contributions to Global Performance 9

Substituting equation (5) into equation (4), the optimal action coefficients are

dl = <&1,T Z mk§k> = Z mk<&l,T§k>. (6)

keK keK
!
The conversion from sensor measurements m = [ml, ma,..., M K|] to actuator
’
intensity coefficients d = [d1,da,...,d|;|] in matrix form is d = Vm, where
! - ! - ~7! ~
4,781 ayTso--- a; T35k
~/ ~ N
a,1'3;
V=72
~!) ~ ~! ~
a|L|T31 a|L|T5|K|

The expression in equation (6) (or equivalently the entries of V') illuminate
the form of the actuator intensity coefficients necessary to generate the optimal
total action Tz. Unfortunately, each coefficient d; is a sum including sensor mea-
surements s over all k € K; each individual actuator would require knowledge
of every sensor measurement in order to generate an optimal actuation intensity.

A scenario where every sensor in the network communicates its measurement
to every actuator would present an unreasonable communication burden on the
network — approximately |K| - |L| communication links would be necessary.
While a portion of this burden could be reduced through broadcast communi-
cation, some sensor-to-actuator links may involve several communications in a
multi-hop routing scheme. Any realistic networking scheme will have to elimi-
nate some of these communication links based on their communication cost and
their contribution to the total actuation performance. Intuitively, some sensor
measurements will be more important than others in determining an actuators
behavior. For example, a moisture sensor spatially located a long distance away
from the influence field of a specific irrigation actuator will likely have very little
relevance on that actuator’s optimal behavior coefficient. Using the frame the-
ory results presented in section 2.2 along with the vector space model of sensor
and actuator networks, we have tools for analyzing the effects of eliminating
communication links on the total actuation performance.

3.2 Limiting Communication Costs

Each entry of the matrix V indicates a communication link from a sensor to an
actuator. Before blindly reducing communications, a networking scheme must
know the importance of each possible communication. In a sensor network, per-
formance is often judged by assessing the fidelity of the information removed from
the network at representing the original sensor measurements (or the underlying
stimulus field). However, the only performance metric of any consequence in a
WSAN is the fidelity of the resulting total action.

To quantify the importance of individual communications, we must deter-
mine how the total actuation performance is affected when a communication

10 C.J. Rozell and D.H. Johnson

is not executed. We quantify this notion of importance through the results de-
scribed in equation (3). Consider the case where for actuator I, a subset of
sensor nodes E; C K do not transmit their measurement coefficient to this
actuator. Instead of optimal actuator intensity coefficients (see equation (6)),
actuators form approximate intensity coefficients using the received sensor
measurements

Cil = Z mk<&l,T§k>. (7)

ke(K\E))

The approximate actuator intensities generate a total action field approximating
the desired optimal action Tz,

Z} = Zcilal.

leL

Generating a total action field with the approximate coefficients {dl} is equiv-
alent to performing a frame reconstruction with perturbed coefficients, as de-
scribed in section 2.2. Subtly, the actuator frame vectors are performing synthe-
sis, meaning that dual vectors (with lower frame bound 1) are now the analysis
set. Therefore, equation (3) relates the fidelity of the appr0x1mate actuator in-
tensity coefficients to the fidelity of the resulting total action field,

Tz~ gI[* < Ba 3" |di — o]

leL

Using equations (7) and (6), we can write the total action field error in terms of
individual sensor coefficients not communicated to actuator nodes

2

|72 - g|* < Ba Z ka (ar, T'3) (8)

leL |keE;

<Bo > Y fmulan, T (9)

leL kEE,

As we see in equation (9), the networking strategy for sensor node k can use the
value of |my{(ai, T§k>|2 to quantify the maximum contribution it would make to
the total action error by not communicating its measurement to actuator [. The
bound in equation (9) can be used to set a threshold v guaranteeing an absolute
upper limit on the actuation error.

Importantly, the form of the error bound in equation (9) isolates each com-
munication link as an independent term so that no communication overhead is
required to determine the absolute worst actuation error that can be incurred
by eliminating a communication link'. In applications where a WSAN must re-
spond quickly to critical but rare events (e.g., a fire suppression system), an

! We are assuming that the setup phase of the WSAN has given nodes information
about the relative locations of their neighboring nodes that can be used to calculate
the necessary inner product.

Evaluating Local Contributions to Global Performance 11

absolute bound on the actuation error computed locally is probably appropri-
ate. To ensure that the actuation error is within an absolute tolerance, the active
communication links between sensors and actuators will necessarily change de-
pending on the input signal. While this dynamic decision making doesn’t impose
a large computational burden on the sensor nodes, the underlying communica-
tions network must be able to handle large fluctuations in demand for resources.

Because the sensor and actuator fields overlap and form a frame (instead of
an orthonormal basis), the contributions from two different sensor measurements
to an actuator coefficient could, in effect, “cancel” each other. Because the er-
ror bound provided in equation (9) is expressly written in terms of local sensor
node measurements, this bound favors a conservative interpretation rather than
accounting for these interactions. Given a specific communication and network-
ing scenario, it may or may not be advantageous to allow sensors to explicitly
communicate to calculate a tighter error estimate (based on the original error ex-
pression in equation 2) and coordinate their communication accordingly. While
the frame theoretic analysis paradigm introduced here would allow such an anal-
ysis, it would necessarily be specific to the application details (particularly the
communication and networking scenario).

In many settings, designing around an absolute error constraint results in a
system that is too conservative in its average behavior. To analyze the aver-
age actuation error one must assume a stochastic model for the measurements,
such as assuming that the sensor measurements have zero mean (€ [m] = 0) and
covariance matrix I,. The covariance matrix I, will be determined by a com-
bination of the the sensor receptive field properties and the distribution assumed
on x within the signal space H,. Only the first two moments of the distribution
on m are relevant, so we need not assume Gaussian distributions.

Average WSAN performance is much easier to calculate if we recast equa-
tion (8) using matrix notation. We first need to write approximate actuator
coefficients in equation (7) in terms of a perturbation of V', which captures the
ideal transformation from sensor measurements to actuator coefficients. Let the
approximate actuator coefficient be given by d=(V+V m, where the matrix

V is defined to remove inactive communication links:

(‘7) _ {— (a’ngl) ifk e E
k.l

0 ifke (K\E).

Incorporating this definition into equation (8) and taking the expectation of both
sides lets us bound the average error

& {HT@« — Qllﬂ < B,Tr [T/me/’} : (10)

where Tr[] is the trace operator.

A system designer could use equation (10) to characterize (on average) how
important a communication link between a specific sensor and actuator pair is
to generating the total actuation field. Using this information, a WSAN design

12 C.J. Rozell and D.H. Johnson

could choose a priori which communication links between sensors and actuators
will be active in the network. Such a scheme has the disadvantage that it may
not react well to events that are large deviations from the usual behavior. The
advantages to this type of non-adaptive communication scheme in a WSAN are
that the communication resources are used more efficiently most of the time, the
network can count on a limited communication burden for any stimulus field, and
the real cost of executing individual communication links (through a possibly
multi-hop network) can be easily integrated into generating an optimal strategy.
Also, it is worth noting that the bound in equation (10) is tighter than the bound
in equation (9) (because it is based directly on equation (8)), reflecting the fact
that all of the communication links can be considered jointly when designing the
system for average error performance.

4 An Example WSAN System

As an illustrative example, consider a WSAN operating a fire suppression sys-
tem in an office building with four research labs. Each lab contains expensive
equipment, so there is a strong desire to localize the fire suppression to minimize
water damage to adjacent labs. The building space is covered with a network of 21
temperature sensors (modeled with radially symmetric, exponentially-decaying
receptive fields) and 13 actuators (modeled with an oriented and exponentially
decaying influence field), all illustrated in Fig. 1. This WSAN has 273 possible
communication links from the sensor nodes to actuator nodes. In this example
we assume an equal communication cost for each link (i.e., we would like to use
as few links as possible regardless of which links are in use).

We specified a function T" mapping the temperature inputs to an imaginary
desired fire suppression output. To illustrate that this mapping may be spatially
varying, we note that fire activity in all labs will induce fire suppression activity
along a path to the main exit. We used two sample temperature fields indicating
a fire in different labs areas (shown in Fig. 2, along with optimal responses). As
discussed in section 3, the quantity |my(a;, T'S)| determines the importance of
each communication link (sorted and plotted in Fig. 3 for these test signals). In
these signals, a threshold of v = .2 allows approximately 15 of the 273 possible

Fig. 1. Contour plot of example sensor (Far left) and actuator (Middle left) nodes.
Layout and shape of the sensor (Middle right) and actuator (Far right) nodes.

“ +

N1

2R
p -

Lab3 Lab 4

‘;’

Exit

Evaluating Local Contributions to Global Performance 13

Lab 1 Lab2 Lab 1

Lab 1 Lab2 Lab 1 y 3
— /

Lab4 Lab3 Lab4

e

Fig. 2. Contour plots of sample temperature fields for test signal 1 indicating a fire in
lab 3 (Far left) and test signal 2 indicating a fire in lab 2 (Middle left). Contour plots
of optimal actuation responses to the two test scenarios (Middle right and far right,
respectively). Different spatial response characteristics keep the main exits clear.

Active links: signal 1,y=0.2 Active links: signal 1, y=0.05
+ o+ + o+ + o+ + o+
kabt | * | kab 2 kab * | kab 2
+ o+ + o+ + o+
—Test signal 1 * * i *
- - Test signal 2
+ o+ L |+ +
1 D+ | kab 4 —Fab4
+ o+ + o+
Exitl Exitl
Active links: signal 2,y=0.2 Active links: signal 2, y=0.05
+ o+ + o+
kab +——* abt=—y
+ o+ + o+ [~
B /i B X/
+ o+ + o+ + o+
— . . . kab 8 kab 4 kab 8 kab 4
0 50 100 150 200 250 o M ot .
Communication link index Exit Exit

Fig. 3. Left: The importance measurements of each communication link (|mg{ai, T'5x)|)
are sorted and plotted for the two test signals. Right: Connection diagrams for the two
test signals under the two thresholds in the example system. Sensor nodes are marked
with a blue (+) and actuator nodes are marked with a red (*). Active connections from
a sensor to an actuator are denoted by a blue line.

communication links to be active, and v = .05 allows approximately 40 active
communication links. The resulting active communication links are shown in
Fig. 3. Close examination of the connection diagrams shows that some com-
munication choices are non-obvious; the most important sensor to a particular
actuator is not always the one with heavily overlapping influence functions.
The actuation response is generated for both test signals using threshold val-
ues of v = .2 and v = .05, and the resulting total actuation fields are plotted in
Fig. 4. The reduced communication scheme based on the thresholds resulted in
the number of active communication channels and associated percentage errors
given in Table 1. The principles discussed in section 3 allow the WSAN to gen-
erate excellent approximations to the optimal actuation field by using local rules
to activate only a fraction of the communication links. Interestingly, if we acti-

14 C.J. Rozell and D.H. Johnson

Approximate response to signal 1:y=0.2 Approximate response to signal 1: ¥=0.05 Approximate response to signal 2: 1=0.2 Approximate response to signal 2: 1=0.05

VN
Lab 1 Lab2 Labt | Lab2 Lab 1 / Lab 1) Lab2 | |
- N | \‘ /

/ \ ~
\ [e
\ \ \ -

- 1\ ‘ |
/ \ | |
f | ‘ | \ /
Lab4 | ltavs / JLab4 Lab3 Lab4
‘ \ ‘ / —

— 1l ead/ Exit

Exit

Fig. 4. Contour plots of actuation responses when using only a subset of possible
communication links (determined by thresholding each link’s importance to the total
actuation). Approximate responses to test signal 1 are shown when using 14 and 40
communication links (Far left and middle left). Approximate responses to test signal 2
are shown when using 17 and 45 communication links (Middle right and far right).

Table 1. Results from the example WSAN fire suppression system

v=.2 v =.05 v=.2 v =.05
Active links 14 40 Active links 17 45
Relative error 2.22% 0.04% Relative error 2.46% 0.15%
Test signal 1 Test signal 2

vate the same number of links using the more intuitive measure |my{a;, T'sy)|
the resulting actuation error increases by roughly an order of magnitude.

9

5 Conclusions and Future Work

WSANS are often discussed as a logical extension to sensor networks, but there
is little research investigating sensor and actuator systems working in concert
together. While algorithms that reduce communications and ensure data fidelity
for sensor measurements are important for many applications, they are not the
ultimate arbiter for obtaining good actuation performance. The total system
must be designed and managed with the final actuation goal in mind. Our
frame-theoretic WSAN model illustrates one strategy for taking such a holis-
tic information management view with actuation fidelity as the relevant metric.

The analytic tools we present characterize the effect of eliminating an indi-
vidual communication link between a sensor and an actuator, both in terms of
absolute (for specific sensor measurements) and average actuation error. Choos-
ing a networking strategy for eliminating communication links is both difficult
and non-intuitive. While intuition would indicate that the relationship between
the activation fields of a sensor and an actuator are the relevant quantity char-
acterizing the importance of the communication between those two nodes, our
work shows that it is the relationship between the mathematical duals of the
activation fields that captures this inherent importance. It is through these dual
functions that the relationship of the whole sensor network to the whole actu-

Evaluating Local Contributions to Global Performance 15

ator network can be accounted for in local communications between pairs of
nodes. Characterizing the importance of individual communication links to the
overall goal points directly to how a networking strategy could weigh the costs
and benefits of each communication link to achieve the desired balance between
performance and energy efficiency. The value of our analysis is highlighted in an
example WSAN system where link activations based on the sensor and actuator
duals performed an order of magnitude better than activations based on the
simple overlap of the sensor and actuator receptive field functions.

Today we are only seeing the beginning of work in information management
in WSANS. In this work, we have given explicit upper bounds on actuation error
that can be determined locally with no cooperation between the sensors. We have
also indicated how this analysis framework could be used in a specific applica-
tion and networking scenario to investigate the benefits of allowing local sensor
coordinate their communications to an actuator. Finally, we have also derived
analogous average error bounds that could be used to design static networking
strategies for applications where that approach is more appropriate.

We are currently working on many extensions to this work. We have consid-
ered the case where perfect (analog) coefficients are sent on active communication
links. While real systems would have to use quantized coefficients, we believe that
typical quantization schemes would have only a second order effect relative to
other actions taken to limit communication (such as eliminating communication
links). However, it is more interesting to consider a variable rate communica-
tion scheme where some links could send coefficients with variable fidelity. Such
variable rate schemes could be particularly interesting as we consider incorporat-
ing information about the variable networking costs of different communication
links. We are working to more tightly integrate the costs and benefits of individ-
ual communication links to find optimal strategies for determining which links
to activate dynamically and with minimal overhead.

Finally, our system model considers a single actuation response to a set of
sensor measurements. This is something of an open-loop system because the
sensors don’t necessarily receive any direct feedback from the actuators. This
generality is appealing in many senses; our model allows sensors and actuators to
live in separate signal spaces and it may be possible that actuation is not directly
observable by the sensors. However, in many practical applications, future sensor
measurements will be affected by actuator behavior even when they operate in
different signal spaces (e.g., fire suppression actions will reduce the temperature
measured by sensors). We are working on methods for extending this work to
consider the dynamic properties of such an implicit feedback system.

References

1. Nowak, R.: Distributed EM algorithms for density estimation and clustering in
sensor networks. IEEE Transactions on Signal Proc. 51 (2003) 2245-2253

2. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Intl.
Symposium on Information Proc. in Sensor Networks (IPSN), Berkeley, CA (2004)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C.J. Rozell and D.H. Johnson

Blatt, D., Hero, A.: Distributed maximum likelihood estimation in sensor networks.
In: Intl. Conf. on Acoustics, Speech, and Signal Proc., Montreal, Canada (2004)
Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: State-centric programming for sensor
and actuator network systems. IEEE Pervasive Computing Magazine 2(4) (2003)
Gerkey, B., Mataric, M.: A market-based formulation of sensor-actuator network
coordination. In: AAAT Spring Symp. on Intel. Embed. and Dist. Sys. (2002)
Coates, M.: Evaluating causal relationships in wireless sensor/actuator networks.
In: Intl. Conf. on Acoustics, Speech, and Signal Proc., Philadelphia, PA (2005)
Lemmon, M.D., Ling, Q., Sun, Y.: Overload management in sensor-actuator net-
works used for spatially-distributed control systems. In: Proceedings of the ACM
Sensys Conference. (2003)

Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science. Third edn.
Appleton & Lange, Norwalk, CT (1991)

Neil, D.: Compensatory eye movements. In Sandeman, D., Atwood, H., eds.: The
Biology of Crustacea, Neural Integration and Behavior. Academic Press, New York
(1982) 133-163

Glantz, R., Nudelman, H., Waldrop, B.: Linear integration of convergent visual
inputs in an oculomotor reflex pathway. J. of Neurophys. 52(6) (1984) 1213-1225
Nowak, R., Mitra, U., Willett, R.: Estimating inhomogeneous fields using wireless
sensor networks. IEEE J. on Selected Areas in Comm. 22(6) (2004) 999-1006
Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhauser, Boston,
MA (2002)

Dulffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Transactions of
the American Mathematical Society 72(2) (1952) 341-366

Daubechies, 1.: Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, PA (1992)

Bolcskei, H., Hlawatsch, F., Feichtinger, H.: Frame-theoretic analysis of oversam-
pled filter banks. IEEE Transactions on Signal Proc. 46(12) (1998) 3256-3268
Candes, E., Donoho, D.: New tight frames of curvelets and optimal representations
of objects with piecewise C? singularities. Communications on Pure and Applied
Mathematics 57(2) (2004) 219-266

Strohmer, T., Heath Jr., R.: Grassmannian frames with applications to coding and
communcations. Applied and Comp. Harmonic Analysis 14(3) (2003) 257-275
Goyal, V., Kovacevié, J., Kelner, J.: Quantized frame expansions with erasures.
Applied and Computational Harmonic Analysis 10 (2001) 203-233

Gao, J., Harris, C., Gunn, S.: On a class of support vector kernels based on frames
in function hilbert spaces. Neural Computation 13 (2001) 1975-1994

Balan, R., Casazza, P., Heil, C., Landau, Z.: Density, overcompleteness, and local-
ization of frames, I. Theory. Preprint (2005)

Roadmap Query for Sensor Network Assisted
Navigation in Dynamic Environments

Sangeeta Bhattacharya, Nuzhet Atay, Gazihan Alankus,
Chenyang Lu, O. Burchan Bayazit, and Gruia-Catalin Roman

Department of Computer Science and Engineering,
Washington University in St. Louis

Abstract. Mobile entity navigation in dynamic environments is an es-
sential part of many mission critical applications like search and rescue
and fire fighting. The dynamism of the environment necessitates the mo-
bile entity to constantly maintain a high degree of awareness of the chang-
ing environment. This criteria makes it difficult to achieve good naviga-
tion performance by using just on-board sensors and existing navigation
methods and motivates the use of wireless sensor networks (WSNs) to
aid navigation. In this paper, we present a novel approach that integrates
a roadmap based navigation algorithm with a novel WSN query protocol
called Roadmap Query (RQ). RQ enables collection of frequent, up-to-
date information about the surrounding environment, thus allowing the
mobile entity to make good navigation decisions. Simulation results un-
der realistic fire scenarios show that in highly dynamic environments RQ
outperforms existing approaches in both navigation performance and
communication cost. We also present a mobile agent based implementa-
tion of RQ along with preliminary experimental results, on Mica2 motes.

1 Introduction

Mobile entity navigation is a crucial part of many mission critical applications
like fire fighting and search and rescue operations in disaster areas. These sce-
narios usually involve dynamic environments that make navigation dependent
on up-to-date knowledge of the changing environment. Moreover, information
about a large region around the mobile entity is required in order to achieve
good navigation performance. For example, in the case of a robot navigating a
region on fire, the robot would need real-time temperature information about
the surrounding areas in order to navigate the region without getting burnt.
Also, due to the highly dynamic and unpredictable nature of spreading fire,
temperature information of the surrounding areas would be needed frequently
for continuous awareness of the neighboring environment. On-board sensors have
a limited sensing range and hence cannot provide sufficient information required
to make good navigation decisions. Wireless sensor networks (WSNs), on the
other hand, present new opportunities to obtain frequent, up-to-date informa-
tion about a large expanse of the surrounding area. Information obtained from
the WSN can be used by the mobile entity to make good navigation decisions,

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 17-36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

18 S. Bhattacharya et al.

with reduced risks. Moreover, WSNs are easily deployable and are also econom-
ically feasible. Once deployed, a WSN can serve several mobile entities and can
also be employed to coordinate the movement of multiple mobile entities.

The use of WSNs for navigation in dynamic environments presents important
new challenges. Since frequent sensor data updates are required to maintain
continuous awareness in dynamic environments, the data collection process can
induce a heavy communication workload on the WSN, which usually has lim-
ited bandwidth and energy. The resulting network contention and congestion
may cause excessive communication delay and loss of sensor data, which may
significantly affect the safety and navigation performance of the mobile entity.
Therefore, it is important to design efficient query protocols that can collect up-
dated sensor data needed for safe navigation at minimum communication cost.

In this paper, we present a novel roadmap-based approach for navigation in
dynamic environments. Our approach consists of two components; a roadmap-
based navigation algorithm for the mobile entity and a distributed query proto-
col called Roadmap Query (RQ) for the WSN. The navigation algorithm uses a
roadmap of the region, which is a virtual graph consisting of possible paths in
the region, to search for a safe path to the goal. The path is selected based on
roadmap edge weights derived from current sensor data that is collected from
the WSN using RQ. RQ achieves communication cost savings by querying nodes
only in the vicinity of the mobile entity, called query area, and by using a novel
sampling strategy that queries only a few selected nodes lying along roadmap
edges in the query area. The selective sampling strategy eliminates communica-
tion cost resulting from the collection of unnecessary and redundant data, while
still enabling RQ to provide sufficient data needed for successful navigation in
dynamic environments.

The main contributions of this paper are as follows. (1) We propose a new
approach to mobile entity navigation that integrates roadmap based navigation
algorithms with distributed query protocols; (2) We present Roadmap Query
(RQ), a robust query protocol optimized for navigation in highly dynamic en-
vironments; (3) We provide a mobile agent based implementation of a sensor-
network assisted navigation system on Mica2 motes; (4) We show through simu-
lations that RQ achieves better navigation performance than existing protocols
at only a small fraction of communication cost, in face of realistic fire scenarios
and node failures.

2 Related Work

Several methods for robot navigation have been proposed in the past. These
methods either assume a priori knowledge of the environment or use on-board
sensors to avoid obstacles. A priori knowledge of the environment is not helpful
in dynamic environments while on-board sensors have a limited sensing range
and hence do not provide information about a sufficiently large region. Recent
work in this area suggests integrating WSNs with mobile entities to enable nav-
igation in dynamic environments. The proposed methods fall into two distinct
categories.

Roadmap Query for Sensor Network Assisted Navigation 19

The first category uses some form of global flooding initiated by the goal, the
obstacle or the mobile entity itself. While this approach is effective in relatively
static environments, it is unsuitable for dynamic environments since the need
to constantly maintain a high degree of awareness of the changing environment
(e.g., a spreading fire) would cause frequent flooding of the network. Thus, this
approach may suffer from high communication cost and network contention,
which would lead to poor navigation performance. It also wastes energy, thereby
decreasing network lifetime. Protocols suggested in [1] and [2] fall into this cat-
egory. Both protocols construct global navigational fields to guide the robot to
the goal. In [1], the goal generates an attractive potiential field that pulls the
robot towards the goal, while an obstacle generates a repulsive potential field
that pushes the robot away from the obstacle. We will henceforth refer to this
method as the Dartmouth Algorithm (DA). Unlike DA, the method in [2] uses
value iteration to compute the magnitude of directional vectors that guide the
robot to the goal. The approach presented in [3] addresses navigation of mobile
sensor nodes, to increase coverage of event locations. In this approach, the goal
(an event location) initially floods the network to locate a suitable mobile sensor
node. Mobile sensor nodes respond to the flood by sending a response to the
goal. The protocol then creates a navigation field around the path taken by the
response, to draw the mobile node to the goal. Since the navigational field is
only around a path that does not change until the goal changes, this approach
cannot efficiently handle dynamic obstacles. Unlike the above approaches, the
approach used in [4] assumes that a path already exists in the network, and
uses controlled flooding to guide the robot to the start of the path, after which
the robot follows the path. This approach is not applicable to dynamic environ-
ments where an initially safe path may quickly become unsafe due to changing
conditions.

The second category of protocols do not use global flooding but instead use
a local query strategy to achieve navigation. Our earlier work, presented in [5],
which we will henceforth call Local Query (LQ), falls into this category. In LQ,
the path from the start to the goal is built incrementally as the mobile entity tra-
verses the region, by querying all nodes in the vicinity of the mobile entity. This
approach avoids global flooding by making local decisions. While this method
is more efficient than global flooding in a dynamic environment, it still wastes
significant amount of energy and bandwidth by unnecessarily collecting informa-
tion from all nodes in the query area. In contrast, RQ uses a selective sampling
strategy to collect only necessary information, which is dependent on the envi-
ronment and changes with it. As a result of this strategy, RQ achieves better
navigation performance than LQ at only a small fraction of LQs communication
cost (shown in Section 7). This feature makes RQ especially suitable to resource-
constrained WSNs. Furthermore, LQ ignores the issue of sensor node failures. In
contrast, RQ is designed to handle sensor node failures caused by dynamic ob-
stacles (e.g., being burnt by fire). The robustness of RQ is crucial in such harsh
environments where nodes can be easily destroyed. Another new contribution of
this work is that unlike LQ, which was implemented in native code, RQ has been

20 S. Bhattacharya et al.

implemented using mobile agents that can dynamically reprogram nodes in the
current query area as the mobile entity moves. An important advantage of our
mobile-agent-based implementation is that it enables the adaptive deployment
of navigation applications into pre-deployed WSNs with limited resources.

3 Problem Formulation

The navigation problem that we address in this paper is to find a safe path for a
mobile entity through a sensor field from a start point p, to a goal point p,. We
define a safe path to be a path that is clear of dynamic obstacles, i.e., obstacles
whose location or shape changes with time (e.g., car, fire).

In this paper, we consider fire as the representative example for a dynamic
obstacle. Thus, the temperature of the region traversed by the mobile entity is a
function of time and is affected by the location and movement of fire. In this case,
the problem can be restated as that of finding a safe path for a mobile entity,
from start to goal, without the mobile entity getting burnt. The mobile entity is
assumed to get burnt if the temperature at its location is higher than a threshold
Apurn. A safe path is now redefined as one where the maximum temperature
along the path taken by the mobile entity remains below the threshold Ap,
while the mobile entity is on the path. Even though our solution is designed
assuming fire as the dynamic obstacle, it can be generalized to other types of
dynamic environments where safety is defined by changing sensory values (e.g.,
chemical spills, hazardous gas and air pollution).

We make the following assumptions in the paper: (i) Nodes are location aware.
(ii) The mobile entity communicates with the WSN through an on-board gateway
device (e.g., PDA) (iii) Nodes have a limited sensing range Rg. Rg is chosen such
that if the temperature sensed by a node is below the threshold Ar, then the
temperature at any point within the sensing range is below the threshold Apy;p, .
Hence, edges with nodes having temperature above A are unsafe. The sensing
range is thus dependent on the tunable parameter Ap. A lower Ap results in a
longer sensing range.

4 Navigation Algorithm

Our navigation algorithm adapts the roadmap method that is commonly used
for navigation in robotics, to make it more suitable for dynamic environments
and for integration with WSNs. The roadmap method builds a roadmap of the
region and uses it to find a path from the start to the goal. It only considers
paths on the roadmap instead of all possible paths in the region and hence,
has low computational complexity. Furthermore, it is particularly suitable for
WSN assisted navigation, since it reduces the amount of sensor data that must
be collected from the WSN by requiring information only along the roadmap
edges.

Thus, our navigation algorithm first constructs a roadmap of the region and
then incrementally finds safe sub-paths (consisting of roadmap edges) leading to

Roadmap Query for Sensor Network Assisted Navigation 21

° ° ° ° o, o 6 o oo o ° % o o o oo o
o © o e G° o o o o o G°
. S © o o © O
o o 7 o o~ l° o °® o° ° - e o °®
Lol o | o\ A 5 o ol o] NG [o o .
D P © o ° >
° o ° ° ° o o o o °
° ° ° ° ° @ o o
° o o o © % > o o Q o o © A o o © o o o ° o
° Yz o ° ° o[N\C © © o A o o °
B ° 0% O°° ° o ° N
. Vs LJ I . Vi
o ° o |° o o o °| . A o o\ e o °
o o ° °) o
° o °) ° o o = o ©
° o . ° o o . o
o S N\d A ° o o o e L N\d . o o
s
° S o B e " N 5 o . ° . .
° o o6 ° DN ° o ° o o/ N o ° o °
° ° (3 o |, ° ° o o
° o o o © o © ° ° ° o ° o X o A° ° © o ° °
o o o e % ° g a o N\ o .o
o o o ° o o o ° . g o °
o © g ° o o o © " J o
oN\° B) ° o o ° o ° ° o o o ° o
° ° B ole % ° o ° d B ° A ° °
°
o sl . o X P " a0l X o X D
o © o “ o ° ° o
o o ° o o o LI ° ° ° D © o .
3 CRErY o o e 3 o g Oy . o
° ° ° o PR o o ° ° o ° PO ee o

Fig.1. Working of the Navigation Algorithm. The figures show the grid roadmap.
Roadmap vertices and sensor nodes are depicted by black dots and gray dots, respec-
tively. The start and goal are denoted by S and G respectively. The gray shaded regions
denote fire. Figure (a) shows the generated roadmap. Figure (b) shows the sub-path
selected (dotted arrow) within the query area (shown by the circle). The solid arrows
show the path taken by the robot to reach its current location.

the goal. Sub-paths are selected based on edge weights that are repeatedly up-
dated using temperature information obtained from the WSN, through RQ. The
detailed working of our navigation algorithm is as follows. After constructing
the roadmap, the mobile entity issues a query to obtain the maximum tem-
perature along the roadmap edges lying within the query area. We assume a
circular query area of query radius Ry, centered at the current location of the
mobile entity p.(t). After issuing the query, the mobile entity waits for a time
Ty, to receive the query result which contains the maximum temperatures along
the roadmap edges within the query area. At the end of the wait period T,
the mobile entity computes the edge weights based on the temperature infor-
mation obtained and finds a safe sub-path to the goal. If the mobile entity
finds a safe sub-path, it starts moving along the sub-path. Otherwise, it re-
issues the query. This entire process is repeated every time the mobile entity
reaches the end of a sub-path, until it safely reaches the goal. Note that the
navigation algorithm handles the dynamics in the environment by generating
the path incrementally, based on fresh information collected from the current
query area.

Thus, the roadmap navigation algorithm has three stages, (i) roadmap gen-
eration, (ii) roadmap edge weight assignment and (iii) sub-path selection. The
roadmap generation stage occurs at the start of the navigation process while the
roadmap edge weight assignment and sub-path selection stages, occur repeatedly
till the mobile entity reaches the goal safely. These stages are discussed next.

(i) Roadmap generation: We use a grid as the roadmap, as shown in Fig-
ure 1(a), where the grid points form the roadmap vertices and the edges form
the roadmap edges. Note that the grid points are virtual points that are placed

22 S. Bhattacharya et al.

in space, without considering sensor locations. Traditional roadmap methods
(e.g., Probabilistic Roadmap Methods [6]) randomly choose points in space and
connect them to construct a roadmap. A benefit of using a grid is that roadmap
information can be easily included in a query message without significantly in-
creasing the message size (see Section 5.1). The grid size is a tunable parameter
that is a tradeoff between communication cost and navigation performance.

(ii) Roadmap edge weight assignment: The roadmap edge weights are used
to find a short, safe sub-path on the roadmap that leads to the goal, as the mobile
entity traverses the roadmap. In order to balance path safety and path length,
we use an edge weight function that is a weighted function of the normalized
maximum edge temperature and the normalized edge length. The maximum
edge temperature is provided by the RQ protocol that queries the WSN. The
weight of an edge e is thus

be —a le
We:{zsAM)—i_(l)(L) ijﬁi (1)

where 6, is the maximum temperature on e based on recent query results, [, is
the length of e, Ay is the maximum possible temperature, L is the maximum
edge length among all roadmap edges E and o < 1 is the weight given to the
temperature field. The tunable parameter « determines the tradeoff between
safety and path length. ¢, in equation 1 is obtained from the query result and
is approximated as 6. = max(ds),s € S, where S is the set of nodes that cover
edge e and 6, is the temperature at a sensor s € S. A sensor is said to cover an
edge if the edge or part of the edge lies within its sensing circle. On the other
hand, an edge is said to be covered if certain points on the edge are covered. The
points on the edge that need to be covered are determined by the query protocol
and will be discussed later. If an edge e is not covered by the nodes that respond
to the query, then W, is pessimistically set to oo so as to avoid traversing that
edge.

Edge weights are timestamped and expire after a certain interval Acgp. Aezp
should be chosen carefully, since a large Aczp will not account for the dynamism
of the environment while a small A.,;, may cause the mobile entity to oscillate.
Thus, at the end of a query the edges within the query area have edge weights
based on up-to-date temperature information obtained from the query result
while the edges in the past m query areas have edge weights based on old tem-
perature data, where m depends on Aggy. All other edges have weights based
only on the edge length.

(iii) Sub-path selection: A sub-path consisting of edges lying within the query
area is selected by running the Dijkstra’s shortest path algorithm [7] on the
roadmap. The result of the Dijkstra’s algorithm is a path with the least weight
from the mobile entity’s location to the goal, at that instant. The sub-path
consisting of edges within the query area, is extracted from this least-weight
path. This stage is illustrated in Figure 1(b).

Roadmap Query for Sensor Network Assisted Navigation 23
5 Roadmap Query

In this section, we present the RQ protocol. RQ collects updated temperature
information from nodes covering the roadmap edges in a query area. It is issued
by the navigation algorithm, every time the mobile entity reaches the end of a
sub-path, until the mobile entity reaches the goal. In addition, to improve safety,
it is also issued when the temperature at the mobile entity location rises above
the threshold Ap. The temperature at the mobile entity location is obtained
using an on-board sensor.

5.1 Basic Roadmap Query Protocol

RQ minimizes the communication workload on the network by reducing the
number of nodes involved in the query process. This is achieved by optimizing
the query protocol in accordance with the roadmap-based navigation algorithm.
Since the navigation algorithm requires the maximum temperature only along
the roadmap edges, the query message, is forwarded only along the roadmap
edges lying within the query area. Moreover, due to the high density of sensor
nodes, the query message is not forwarded by all nodes along an edge, but only
by some selected nodes. These selected nodes form a backbone of nodes along
the roadmap edges that fall within the query area and are called backbone nodes.
RQ requires all backbone nodes to respond to the query. Nodes that hear the
query message but are not on the backbone, respond to the query only if they
satisfy a certain criteria and are called non-backbone nodes. The backbone and
non-backbone nodes form a tree structure with the mobile entity as the root.
The formed tree is used to aggregate and deliver the query results to the mobile
entity. Thus, RQ reduces communication cost not only by reducing the number
of nodes that forward the query message but also by reducing the number of
nodes that respond to a query, within a query area.

In order to achieve communication cost reduction, RQ requires the queried
nodes to have knowledge of the roadmap and to maintain 2-hop neighborhood
information. Since we use a grid as the roadmap, the first requirement is eas-
ily met by including the location of the bottom left corner of the grid and the
grid square size in the query message. Each queried node uses this informa-
tion, to calculate the grid points and edges. The second requirement requires all
nodes in the network to maintain 2-hop neighborhood information which may
introduce some overhead. Neighborhood information is maintained through hello
messages [8], which contain the ID of the sending node and the IDs of its 1-hop
neighbors. Hello messages are broadcasted periodically by each node at an in-
terval called the hello period. On receiving a hello message, the receiving node
records the sending node as its neighbor and also stores the neighborhood infor-
mation of the sending node. Each entry in the neighborhood table is associated
with a timestamp that corresponds to the time the most recent hello message
was received from that neighbor. The timestamp field is used to detect failed
neighbors. We have described a simple neighborhood management technique but
more sophisticated techniques [9] can also be used. Note that similar neighbor-

24 S. Bhattacharya et al.

1. if Query message received

2. Accept if in current query area.

3. Set sending node as parent.

4 Set h; to hop count in msg plus 1.

5 Apply forwarding rule to see if msg should be re-broadcasted.

If yes, re-broadcast msg.
6. Apply reply rule to see if query result should be sent. If yes,

calculate time to send result and set timer SendTimer to time-

out at the right time.
7. else if Query reply received

8. if result not yet sent then store else discard.
9. else if SendTimer timed out
10. Send aggregated Query result to parent.

Fig. 2. Roadmap Query (RQ) Algorithm

hood information is also required by other common services such as routing and
power management.

RQ uses two rules to determine which nodes should forward the query message
or respond to the query. We call the rule that determines if a node should forward
the query message, as the forwarding rule and the rule that determines if a
node should respond to a query, as the reply rule. The forwarding rule identifies
backbone nodes while the reply rule identifies non-backbone nodes.

Forwarding Rule: By the forwarding rule, if a node receives a query message
that is being propagated along edge ¢ = pcipes wWhere p.; and p., are the
endpoints of the edge, and the arrow denotes the direction of query message
propagation, then, the node rebroadcasts the message only if it covers edge
e and is the closest to p., among its neighbors that can also hear the same
query message. A node knows if a neighbor can hear the same query message by
checking its neighborhood table that contains 2-hop neighborhood information.
Note that, by this method, only a few nodes along the edge, called backbone
nodes, rebroadcast the query message. Thus, some nodes do not rebroadcast the
query message, thinking that another node that is closer to the endpoint will
rebroadcast the message. These nodes listen for a certain time interval to see if
the query message is rebroadcasted. If the query message is not rebroadcasted
within this time, these nodes rebroadcast the message. This method takes care
of situations where the node selected to rebroadcast the query message does not
receive the query message due to collision or other factors.

Reply Rule: The reply rule states that a node should send a query reply, if (i) it
is a backbone node, or, (ii) its temperature is above Ap and it covers a roadmap
edge that falls within the current query area. The first condition draws query
results from the minimum number of nodes that entirely cover all roadmap edges
within the query area. The second condition identifies non-backbone nodes and
adapts the number of nodes responding to the query, according to the danger
level. This condition enforces the safety of the path by drawing query results

Roadmap Query for Sensor Network Assisted Navigation 25

o lo 5 o o 0 o] o lo o ° o © o
o " o o) ~ (ONN] o o
onl® ® o o %: oa/ % ® o o
o N5 O [] o o []
: 1 5 ©\0 o © 8 1 5
o @ ° o
P o ‘& o ® o ‘e y
2 Bg 5 ¢} o A8 g0
o |o o 8 19 o | o o 3
° ° o o / 16 o [J ° o o 5
e o 29 e S)
° ° o © 30 > of lo (] e O /o ©
® BN 0 © o ©® CO o PN\.© 0 © o ® @ 0
o o
o © 9% 3 o o o © P o o o
(a) (b)

Fig. 3. Working of RQ protocol. The figures show the backbone (colored black) and
non backbone nodes (colored dark gray) in a query area (solid black circle) centered at
B. Roadmap edges within the query area are colored black. Figure (a) shows the query
message (solid arrow) and query reply (dotted arrow) propagation along edges BA
and BC. The shaded region represents a region with temperature above the threshold.
Figure (b) shows a possible case where RQ fails. The shaded region represents very
high temperature at which all nodes in the region (crossed out) have failed. In this
case, even though the fire spreads across edge BC, the mobile entity considers BC safe
since it hears from enough active nodes with temperatures below Az, that cover BC.

from nodes if they sense a dynamic obstacle (e.g. fire) near roadmap edges lying
within the query area.

Given these two rules, RQ works as follows. On receiving a query message,
a node ¢ that lies within the query area, sets the sending node j as its parent,
if the link between the nodes is symmetric and sets its hop count h; to h; + 1
where h; is the hop count of the sending node and is contained in the query
message. The hop count is used to send the query results at a time that facilitates
data aggregation. Node ¢ then applies the forwarding rule to determine if it
should rebroadcast the message. If it is required to rebroadcast the message,
it rebroadcasts the message and then applies the reply rule to determine if it
should respond to the query. If it needs to respond to the query, it calculates
the time ¢, at which the result needs to be sent and sets a timer to timeout
at that time. When the timer times out, node ¢ sends its parent an aggregated
query result, deduced from its information and the information obtained from its
children. If node ¢ and its children are along the same edge, the M AX function
is applied to the sensor readings. Otherwise, the results are just merged into one
message.

The query reply time ¢, is calculated such that it facilitates data aggregation
and is set to tg + h";l”_hi x Ty, where tp is the time at which the mobile
entity sends the querym;éQuest and h,,q. is a tunable parameter denoting the
maximum possible hop count within a query area. Thus, a node waits for time
interval T,. = t,. — t., where t. is the time at which the node receives the query

26 S. Bhattacharya et al.

message, to receive query replies from its children. The RQ algorithm is shown
in Figure 2 and is illustrated in Figure 3(a).

Figure 3(a) illustrates different aspects of the RQ protocol. (i) It shows the
backbone (colored black) and non-backbone (colored dark gray) nodes selected
by the RQ protocol in response to a query issued by a robot positioned at B.
The resulting query area is shown by a solid circle centered at B. The roadmap
edges lying within the query area are colored black. (ii) The figure illustrates the
query message (solid arrow) propagation along edges BA and BC. The query
message is propagated from node 2 to node 3, to node 4 and then to node 6
and finally to node 7 along edge BA. The query message propagation along
edge BA stops at node 7 since it covers endpoint A, i.e. A lies within node 7’s
sensing range (shown by dotted circle centered at 7). Node 7 then propagates
the message along the adjoining roadmap edges in the query area. Note that
the query message is forwarded by node 4 and then by node 6 and not by
node 5. This is because of the forwarding rule. When node 5 hears the query
message from node 4, it sees that it has a neighbor, node 6, that is also node
4’s neighbor (hence, it must have also heard the query message) and that is
closer to endpoint A. Thus, by the forwarding rule it does not rebroadcast the
query message. (iii) The figure illustrates the outcome of the reply rule when a
portion of the query area (shaded region) has temperature above the threshold.
By the reply rule, nodes 14, 15 and 16 in this area must reply to the query,
since their temperatures are above the threshold and they cover a roadmap edge
lying within the query area. These nodes are thus, non-backbone nodes. (iv) The
query reply (dotted arrow) propagation along edges BA and BC is also shown.
Note how a non-backbone node, node 16, becomes a leaf node, under parent
node 10.

5.2 Extension to Handle Node Failures

Robustness to node failures is especially important in dynamic environments
since nodes can be destroyed by harsh environments such as fire. The basic RQ
protocol cannot handle certain situations arising due to node failures, as shown in
Figure 3(b). In the figure, the shaded region depicts a spreading fire, that burns
nodes in the region. Due to node failures, edges BE and EC are not covered by
working nodes. Hence, the robot does not receive sufficient information about
these edges and considers them unsafe. However, edge BC is completely covered
since even though the fire burns node 11, node 13 (which is unaware of the nearby
fire) takes its place in forwarding the query message, thus giving the robot the
false impression that the edge is safe. If the robot were to choose to traverse
edge BC, it would collide with the dynamic obstacle, the fire, and get burnt.
This scenario shows the importance of fault-tolerance in dynamic environments.
Therefore, we extend RQ to avoid such situations.

In order to make RQ fault-tolerant we include node failure information in the
query results. The mobile entity, uses this information to avoid paths with failed
nodes, assuming that node failures are due to destruction by fire. Node failure
information is obtained, by requiring nodes to send a list of failed neighbors that

Roadmap Query for Sensor Network Assisted Navigation 27

cover roadmap edges in the current query area, along with their sensor reading.
Also, the reply rule is modified slightly such that nodes now send a query reply
if (i) they are backbone nodes, (ii) their temperatures are above a threshold and
they cover a roadmap edge lying within the query area or (iii) they have failed
neighbors that cover roadmap edges lying within the query area.

It can be seen that with these modifications RQ is successful in situations like
the one depicted in Figure 3(b). This is because, by the modified reply rule, the
robot is informed about the failed nodes 11 and 16 by either node 10, node 12 or
node 13. Since node failure is assumed to be due to destruction by fire, the robot
infers that the edge BC is not safe and does not traverse that edge. Thus, the
modifications make RQ robust to situations where the fire destroys only some
nodes along an edge leaving enough working nodes with temperatures below A
to cover the edge, which would give the mobile entity the false impression that
the edge is safe.

The modified RQ protocol depends on node failure information, which is easily
obtainable. Since each node maintains a neighborhood table and receives periodic
hello messages from its neighbors, a node knows if a neighbor has failed, if it
hasn’t heard from the neighbor in n hello periods. The choice of n has to be
made carefully, since a lower value of n will result in more false positives while
a higher value of n will result in delayed awareness of danger, thus leading to
poor navigation performance. In our simulations, we set n = 2.

5.3 Analysis

In this section, we show that RQ successfully gathers the information required by
the navigation algorithm within a query area, under the following two conditions.
The first condition is a sensing covered network. In a sensing covered network,
every point in the region is covered by at least one sensor. Without this network
property, it is impossible to guarantee that a roadmap edge is covered by any
sensor at all. A sensing covered network is desirable, as it increases the mobile
entity’s awareness of the surroundings thus improving its navigation path.

The second condition is the double range property, by which, the communi-
cation range Rc of a node is at least twice the sensing range Rg of the node,
i.e., Ro > 2Rg. The double range property guarantees network connectivity in
a sensing covered network [10] and hence is a desirable property for such net-
works. Since the sensing range depends on the temperature threshold Ar, we
can achieve the double range property by selecting an appropriate Ar.

Query message propagation in RQ, starts at a node s that receives the query
message from the mobile entity and is closest to the mobile entity’s location.
From node s, the query message is forwarded along edges covered by s and then
along edges that are connected to them, and so on. Message propagation from one
edge to another occurs at nodes that cover the intersection point of two or more
edges. Note, that only roadmap edges that completely lie within the query area,
are considered per query. Since these edges lie completely within the query area,
they form a connected subgraph. Given the above, we can prove that “Given a
sensing covered network with Ro > 2Rg, every node covering a roadmap edge

28 S. Bhattacharya et al.

lying completely within a query area receives the query message from the mobile
entity, under RQ”. The proof [11] is omitted due to space limitations.

This property of RQ is very useful in environments that do not cause node fail-
ures (e.g., chemical spill and air pollution). Environments like fire that cause node
failures violate the sensing coverage condition, in which case RQ only provides best
effort service. We note that it is extremely difficult to provide any guarantees in the
presence of node failures. However, as shown in our simulations, RQ still provides
sufficiently good performance in a number of realistic scenarios.

6 Implementation

We implemented the basic RQ protocol on Agilla [12,13], a mobile agent mid-
dleware for the TinyOS [14] platform. A mobile agent based implementation
enables RQ to be used in a pre-deployed WSN without requiring the RQ pro-
tocol to be pre-installed on the WSN. A WSN running some other application
can be quickly re-utilized to run the RQ protocol by just injecting mobile agents
containing the protocol into the network. The capability to flexibly reprogram
a WSN for a different application is particularly important to WSNs that have
limited storage and long operational lifetime [12, 13, 15]. For example, a WSN de-
ployed in a building for temperature monitoring can be quickly re-programmed
to run the RQ protocol in case of a fire emergency. The RQ protocol can then
be used to guide people safely out of the building.

An Agilla application consists of one or more mobile agents that coordi-
nate with each other, to achieve application-specific behavior. An agent is pro-
grammed using a high-level language supported by Agilla. Agilla provides primi-
tives for an agent to move and clone itself from sensor node to sensor node while
carrying its code and state, effectively reprogramming the network. New mobile
agents can be injected onto a sensor node, thereby allowing new applications to
be installed after the network has been deployed. To facilitate inter-agent coor-
dination, Agilla maintains a local tuple space and neighbor list on each sensor
node. Multiple agents can communicate and coordinate through local or remote
access to tuple spaces. Prior experiences with Agilla have demonstrated that it
can provide efficient and reliable services needed by highly dynamic applications
such as fire tracking [13].

6.1 RQ Using Agents

In the agent based implementation of RQ, the mobile entity injects an explorer
agent into the network that collects the edge weights and delivers them to the
mobile entity. Once injected into the network, the explorer agent clones itself
on nodes lying along the roadmap edges according to the forwarding rule. The
reply rule is applied to determine the agents that need to respond to the query.
The agent migration sets up a tree structure along the roadmap edges within
the query area, which is used to collect the query result. Per node query results
are aggregated such that a list of per-edge-maximum-temperatures is forwarded

Roadmap Query for Sensor Network Assisted Navigation 29

I e Mo

(a)

Fig. 4. (a) Experimental environment. (b) The robot avoids the initial path (dotted
line) and follows a safer path (solid line) when the fire spreads.

along the tree branches to the mobile entity through remote tuple space opera-
tions. The mobile entity processes the query result and takes appropriate action
as explained before.

6.2 Experiments

We used a Pioneer-3 DX robot by ActiveMedia [16], as the mobile entity in our
experiments. The robot controller carried a mote as a communication interface
to a WSN consisting of Mica2 motes. The WSN was arranged in a 4x4 grid, with
a grid square length of 2 meters, as shown in figure 4(a). Each node was assigned
an (x,y) coordinate based on its position in an euclidean co-ordinate system. In
the figure, the node in the lower-left corner was assumed to be the origin of the
co-ordinate system with coordinate (Om, Om). The coordinate of the node in the
upper-right corner is therefore (6m, 6m).

The goal of the robot, in the experiments, was to move from (Om, 1m) to
(7m, 7m) while avoiding the fire. Experiments were conducted with two types
of fire: (a) static fire, and (b) dynamic fire. In the static fire experiments, the
temperatures of the motes were fixed throughout the experiment. Fire was simu-
lated by assigning predefined high temperature values (70°C') to motes located at
(Om, 2m), (2m, 2m), (6m, 2m), (4m, 4m), and (6m, 4m) (motes with white dots
in Figure 4(a)), and 30°C to the remaining motes. Dynamic fire was simulated
by assigning the same predefined values as in the static fire, but the values were
changed during the experiment. More specifically, the temperature of the mote
located at (2m, 4m) was increased while the temperature of the mote located at
(2m, 2m) was decreased, thus simulating a fire spreading northwards.

Static fire. The path found in this scenario is shown as the dotted line in
figure 4(b). As is seen, the robot successfully avoids dangerous places by staying
close to motes with normal temperature.

Dynamic fire. The dynamic fire scenario shows the reaction of the robot when
the fire changes location. In this case, the robot follows the same path as the

30 S. Bhattacharya et al.

(a) Initial state. (b) GQ (c) RQ - intermediate (d) RQ - final

Fig. 5. Path selected by GQ and RQ. (a) Initial state of the environment. The circle
depicts the mobile entity; the cross at the bottom left corner marks the starting point;
and the cross at the top right corner marks the goal. The blue region represents the
safe region and has temperature below 60°C. The red and green regions represent fire
with temperature above 150°C and above 60°C, respectively. (b) Mobile entity gets
burnt on path selected by GQ. (c) Mobile entity incrementally builds path in RQ. (d)
Mobile entity safely reaches the goal on path built by RQ.

static fire until it reaches (4m, 2m). At this point, the fire at (2m, 2m) moves to
(2m, 4m). The robot then successfully finds a new path to avoid the fire. This
scenario is illustrated in figure 4(b). The solid line shows the path followed by
the robot, while the dotted line represents the initial path.

These experiments demonstrate that a robot can use our agent based imple-
mentation of RQ, to successfully find a safe path in the presence of dynamic
obstacles. We further evaluate the performance of RQ and compare it with ex-
isting approaches through simulations under realistic fire scenarios.

7 Simulation Results

In this section, we present the results obtained from simulations in NS-2. We
evaluate and compare RQ with existing protocols, using 9 different realistic fire
scenarios, obtained using the NIST Fire Dynamics Simulator (FDS) [17]. In all
the scenarios, the fire starts in different locations scattered over the region and
then spreads over the region over time. This behavior presents two different en-
vironments, (1) which is very dynamic and occurs when the fire is still spreading
and most of the region is still not on fire, and (2) which is less dynamic and oc-
curs when a large part of the region is already on fire. We test the performance
of the algorithms in both environments, by starting the mobile entity at two
different times of 50s and 200s, after the fire starts spreading.

We evaluate the RQ protocol both with and without the extension for handling
node failures to observe the difference in performance caused by the extension.
We refer to the basic RQ protocol as B-RQ and the RQ protocol with the exten-
sion as Robust RQ (R-RQ). We also compare our protocol to other approaches
like LQ [5], DA [1] and Global Query (GQ). LQ uses local flooding while DA
and GQ use global flooding. LQ and DA were discussed earlier in the related
works section (Section 2) and hence are not described here.

Roadmap Query for Sensor Network Assisted Navigation 31

In GQ, the mobile entity broadcasts a query message, which is flooded
throughout the entire network. On receiving the query message, the nodes re-
spond with their location and temperature. These responses are aggregated and
delivered to the mobile entity which uses the data to compute the edge weights
of all roadmap edges in accordance with Equation 1 to obtain a complete path
from the start to the goal. Since this method employs global data collection, it
has a high communication cost. In addition, it also suffers from a long query
latency, which significantly reduces a mobile entity’s awareness of the region.
This leads to situations where the mobile entity gets burnt while traversing a
path that changes from being safe to being unsafe, due to lack of awareness
of the changing environment. This situation was observed in a simulation run
and is shown in figures 5(a) and 5(b). The white line in Figure 5(b) depicts the
safe path that is initially computed by the mobile entity. As the mobile entity
traverses the path, a part of the path is engulfed by fire. The mobile entity is
unaware of this until it is very close to danger, at which point it stops moving
and issues a query to find a safe path. However, due to the significant query
latency, the fire spreads to the location of the mobile enitity and burns it, before
it finds a safe path. The outcome of using the RQ protocol for the same scenario
is shown in figures 5(c¢) and 5(d). Since the RQ protocol uses local queries with
low query latency (due to low communication cost) it computes successive safe
sub-paths that successfully lead it to the goal, around the regions on fire.

Each simulation was run with 900 nodes uniformly distributed in a 450m x
450m area. The mobile entity’s velocity was set to 3m/s and a 5x 5 grid was used
as the roadmap, with each grid square, measuring 90m x 90m. The communica-
tion range and bandwidth of the nodes were set to 45m and 40kbps, respectively.
The sensing range of the nodes was obtained using the maximum temperature
gradient 6T at the border of a fire. Thus Rg = A”“%"T_AT. 0T was found to be
4.5°C/m from the simulation scenarios. Ap and Ay, were set to 60°C' and
150°C, respectively, assuming a robot as the mobile entity. These settings result
in Rg = 20m, which satisfies the double range property (Rc > 2Rg). The query
radius (Ry) of B-RQ, R-RQ and LQ was set to 90m in all the simulations, since
it was experimentally found to be optimal. Performance under different query
radii is omitted due to space constraints but can be found at [11].

As mentioned in Section 4, an edge is considered covered if certain points on
the edge are covered. The selection of the points differs with the query protocol.
Since LQ and GQ query all nodes within a query area, any number of points
(> 2) on an edge can be considered in these algorithms. Note that the query area
in LQ is a circle (of certain radius) centered at the mobile entity location while
the query area in GQ is the entire region. In our simulations of LQ and GQ,
we considered coverage of five equidistant points on an edge to indicate edge
coverage. However, since fewer nodes respond to queries in RQ, we considered
coverage of only the endpoints of an edge to indicate edge coverage in RQ.

The wait time T,, during which the mobile entity waits for the query results,
reflects the query latency in LQ, GQ and RQ. Based on experimental results,
it was set to a value that permitted at least 90% query results to be received

32 S. Bhattacharya et al.

[Start time 50s D Start time 50s
500 - M Start time 200s

0.9 W Start time 200s

908
507
<06
005
504
$ 03

0.2

0.1

B-RQ LQ GQ DA BRQ LG GQ DA
(a) Success Ratio (b) Path Traversal Time

[Start time 50s

100000 - M Start time 200s 0.9 | O Start time 50s

0.g | M Start time 200s
10000
1000
100

Number of msgs

10

1

Sending Query Forwarding
Reply Query Msg

no. of nodes in RQ/no. of nodes in
Q

B-RQ LQ GQ DA
(¢) Communication Cost (d) Per query node participation.

Fig. 6. Performance comparison in the absence of node failures

by the mobile entity, in these protocols. RQ achieves a query latency that is ap-
proximately half of that of LQ, due to its low communication cost (Figure 6(c)).
Correspondingly, T;, was set to 10s in RQ, 20s in LQ and 250s in GQ.

We use the following metrics to evaluate the performance of the different al-
gorithms. (1) Success Ratio, defined as the ratio of the number of scenarios in
which the mobile entity safely reaches the goal to the total number of scenarios.
This is the most important metric for the application. (2) Path Traversal Time,
defined as the average time taken by the mobile entity to reach the goal, over
scenarios where the mobile entity successfully reaches the goal in all protocols
being compared. The path traversal time includes the query latency (which de-
pends on the performance of the query protocol) and the time that the mobile
entity spends in navigation. (3) Communication Cost, defined as the average
number of messages sent per scenario, over scenarios where the mobile entity
successfully reaches the goal in all protocols being compared.

In the following subsections, in addition to the average results, we also present
90% confidence intervals. Confidence intervals are not provided for the case where
the robot start time is 200s and there are no node failures, since there are only
two scenarios where the mobile entity safely reaches the goal in all protocols
being compared.

7.1 Performance in the Absence of Node Failures

Performance Comparison. In this sub-section, we compare the navigation
performance and communication cost of GQ, LQ, B-RQ and DA, in the absence
of node failures. Since R-RQ is designed specifically to handle node failures, we
do not include it in this section.

Roadmap Query for Sensor Network Assisted Navigation 33

Success Ratio : Figure 6(a) shows the success ratio of the different protocols at
start times 50s and 200s. As seen in the figure, B-RQ performs better than all
the other algorithms and enables the mobile entity to safely reach the goal in all
tested scenarios. LQ does not perform as well, because unlike B-RQ), it queries
all the nodes in a query area and hence incurs a long query latency, which slows
down the mobile entity’s progress towards the goal. As a result, the mobile entity
sometimes gets caught up amidst the spreading fire with no safe path leading to
the goal, or gets burnt while waiting for the query results.

The success ratio of GQ is the lowest. This is because GQ does not update
the selected path to the goal based on the changing environmental state. At a
start time of 50s, the mobile entity usually gets burnt due to lack of awareness
of the fire encroaching the chosen path. On the other hand, at a start time of
200s, the mobile entity usually fails to obtain a safe path, because, by the time
the mobile entity obtains the query results, which can take as long as 250s,
most of the region is already engulfed by fire, disconnecting the start from the
goal. The success ratio of DA is lower than that of B-RQ and LQ, because of
high data loss due to contention caused by the high communication cost of DA
(Figure 6(c)).

Path Traversal Time : Figure 6(b) shows the path traversal time obtained by the
different protocols. We see that DA achieves the least path traversal time. This
is because DA has very low query latency compared to the other algorithms,
as it requires the mobile entity to query only nearby nodes. The path traversal
time of B-RQ is comparable to that of DA. This is because, B-RQ also has a
low query latency, since it queries only a few nodes per query. LQ and GQ,
on the other hand, have longer path traversal times, since they query a large
number of nodes and hence have long query latencies. Since all protocols achieve
similar path lengths (shown in [11]), the difference in the path traversal times is
dominated by the difference in query latencies.

Communication Cost : A comparison of the communication cost is presented
in Figure 6(c). DA has an extremely high communication cost, since it requires
all nodes in the network to maintain the potential fields, resulting in frequent
flooding of the entire network caused by the spreading fire. In comparison, B-RQ
has the least communication cost, since it queries only a few nodes that lie along
the roadmap edges in a query area, per query. The extent by which RQ reduces
the number of nodes that participate in a query, in comparison to LQ is shown in
Figure 6(d). The figure shows that the number of nodes that forward the query
message, per query in RQ, is only about 25% that of LQ and the number of nodes
that send a query reply, per query in RQ, is only about 40% that of LQ. Thus,
the total number of nodes that participate in a query in RQ is only about 40%
that of LQ, on average. This significant reduction in the number of participating
nodes per query is the reason behind the dramatic reduction in communication
cost achieved by RQ. This saving is found to be 73% for a start time of 50s
and 63% for a start time of 200s, from Figure 6(c). As a result of the reduced
communication cost, RQ also has a lower query latency in comparison to LQ

34 S. Bhattacharya et al.

(almost 50% that of LQ), thus increasing its navigation performance, in terms
of success ratio and path traversal time. This implies that greater the dynamism
of the environment, the better will RQs performance be, in comparison to LQ.
Another positive outcome of reducing the number of nodes participating per
query is that when coupled with a power management protocol, it enables more
nodes to sleep, thereby increasing network lifetime.

As expected, B-RQ also achieves huge communication cost savings over GQ.
In particular, it achieves 70% and 62% lower communication cost for a start time
of 50s and 200s, respectively. Note that, the large differences in communication
cost between B-RQ, LQ and GQ, are not clearly visible in Figure 6(d), due
to the logarithmic scale. The low communication cost of B-RQ is one of its
main advantages, which enhances its navigation performance and also potentially
increases network lifetime.

Overall, B-RQ achieves a higher success ratio and a significantly lower com-
munication cost than all the other protocols as a result of its efficient forwarding
and query reply rules. These results highlight the effectiveness of optimizing the
query protocol in accordance with the navigation algorithm, in order to navigate
successfully in dynamic environments.

7.2 Performance in the Presence of Node Failures

Since it is important to design robust protocols that can tolerate node fail-
ures caused by harsh environments, we now compare the performance of the
algorithms in the presence of node failures. Nodes are assumed to fail at a tem-
perature of 150°C.

Performance Comparison. In this sub-section, we compare the navigation
performance and communication cost of LQ, DA, B-RQ and R-RQ. GQ is
not considered in these simulations, due to its poor performance in the earlier
simulations.

Success Ratio: As shown in Figure 7(a) R-RQ effectively improves the success
ratio of B-RQ when the mobile entity starts at 50s, at which time many new
nodes start failing, due to the spreading fire. This is because R-RQ informs the
mobile entity about failed nodes, thus warning the mobile entity about danger
areas. On the other hand, R-RQ does not outperform B-RQ when the mobile
entity starts at 200s, since by that time, the environment is relatively stable.
In contrast, the performance of LQ and DA are affected significantly by node
failures. R-RQ achieves upto 49% improvement in success ratio over LQ and up
to 77% improvement in success ratio over DA. This demonstrates that R-RQ is
particularly important in dynamic environments.

Communication Cost: Figure 7(b) shows the communication cost incurred by
B-RQ, R-RQ and LQ. The commmunication cost of DA is not shown as it is
significantly higher than the other protocols. As expected, the communication
cost of LQ is much higher than that of B-RQ and R-RQ since it queries all
the nodes in a query area. The communication cost of R-RQ is only slightly

Roadmap Query for Sensor Network Assisted Navigation 35

2500

1+ .
[Start time 50s i
09 | B Start time 200s D St fime SO
« 2000
2 2
& E 1500
0 [=}
3 5
8 £ 1000
a E
Z 500
0
BRQ RRQ LQ DA B-RQ R-RQ La
(a) Success Ratio (b) Communication Cost

Fig. 7. Performance comparison in the presence of node failures

more than that of B-RQ since it requires nodes to respond if they have failed
neighbors even if their temperatures are below the threshold. More specifically,
R-RQ achieves 73% and 69% savings in communication cost over LQ, at a start
time of 50s and 200s, respectively.

8 Conclusion

In summary, we propose a novel approach that integrates roadmap-based nav-
igation with efficient query protocols for navigation in dynamic environments.
We present the Roadmap Query (RQ) protocol that is specially optimized for
collecting fresh data needed for navigation in the presence of dynamic obstacles
and sensor node failures. We also present a mobile-agent based implementation
of our navigation approach on a physical testbed consisting of Mica2 motes and
a robot. Our simulation results demonstrate that RQ can significantly improve
the success ratio of navigation while introducing minimum communication cost
under realistic fire scenarios and node failures. Our results highlight the impor-
tance of joint optimization of navigation and WSN query protocols for efficient
navigation in dynamic environments.

Acknowledgement

This work is funded in part by the NSF under an ITR grant CCR-0325529 and
the ONR under MURI research contract N00014-02-1-0715.

References

1. Li, Q., Rosa, M.D., Rus, D.: Distributed algorithms for guiding navigation across
a sensor network. (In: MobiCom’03)

2. Batalin, M.A., Sukhatme, G.S., Hatting, M.: Mobile robot navigation using a
sensor network. (In: ICRA’04)

3. Verma, A., Sawant, H., Tan, J.: Selection and navigation of mobile sensor nodes
using a sensor network. (In: PerCom’05)

4. Corke, P., Peterson, R., Rus, D.: Coordinating aerial robots and sensor networks
for localization and navigation. (In: DARS’04)

36

10.

11.

12.

13.

14.
15.

16.
17.

S. Bhattacharya et al.

Alankus, G., Atay, N., Lu, C., Bayazit, B.: Spatiotemporal query strategies for
navigation in dynamic sensor network environments. (In: TROS’05)

Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Automat. 12(4) (1996) 566-580

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. 6th edn.
MIT Press and McGraw-Hill Book Company (1992)

Whitehouse, K., Sharp, C., Brewer, E., Culle, D.: Hood: a neighborhood abstrac-
tion for sensor networks. (In: MobiSys’04)

Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multhop
routing in sensor networks. (In: Sensys’03)

Xing, G., Wang, X., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and
connectivity configuration in wireless sensor networks. TOSN 1(1) (2005) 36-72
Bhattacharya, S., Atay, N., Alankus, G., Lu, C., Roman, G.C., Bayazit, B.:
Roadmap query for sensor network assisted navigation in dynamic environments.
In: Technical Report WUCSE-05-41, Department of Computer Science and Engi-
neering, Washington University in St. Louis. (2005)

Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of
adaptive wireless sensor network applications. (In: ICDCS’05)

Fok, C.L., Roman, G.C., Lu, C.: Mobile agent middleware for sensor networks: An
application case study. (In: IPSN’05)

(TinyOS community forum) http://www.tinyos.net/.

Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. (In:
ASPLOS X)

(Activmedia) http://www.activemedia.com.

McGrattan, K.: Fire dynamics simulator (version 4) technical reference guide.
National Institute of Standards and Technology (2004)

Stabilizing Consensus in Mobile Networks

Dana Angluin, Michael J. Fischer, and Hong Jiang*

Department of Computer Science, Yale University

Abstract. Inspired by the characteristics of biologically-motivated sys-
tems consisting of autonomous agents, we define the notion of stabilizing
consensus in fully decentralized and highly dynamic ad hoc systems. Sta-
bilizing consensus requires non-faulty nodes to eventually agree on one of
their inputs, but individual nodes do not necessarily know when agree-
ment is reached. First we show that, similar to the original consensus
problem in the synchronous model, there exist deterministic solutions
to the stabilizing consensus problem tolerating crash faults. Similarly,
stabilizing consensus can also be solved deterministically in presence of
Byzantine faults with the assumption that n > 3f where n is the num-
ber of nodes and f is the number of faulty nodes. Our main result is a
Byzantine consensus protocol in a model in which the input to each node
can change finitely many times during execution and eventually stabi-
lizes. Finally we present an impossibility result for stabilizing consensus
in systems of identical nodes.

1 Introduction

1.1 Fault-Tolerant Consensus

Coordination problems in distributed systems require nodes to agree on a com-
mon action. Lamport, Pease, and Shostak formulated this problem as the agree-
ment problem [1,2], which remains a fundamental problem in distributed com-
puting. It is usually trivial to reach agreement in reliable systems. In practice,
however, different components in a system don’t always work correctly. Mission-
critical control systems require agreement among non-faulty components even
when some components are faulty. The problem was originally defined for Byzan-
tine faults in which a faulty node in a network can behave arbitrarily. More
benign are crash faults in which a faulty node stops all activity at a certain
point in the execution but behaves correctly until then. Sometimes the recov-
ery of crashed processes is also considered. Lamport, Shostak, and Pease [1, 2]
gave a synchronous f-resilient solution for any f with authentication in the case
of a complete communication graph and proved the impossibility result that
consensus is not solvable without authentication unless the number of faulty
processes is less than one-third of the total. Dolev [3] considered the Byzantine
agreement problem in networks that are not completely connected. The first
polynomial communication algorithm for Byzantine agreement was designed by

* Supported by NSF grant ITR-0331548.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 37-50, 2006.
© Springer-Verlag Berlin Heidelberg 2006

38 D. Angluin, M.J. Fischer, and H. Jiang

Dolev and Strong [4], whose work was subsequently improved by Dolev, Fis-
cher, Fowler, Lynch, and Strong [5]. Fischer, Lynch, and Paterson [6] showed
that in a fully asynchronous environment, there is no 1-resilient solution to the
consensus problem, even for crash failure. A survey on fault-tolerant consensus
by Fischer [7] provides an overview of early work on fault-tolerant distributed
systems.

One of the reasons for the impossibility results for fault tolerance in the asyn-
chronous model is that messages may be delayed arbitrarily as long as they are
eventually delivered. Therefore, there is no way to distinguish between a crashed
node and a slow node, or a lost message and a delayed message. Since distributed
algorithms are expected to terminate, each non-faulty process is required to com-
mit to an output value at some point in its execution when it knows the decision
value that all non-faulty processes will agree on.

1.2 Motivation

In some persistent ad hoc networks, especially biologically-motivated systems, it
is not important that each process be aware of the global status. For example,
imagine the aggregation and migration of birds. During the initial gathering or
a direction change, the movement of the birds is usually chaotic. Although each
bird is not aware of the status of the whole flock, the flock eventually converges
to a stable state in which all the birds head in roughly the same direction. Each
bird adjusts its heading according to what it perceives but does not commit to
a direction at any point, because it is possible that some other birds are still
changing directions.

Vicsek et al. [8] described a compelling model of dynamics in order to investi-
gate the emergence of self-ordered motion in systems of autonomous agents with
biologically motivated interaction. Each agent’s heading is updated from time
to time according to a local rule. They demonstrated that all agents eventu-
ally move in the same direction despite the absence of centralized coordination
and the changing neighbor set of each agent as the system evolves. Agents do
not know accurately when the whole system converges, except for an estimation
of expected convergence time when the agents communicate synchronously and
certain topological properties are guaranteed as the network evolves. Jadbabaie,
Lin, and Morse [9] provided a theoretical explanation for the above behavior and
investigated other similarly inspired models. Agent failures were not considered
in these two papers.

This model is related to some practical applications. For example, imagine the
nodes as unmanned planes that cooperate with each other to determine some
common behavioral parameters such as direction or speed. Some of the planes
might be captured by enemy forces who inject malicious programs in order to
disrupt the consistency of the system. It is desirable if system consistency could
be maintained as long as not too many nodes are compromised.

We discuss asynchronous fault-tolerant consensus in a similar scenario. We
relax the requirement of the original consensus problem that agents know when
a decision is final. We also investigate persistent distributed systems that run

Stabilizing Consensus in Mobile Networks 39

for an extended period and whose inputs may change from time to time, as well
as systems that have incomplete or evolving interaction graphs. We also prove
that stabilizing Byzantine consensus cannot be solved in systems consisting of
identical nodes.

1.3 Other Related Work

Because agreement is a fundamental problem in building distributed systems,
and most practical systems are not synchronous, various methods have been used
to circumvent the impossibility result in [6]. In many practical systems, nodes
periodically send “I'm alive” messages (pings) to each other to detect possible
crashes. In theoretical models, such techniques are captured by the abstract
concept of failure detectors [10]. Generally, a failure detector is a module that
provides information to processes about previous failures. Failure detectors differ
in strength depending on whether they are always correct or whether they detect
all failures [11]. Some failure detectors can be implemented in practical systems
using timeouts.

The agreement problem can be solved in a randomized asynchronous model
which allows each process to flip coins during execution. The problem statement
is modified to require that the processes eventually terminate with probability 1.
The first randomized solution for consensus was given by Ben-Or [12]. Rabin [13]
and Feldman [14] produced more efficient algorithms.

The k-agreement problem [15] is a weakened problem statement that only
requires all the decisions to be in a set of k values. Another weakened variation
is the approximate agreement problem [16] which allows inputs, decisions, and
messages to be real numbers and requires the difference between any two decision
values to be within a small tolerance ¢ and that any decision value is within the
range of input values.

Lamport invented the PAXOS algorithm [17] for a partially synchronous
model of distributed systems. Asynchrony is considered timing failure. Other
failures allowed are loss, duplication and reordering of messages, and crash failure
of processes. Process recovery is also allowed. The PAXOS algorithm guarantees
safety, meaning that in spite of timing, process, and link failures, and process
recoveries, non-faulty nodes do not decide on inconsistent values. When the sys-
tem stabilizes (no failure occurs, and a majority of the processes are active) for
a sufficiently long time, termination can also be achieved.

Although mobile computing has been under active study for many years, re-
search on fault-tolerance issues has been limited, and many desirable goals are
yet to be achieved. The problems studied include ad hoc routing [18,19], which
allows nodes to exchange data despite the limited transmission range of wireless
interfaces by routing messages through multiple network hops, broadcasting and
multicasting [20], transaction control [21,22, 23], group communication [24, 25],
leader election [26], and mutual exclusion [27]. Angluin et al. [28] proposed self-
stabilizing solutions to problems like leader election, ring orientation, token circu-
lation, and spanning-tree construction in a model of pairwise interacting anony-
mous finite-state sensors under a global fairness condition. Basile, Killijian, and

40 D. Angluin, M.J. Fischer, and H. Jiang

Powell [29] gave a survey of fault tolerance in mobile wireless networks. The fault
models considered in existing works are usually mobility, network partitioning,
and sometimes crash failures. Byzantine node failures have generally not been
considered.

2 Model and Definitions

We consider a network of n mobile nodes. Each has a unique ID € [1,n], an
input port, and an output port to send outputs to an external observer. By
assigning unique IDs to the nodes, we give each node the ability to distinguish
between different nodes. Also, the IDs are assumed to be unforgeable in the
sense that a faulty node cannot impersonate a non-faulty node in direct com-
munications (i.e. messages not involving any intermediate nodes). Each node
communicates with other nodes by sending out messages from time to time. A
message may be received by other nodes that are close enough to the sender,
or they may fail to be received by anyone due to a transmission error or be-
cause everyone is out of range. The sender of a message does not know whether
a certain message is received by some node, nor does it know the identities of
the nodes that do receive the message. We assume the fairness condition that
if some node 7 sends messages infinitely often, every other node receives mes-
sages from i infinitely often. We remark that this model is weaker than the
asynchronous model of distributed systems in [6] because we do not assume that
the asynchronous communication channels are reliable. Therefore one cannot
expect to solve the terminating consensus problem in our model in presence
of faults.

In the literature, two kinds of failures (equivalently, faults) are usually con-
sidered for the consensus problem. The benign type of failure is crash failure: a
faulty node may crash at any time. When a node crashes, it stops operating, oth-
erwise it honestly follows the protocol. We assume that if a node crashes when
sending a message, the incomplete message is discarded by the recipient. Byzan-
tine failures are more severe. A Byzantine node may behave arbitrarily without
the limit of computational power or memory usage to which a non-faulty node
is constrained otherwise.

We define the notion of stabilizing consensus. Instead of requiring that each
node commit to a final output at some point, we assume that each node has
a current output that may change as the execution proceeds. In practical ap-
plications, the output could be interpreted as some parameter that reflects the
behavior of each node. For example, in a flock of mobile nodes, the current
output of each node could be its current speed or current direction.

As in the usual convention, a configuration includes all nodes’ local states
and the pending messages. A configuration C' is said to be output-stable if in all
possible executions starting from C, the output of each non-faulty node does not
change. If every non-faulty node outputs z in an output-stable configuration C,
we say the outputs stabilize to z in C.

Stabilizing Consensus in Mobile Networks 41

Definition 1 (Stabilizing Consensus). A protocol P solves the stabilizing
consensus problem if all of the following requirements are satisfied:

Stabilization. The system eventually reaches an output-stable configuration.

Validity. If all nodes have the same input z, the outputs of all non-faulty nodes
eventually stabilize to x.!

Agreement. In any reachable output-stable configuration, all non-faulty nodes
have the same output.

In the following sections, we consider both crash faults and Byzantine faults. We
also discuss consensus in a scenario where each node receives an input that may
change finitely many times and define consensus with stabilizing inputs. Finally
we show that stabilizing consensus cannot be solved in a system consisting of
identical nodes in presence of one Byzantine fault.

3 Stabilizing Consensus with Crash Faults

The following is a simple protocol that solves consensus in the presence of crash
faults, assuming the inputs are non-negative integers. The protocol is based
on the idea of the protocol for synchronous distributed systems from [30]. But
notice that, in general, a node does not know when its output stabilizes, and an
execution does not terminate.

For each node ¢, x; is its local input (a non-negative integer), and y; is its
output.

— At the beginning, node i sets y; = x;.
— Whenever i is able to send a message, it sends y;.
— Upon receiving message y, node i sets y; = min(y;, y).

The following theorem establishes the correctness of the protocol.

Theorem 1. The above protocol solves stabilizing consensus in presence of f
crash faults for any f < n, where n is the total number of nodes.

Proof sketch. Tt is easy to see that the outputs will stabilize, because the output
of each node can only decrease and cannot be negative. Also it is clear that the
validity condition is satisfied because if all nodes have the same input value, all
messages will contain this same value, so all nodes will output that value.

For the agreement condition, suppose for the sake of contradiction that two
non-faulty nodes i and j stabilize to different outputs, y; and y;. Without loss
of generality, we assume y; < y;. According to the fairness condition, eventually
j will receive a value of y; from ¢ and set y; = min(y;,y;) = y;. This contradicts
the assumption that the output of j stabilizes to y;.

1 Some authors consider a stronger validity condition that requires agreement on x if
x is the common input value of just the non-faulty nodes. This is equivalent to the
validity condition presented here in the case of Byzantine faults since a Byzantine
faulty node’s behavior is not constrained by its actual input. The same is not true
for crash faults.

42 D. Angluin, M.J. Fischer, and H. Jiang

4 Stabilizing Consensus with Byzantine faults

4.1 A Protocol for Fixed Inputs

In this section we give protocols tolerating Byzantine faults. We assume that
when a node receives a message, it knows the identity of the sender.

We first consider a system where each node 7 receives a fixed local input z;
at the beginning. For simplicity, we assume z; € {0,1}. We give a protocol that
tolerates f Byzantine faults, assuming 3f < n where n is the total number of
nodes.

Initially, a node i estimates that every node has input 0. If i’s input is 1,
it always sends its input. It also sends an echo message for another node j if
one or both of two events have occurred: i received j’s input from j at some
time in the past, or ¢ received echo messages for j from sufficiently many (at
least f + 1) nodes. When i receives an echo message for j from enough (at
least n — f) nodes, it changes its estimation of j’s input to 1. The protocol
guarantees that eventually all non-faulty node have the same estimation of any
node j’s input, and if j is non-faulty, the estimation agrees with j’s actual input.
Each non-faulty node outputs 1 when it estimates enough (at least 2f + 1)
nodes have input 1, and it outputs 0 otherwise. A more detailed description
follows.

The state of each non-faulty node ¢ consists of the arrays I;[n], E;[n][n] and
M;[n], in which all elements are initialized to 0.

— When node ¢ is able to send a message, it sends a message including one or
more of the following components:
If x; = 1, it sends (init,).
For all j such that ;[j] =1 or >_;_, E;[jl[k] > f + 1, i sends (echo, j).
— When ¢ receives (init, j) from j, it sets I;[j] = 1.
— When i receives (echo, k) from j, it set E;[k]|[j] = 1, and if >_;_, E;[j][k] >
n— f,isets M;[j] =1

Output: The current output of node i is 1 if >, M;[j] > 2f + 1, otherwise its
output is 0.

It is easy to see that the outputs will stabilize, because each node outputs 0
initially and can flip its output to 1 at most once.

Correctness can be established by verifying the following claims.

Lemma 1. If any non-faulty node ¢ has 1 as input, eventually every non-faulty
node j sets M;[i] = 1.

Eventually every node receives (init, 7) from node ¢, and all non-faulty nodes will
repeatedly send (echo, 7). Therefore any non-faulty node j will receive (echo,)
from at least n — f nodes and set M;[i] =1

Lemma 2. If any non-faulty node i has 0 as input, M;[t] is always 0 for any
non-faulty node j.

Stabilizing Consensus in Mobile Networks 43

In this case, no non-faulty node receives (init, 7) from node i. Suppose node j
is the first non-faulty node that sends (echo, 7). It must have been triggered by
receiving (echo, i) from f 4 1 faulty nodes, which contradicts the assumption.
A non-faulty node j never sends (echo, i) and receives (echo,) from at most f
faulty nodes, so it will never set M;[i] = 1.

Lemma 3. For any i, if M;[i| stabilizes to 1 in any non-faulty node j, My|i]
eventually stabilizes to 1 in any other non-faulty node k.

If any non-faulty node j sets M;[i] = 1, it must have received (echo, 7) from at
least n — f nodes among which there are at least f + 1 non-faulty nodes. The
messages (echo, i) sent by these f+ 1 nodes are received by all non-faulty nodes,
therefore all non-faulty nodes will send (echo, i) to each non-faulty node k so
that it sets My[i] = 1.

Theorem 2. The above protocol solves the stabilizing consensus problem.

Given the above claims, it is easy to see that the protocol satisfies stabilization,
validity, and agreement.

4.2 Stabilizing Inputs

We define a model of stabilizing inputs to a network protocol in which the input
to each node may change finitely many times before it stabilizes to a final value.
We are interested in solving the consensus problem corresponding to the final
stabilized input assignment. This consistent input and output convention makes
a solution suitable as middleware in constructing more complex systems. Here
we define what consensus means in this model.

Definition 2 (Consensus with Stabilizing Inputs). 4 protocol P solves
consensus with stabilizing inputs if all of the following requirements are satisfied:

Stabilization. If the inputs to the non-faulty nodes stabilize, the system even-
tually reaches an output-stable configuration.

Validity. If all non-faulty nodes have the same stabilized input x, their outputs
eventually stabilize to x.

Agreement. In any reachable output-stable configuration, all non-faulty nodes
have the same output.

Note that fixed inputs are a special case of stabilizing inputs.

The following protocol achieves consensus with stabilizing inputs and tolerates
f Byzantine faults, assuming 3f < n where n is the total number of nodes. We
give only a high-level description of the protocol. Our purpose here is to establish
the possibility of a protocol rather than to present an optimal implementation. In
our description, each node needs to keep track of messages received in the past.
This intensive memory usage could be reduced by garbage-collecting data that is
no longer useful in subsequent computation. We defer details of implementation
and optimization to the full version of the paper.

44 D. Angluin, M.J. Fischer, and H. Jiang

The basic idea of the protocol is similar to the protocol for fixed inputs.
However, the protocol for fixed inputs is biased in the sense that 0 and 1 are
treated differently, whereas the following protocol is not. Many instances of a
consensus protocol are run in parallel. When a node detects that its input has
changed, it tries to restart the instance of the consensus protocol concerning its
input. Each node determines its current output according to the 2f 4+ 1 most
stable (least-frequently changed) estimated inputs.

Each non-faulty node ¢ maintains two arrays M;[n] and C;[n]. The elements
of M; are initialized to 0, and the elements of C; are initialized to —1. It also
has a counter ¢; initially equal to 0. Let x; € {0,1} denote the current reading
of the input port. Node 4 also maintains a variable x} and initially sets z} = ;.

— When 1 is able to send a message:
1. If a; # @), set af = x; and ¢; = ¢; + 1
2. Always send (init, i, z;, ¢;);
3. For all j, z;, and ¢;, such that ¢ has received (init, j, z;, ¢;) from j, or
i has received (echo, j, x;, ¢;) from at least f + 1 different nodes, send
(echo, 7, z;, ¢j).

— When ¢ receives (init, j, z;, ¢;) from j, if ¢; < C;[j], the message is ignored,
otherwise it records this message in its event log. If ¢ receives contradicting
init messages from the same node ((init, j, z;, ¢;) and (init, j, m}, ¢;) with
xj # x;), only the first message is recorded.

— When 4 receives (echo, j, z;, ¢;), if ¢; < Cj[j], the message is ignored,
otherwise it records this message in its event log, and if the same message
has been received from at least n — f different nodes, i sets M;[j] = z; and
Cilj] = ¢;

Output:

— Define the stable set S; to be a set of 2f + 1 distinct integers in [1...n]

that minimizes) Cilj]- In case of ties, the set that minimizes > ¢ =

is chosen.
— Node i outputs 1if >, M;[j] > f + 1, otherwise it outputs 0.

JES;

The variable ¢; is a counter for node 7 to keep track of how many times its
input has changed. Each node also uses the counter array C; to keep track of the
number of times the other nodes change their inputs. Because messages can be
delivered out of order, and “echo” messages corresponding to inputs at different
time can co-exist in the network, the counters also ensure that obsolete messages
are ignored.

Lemma 4. The invariant C;[j] < c¢; holds in any real-time snapshot of the
system for any non-faulty nodes i and j.

Proof. Suppose at some point in real time, C;[j] = a, ¢; = b and @ > b. Then
i must have received (echo, j, m, a) for some m from at least n — f nodes.
Therefore 7 must have sent (init, j, m, a), because at most f nodes send (echo,
J, m, a) otherwise. This contradicts a > b. Because j would have set ¢; = a
before sending (init, j, m,a), it must be true that b > a.

Stabilizing Consensus in Mobile Networks 45

Lemma 5. Leti and j be two non-faulty nodes. If i’s input stabilizes to x, M,[i]
eventually stabilizes to x.

Proof. Suppose M;[i] stabilizes to y # z. Then j must have received (echo, 7, y,
a) for some a from at least n — f nodes, so i must have sent (init, i, y, a) to at
least f + 1 nodes. Since z is the final input of 4, eventually 7 sends (init, i, z, b)
for some b to all nodes. According to lemma 4 a < b. Suppose the time j receives
(echo, i, y, a) from the (n— f)*™ node is ¢, and the time it receives (echo, i, z, b)
from the (n — f)*™® node is ¢'. If t < t', j will set M;[i] = z. If t/ < ¢, y is ignored
by j, because at ¢ the value of C;[i] can only be greater than or equal to b and
a < b. Therefore M;,[i] couldn’t have stabilized to y.

Lemma 6. If i and j are non-faulty nodes, for any k, if M;[k] stabilizes to x,
M;[k] also stabilizes to .

Proof. Suppose M; k| stabilizes to x, M;[k] stabilizes to y, and x # y. Let (echo,
k, x, a) and (echo, k, y, b) be the corresponding messages received by ¢ and j
respectively when they assigned the final values to M;[k| and M;[k].

1. Without loss of generality, we assume a > b. Since ¢ must have received
(echo, k, x, a) from at least n — f nodes, there must be at least f + 1 non-
faulty nodes among them. All non-faulty nodes would receive (echo, k, x, a)
from these f 4+ 1 nodes, and therefore would send (echo, k&, z, a) to all nodes
they encounter. Thus j would also receive (echo, k, z, a) from at least n — f
nodes. Because a > b, M;[k] could not have stabilized to y.

2. If a = b, i receives (echo, k, x, a) from n — f nodes, and j receives (echo, k,
y, b) from n — f nodes. This cannot happen, because n > 3 f, and according
to the protocol, a non-faulty node only sends one of the two messages but
not both.

Therefore M;[k] and M;[k] cannot stabilize to different values for any k. This
property guarantees that all non-faulty nodes will eventually agree on the sta-
bilized entries of vector M.

Lemma 7. Leti and j be any non-faulty nodes. For any k, if C;[k] stabilizes to
¢, C;lk] also stabilizes to c.

Proof. Suppose C;[k] stabilizes to c¢1, C;[k] stabilizes to co # ¢i1. Without loss
of generality, we assume ¢; > co. Let (echo, k, x, ¢1) and (echo, k, y, c2) be the
corresponding messages received by ¢ and j respectively when they assign the
final values of C;[k] and C;[k]. Since ¢ must have received (echo, k, z, ¢1) from
at least n — f nodes, there must be at least f 4 1 non-faulty nodes among them.
All non-faulty nodes would receive (echo, k, x, ¢1) from these f 4 1 nodes, and
therefore would send (echo, k, x, ¢1) to all nodes they encounter. j would also
receive (echo, k, x, ¢1) from at least n — f nodes. Because ¢; > ¢z, Cj[k| could
not have stabilized to co. This property guarantees that all non-faulty nodes will
eventually agree on the stabilized entries of vector C.

46 D. Angluin, M.J. Fischer, and H. Jiang

Lemma 8. In any execution of the above protocol, if the inputs to the non-faulty
nodes stabilize, the outputs of the non-faulty nodes eventually stabilize.

Proof. Let i be any non-faulty node. If x; stabilizes, ¢; also stabilizes, because
they always change at the same time. According to lemmas 4 and 5, M;,[i] and
C;i] also stabilize for any non-faulty j. According to lemma 6 and lemma 7,
all non-faulty nodes will eventually agree on the stabilized entries of the arrays
M and C (at least 2f 4+ 1 entries in each), which include entries corresponding
to non-faulty nodes and entries corresponding to faulty nodes that stabilize at
all. If some of the entries in the M arrays corresponding to faulty nodes do not
stabilize, the corresponding entries in the C arrays of the non-faulty nodes will
eventually be greater than the stabilized entries, because the entries of C' arrays
are non-decreasing. Only the 2f + 1 nodes corresponding to the C entries with
the smallest values affect the output, therefore the faulty nodes will eventually
be ignored.

Theorem 3. The above protocol solves consensus with stabilizing inputs.

If all non-faulty nodes have z € {0,1} as input, according to lemma 5, for any
non-faulty node i at least f + 1 M; entries corresponding to the stable set will
be x, therefore all non-faulty nodes will output x, and the validity condition is
satisfied. According to lemmas 6 , 7, and 8, agreement and stabilization are also
satisfied.

5 Impossibility of Stabilizing Byzantine Consensus
Among Identical Nodes

In this section we give the impossibility result that stabilizing consensus cannot
be solved in the presence of a single Byzantine fault in a network of nodes that
are identical other than their inputs. We note that any subconfiguration of an
output-stable configuration is also output-stable.

Theorem 4. The stabilizing consensus problem cannot be solved in a set of
identical nodes in the presence of one Byzantine fault.

Proof. Assuming there is a protocol P that solves this problem, consider a system
C = CoUC1(Cy # ¢,C1 # ¢), in which Cy is the set of nodes with input 0,
and C1 is the set of nodes with input 1. There exists a finite execution E of
P in C that reaches an output-stable configuration in which the outputs of all
nodes have stabilized to the same value. Without loss of generality assume the
common output value is 0. Consider another system C’ = {a}UC1, in which a is a
Byzantine node, and C] is the same as in C'. Node a runs a two-phase protocol.
In phase one, when it is a’s turn to send a message, it nondeterministically
chooses whether to remain in phase one or move to phase two. If it remains in
phase one, it chooses one of the messages sent by nodes in Cy in the execution £
and sends that message to the recipient. Upon entering phase two, a faithfully
imitates a nondeterministically chosen non-faulty node i from Cy starting from

Stabilizing Consensus in Mobile Networks 47

the state 7 is in at the end of the execution E. There exists an execution E’ of P
in C’ that simulates E, in the sense that every time there is a message in F sent
between a node in Cy and a node in Cy, there is a corresponding message in E’
sent between a and the node in C7, and at the end of E’, node a will faithfully
simulate one node in Cy. Thus, the configuration of the system C’ at the end
of E’ is a subconfiguration of the system C' at the end of F, and will continue
so at every subsequent time. Thus the outputs of the non-faulty nodes (those
in (1) will remain 0 no matter how execution proceeds from this point. This
violates the validity condition, because the inputs of all non-faulty nodes in C’
are 1.

The proof does not depend on the specific communication model and fairness
assumption; therefore stabilizing Byzantine consensus is impossible even with the
strong fairness condition and two-way interaction model in [28], and unbounded
memory. Note that theorem 4 rules out not only deterministic solutions, but also
randomized solutions?, in the sense that for any candidate protocol P, there
exists an ep > 0, such that the probability of an execution failing to reach
consensus is always greater than ep. ep is any constant less than the probability
that C’ successfully simulates C' to the point when all non-faulty nodes are
output-stable.

6 Discussion

6.1 Upper Bound on Faults

It was shown that in synchronous systems, the number of Byzantine nodes must
be strictly less than one third of the total number of nodes for any solution to
the agreement problem [31,2]. This bound still holds for stabilizing consensus in
our model. We omit the proof here, because the original proof in [31] does not
rely on synchrony and can be adapted to our model easily.

6.2 General Graphs

In some applications the movement of each node is restricted to a certain region,
therefore some nodes may not be able to receive messages from some other
nodes. It was proven in [3] that the Byzantine agreement problem can be solved
in an n-node synchronous network graph G, tolerating f faults, if and only if the
n > 3f bound holds and G is at least (2f 4+ 1)-connected. This result can also
be transferred to our model. Intuitively, since G is at least (2f + 1)-connected,
there are at least 2f + 1 disjoint paths between any two nodes. Let each node
send each message through 2 f +1 disjoint paths. Then the majority of the copies
the recipient receives are sent via paths that do not contain faults. Thus, it is
possible to implement reliable communication between any two nodes, and the

2 A randomized solution would guarantee that consensus be reached with probabil-
ity 1, assuming some probabilistic distribution of the nodes’ coin flips and the choices
of the scheduler.

48 D. Angluin, M.J. Fischer, and H. Jiang

above algorithms still work for such communication graphs with messages sent
over multi-hop links.

In some systems, nodes are moving around, but the fairness condition does not
hold, meaning that some nodes do not have infinitely many chances to receive
messages from some other nodes. Some nodes only have chance to receive finitely
many messages from some others, and some won’t get close enough at all. In
their self-stabilizing group membership protocol, Dolev, Schiller and Welch [25]
used random walks of a mobile agent as a means of information dissemina-
tion. Similarly, one or more non-Byzantine message carriers could be used as
a message-ferrying service to simulate our communication model. The message
carriers do not have to be reliable as long as they successfully deliver messages
infinitely often.

6.3 Communication Model and Message Overhead

In our model, there is no reliable way for two nodes 7 and j to make sure that a
message sent from ¢ is received by j and that both nodes are aware of the event.
As a consequence, all non-faulty nodes send infinitely many messages since they
never know when it is safe to stop sending.

If we augment the model with a stronger communication mechanism by which
the sender of a message can learn whether the message is received and if so by
whom, the protocol could be made eventually quiescent, that is, once the inputs
have stabilized, each non-faulty node eventually stops sending messages. In our
protocol, each node initially only needs to make sure every node has received its
input. After that, it could enter a passive mode in which it listens to other nodes
and only sends messages in response to messages received. When it knows that
its response message has been received by all necessary recipients defined by the
protocol, it can again become passive. Eventually all non-faulty nodes enter the
passive mode and do not initiate new messages. According to our protocols, the
faulty nodes that keep sending messages are eventually ignored, and the subsys-
tem consisting of the non-faulty nodes becomes quiescent. Note that this does
not mean the protocol terminates, because generally each node does not know
whether other non-faulty nodes are passive, but a node can conserve energy
by not sending unnecessary messages. This suggests that energy-efficient imple-
mentations of our protocols are possible when appropriate lower-level service is
provided, either by a lower-level protocol or by additional devices.

7 Conclusions and Future Work

In this paper we defined and investigated fault-tolerant stabilizing consensus in
a model inspired by natural phenomena. We considered crash faults and Byzan-
tine faults in fully asynchronous and decentralized mobile networks, as well as
systems with stabilizing inputs and systems with incomplete or evolving con-
nectivity. The algorithms are useful in controlling distributed systems, such as
sensor networks, that simulate certain biological behaviors. They are also use-
ful as a middleware layer that provides service to higher-level protocols. One

Stabilizing Consensus in Mobile Networks 49

drawback of the algorithm for stabilizing inputs is that it involves unbounded
counters, unless there is a bound on the maximum number of times the in-
puts could change. It is open whether there exists a protocol for this problem
with bounded memory. In many practical ad hoc networks, the graph represent-
ing possible communications changes over time. It is open for future research
whether stabilizing consensus can be solved in these systems without additional
message carriers, possibly using authentication and a fault-tolerant ad-hoc rout-
ing protocol.

References

10.

11.

12.

13.

14.

15.

. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Advances

in Ultra-Dependable Distributed Systems, N. Suri, C. J. Walter, and M. M. Hugue
(Eds.). IEEE Computer Society Press (1995)

. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

Journal of the ACM 27 (1980) 228-234

. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 3(1) (1982)

14-30

. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.

In: Proceedings of the 14th annual ACM symposium on Theory of computing, San
Francisco, California, United States (1982) 401-407

. Dolev, D., Fischer, M.J., Fowler, R., Lynch, N.A., Strong, H.R.: An efficient algo-

rithm for byzantine agreement without authentication. Information and Control
52(3) (1982) 257274

. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. Journal of the ACM 32(2) (1985) 374-382

. Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief

survey). Technical Report YALEU/DCS/TR-273, Yale University (1983)

. Vicsek, T., Czirdk, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase

Transition in a System of Self-Driven Particles. Physical Review Letters 75 (1995)
1226-1229

. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Transactions on Automatic Control
(2002)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225-267

Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4) (1996) 685-722

Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols. In: Proceedings of the Second Annual ACM Synmposium on Principles
of Distributed Computing, Montreal, Quebec, Canada (1983) 27-30

Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on
Foundations of Computer Science, IEEE, Los Alamitos, California, United States
(1983) 403-409

Feldman, P.N.: Optimal Algorithms for Byzantine Agreement. PhD thesis, Mas-
sachusetts Institute of Technology (1988)

Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation 105(1) (1993) 132-158

50

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

D. Angluin, M.J. Fischer, and H. Jiang

Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.-W., Weihl, W.E.: Reaching ap-
proximate agreement in the presence of faults. Journal of the ACM 33(3) (1986)
499-516

Lamport, L.: The part-time parliament. ACM Transaction on Computer Systems
16(2) (1998) 133-169

Beraldi, R., Baldoni, R. The Electrical Engineering Handbook Series. In: The
handbook of ad hoc wireless networks. CRC Press, Inc. Boca Raton, FL, USA
(2003) 127-148

Royer, E., Toh, C.: A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications (1999) 46-55

Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: ACM International Symposium on Mobile Ad Hoc Networking and
Computing. (2002) 194-205

Barbara, D.: Mobile computing and databases - a survey. Knowledge and Data
Engineering 11(1) (1999) 108-117

Bobineau, C., Pucheral, P., Abdallah, M.: A unilateral commit protocol for mobile
and disconnected computing. In: 12th International Conference on Parallel and
Distributed Computing Systems. (2000)

Pitoura, E., Bhargava, B.K.: Data consistency in intermittently connected dis-
tributed systems. Knowledge and Data Engineering 11(6) (1999) 896-915
Briesemeister, L.: Group Membership and Communication in Highly Mobile Ad
Hoc Networks. PhD thesis, School of Electrical Engineering and Computer Science,
Technical University of Berlin, Germany (2001)

Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communi-
cation in ad-hoc networks. In: 21st Symposium on Reliable Distributed Systems.
(2002)

Malpani, N., Welch, J.L., Vaidya, N.H.: Leader election algorithms for mobile ad
hoc networks. In: Proc. Fourth International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications. (2000) 96-103

Walter, J.E., Welch, J.L., Vaidya, N.H.: A mutual exclusion algorithm for ad hoc
mobile networks. Wireless Networks 7(6) (2001) 585-600

Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Ninth International Conference on Principles of Distributed Systems.
(2005) 79-90

Basile, C., Killijian, M.O., Powell, D.: A survey of dependability issues in mobile
wireless networks. Technical report, Laboratory for Analysis and Architecture of
Systems, National Center for Scientific Research, Toulouse, France (2003)

Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. STAM
Journal of Computing 12(4) (1983) 656—666

Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1(1) (1986) 26-39

When Birds Die:
Making Population Protocols Fault-Tolerant

Carole Delporte-Gallet!, Hugues Fauconnier!,

Rachid Guerraoui?, and Eric Ruppert?

1 Université Paris 7, France
2 MIT, USA and EPFL, Switzerland
3 York University, Canada

At vobis male sit, malae tenebrae
Orci, quae omnia bella devoratis:
tam bellum mihi passerem abstulistis. [6]

Abstract. In the population protocol model introduced by Angluin et
al. [2], a collection of agents, which are modelled by finite state machines,
move around unpredictably and have pairwise interactions. The ability
of such systems to compute functions on a multiset of inputs that are ini-
tially distributed across all of the agents has been studied in the absence
of failures. Here, we show that essentially the same set of functions can
be computed in the presence of halting and transient failures, provided
preconditions on the inputs are added so that the failures cannot imme-
diately obscure enough of the inputs to change the outcome. We do this
by giving a general-purpose transformation that makes any algorithm for
the fault-free setting tolerant to failures.

1 Introduction

Consider an ad hoc mobile network in which each agent is a very simple com-
ponent, such as a tiny sensor with very severe constraints on memory and
power. Such systems have been envisioned, for example, in Berkeley’s Smart
Dust project [10]. An agent can communicate with other nearby agents through
wireless communication. To make use of data collected by the agents of such a
system, it is necessary to aggregate the data in some way [11, 13].

Angluin et al. [2] introduced the notion of a computation by a population
protocol to model this situation. In their model, the computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come into contact with each other. The goal is to ensure that every agent
can eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur). The agents are simple
devices, and can be represented as finite state machines. The abstraction also
makes absolutely minimal assumptions about the movement of the system’s com-
ponents. In particular, the algorithms designed for such systems cannot dictate

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 51-66, 2006.
© Springer-Verlag Berlin Heidelberg 2006

52 C. Delporte-Gallet et al.

the movement of the agents. Can interesting computations still be performed in
such a model? Angluin et al. showed the answer is yes, assuming no agents fail.
For example, protocols exist to compute parity, majority and constant-threshold
functions, as well as boolean combinations of such functions.

A motivating example for their model was a flock of birds, in which each bird
carries a monitoring device that measures the bird’s body temperature. The
devices can signal other devices within a small distance. They showed that this
sensor network could be used, for example, to determine whether at least five
birds in the flock have an elevated temperature, to trigger an alert indicating that
there might be an illness sweeping across the flock. In this paper, we study what
happens when some of those ill birds drop dead: Can interesting computations
be done in the population protocol model in a way that tolerates failures?

If malicious failures can occur, it is very difficult to do anything useful in the
model: a single Byzantine agent (in collusion with the adversarial scheduler of
interactions) could move around the system, driving each agent into an arbitrary
reachable state by having a sequence of interactions with it. Thus, we consider
two types of less catastrophic failures. A crash failure causes an agent to cease
interacting with other agents. A transient failure is a momentary failure that
can arbitrarily corrupt the state of an agent. The agent continues executing its
algorithm correctly after the transient failure occurs. Transient failures include,
as a special case, sensing failures, which cause the input to an agent to be
incorrect. This is because the input is part of the state of an agent and can
therefore be corrupted by the transient failure. However, transient failures are
more general, since they can affect the entire state of the agent. For example,
they can corrupt any partial data that the agent has collected, as well as its
“programme counter” which keeps track of what part of the algorithm it is
executing. (Such general transient failures might be caused by electromagnetic
interference from the environment during an interaction or by soft errors due to
alpha particle strikes.) We shall assume that both crash failures and transient
failures can occur in an execution and that we have a known upper bound on
the number of failures of each type that should be tolerated.

Clearly, some functions that can be computed without failures will be im-
possible to compute in a model with failures. For example, if we consider the
possibility of experiencing a single halting failure, a population will not be able
to compute with certainty a threshold function that is 1 if at least five of the
birds are ill and 0 otherwise. Consider an execution with exactly five ailing birds,
one of which dies (along with its sensor) before the bird comes into contact with
any other birds. The output should be 1, but this run cannot be distinguished
by any live agent from a run where there are four feverish birds and the output
should be 0. However, with at most one failure, we can still distinguish whether
the number of ill birds is greater than five or less than five. We discuss two ways
to formalize this. We can restrict the domain of the function to be computed,
by adding a precondition that the number of ill birds will either be greater than
five or less than five. Alternatively, we can say that the protocol will compute
the result correctly when the number of sick birds is different from five, but may

When Birds Die: Making Population Protocols Fault-Tolerant 53

output either 0 or 1 in the case where exactly five birds are sick. We explore
both approaches: the former in Sect. 5 and the latter in Sect. 6.

In short, we show that, for any function that can be computed by a popula-
tion protocol in a failure-free environment, it is possible to design a population
protocol that computes the function in a way that tolerates crash failures and
transient failures, provided preconditions are added or incorrect responses are
permitted for inputs that are very close to other inputs that have a different
response, as described above for the example about birds.

As one might expect, we use replication to achieve fault-tolerance, but in a
way that is different from traditional approaches. Given a protocol that computes
a function in a failure-free environment, we run several copies of the protocol.
Because of the severe limitation on the memory of each agent, we need a con-
stant fraction of the agents to cooperate to simulate one instance of the original
protocol; otherwise there would not be enough space to store the states of all of
the simulated agents. We divide the agents into g groups of approximately equal
size. Each group simulates one instance of the failure-free protocol by having
each agent in the group simulate approximately g agents of the original proto-
col. The value of g is chosen to ensure that the output produced by the largest
number of groups’ simulations is correct.

2 Related Work

The population protocol model was introduced by Angluin, Aspnes, Diamadi,
Fischer and Peralta [2]. They defined the concept of stable computation of a
function in this model, focussing on stable computation of predicates, which
are functions whose output is a binary value. They showed that the predicates
computable in this model include all that can be expressed using Presburger
arithmetic and that they are all included within the complexity class N L.

They also considered variants of the model where interactions are restricted.
First, the interactions can be constrained by considering a particular communi-
cation graph, which has an edge between the nodes that represent two agents if
those agents are permitted to come into contact with each other. Second, they
considered a randomized version of the model, where interactions are chosen ran-
domly and uniformly, and the output must be computed with high probability.
In both cases, the power of the system is increased.

Angluin, Aspnes, Chan, Fischer, Jiang and Peralta [1] further studied the
model with a non-complete communication graph. They described properties
of the communication graph itself that can be computed by the agents in the
system. For example, the system can determine whether it contains an odd cycle.

Angluin, Aspnes, Eisenstat and Ruppert [4] considered population protocols
where the interactions between pairs of agents are one-way. Each interaction has
a sender and a receiver, and the sender cannot discover any information about
the receiver’s state in such an interaction. Full or partial characterizations of the
predicates that can be stably computed (with no failures) in several variants of
this model were given.

54 C. Delporte-Gallet et al.

The question of tolerating failures in the population protocol model was raised
by Delporte-Gallet, Fauconnier and Guerraoui [7]. They described how an ex-
ample protocol can be adapted to tolerate failures. However, their approach is
not generally applicable to all population protocols.

The transient failures that we consider in this paper can corrupt the inter-
nal states of agents arbitrarily. We assume that the number of such failures is
bounded. Research on self-stabilizing systems [8] assumes that any number of
processes can have corrupted states, requiring that the system eventually return
to a correct configuration. Angluin, Aspnes, Fischer and Jiang incorporated the
notion of self-stabilization into the population protocol model [5]. They gave
some self-stabilizing protocols for classical problems such as leader election and
token passing. The types of problems they studied differ from the problems
we discuss here. They concentrated on stably maintaining some property (e.g.
having a unique leader, having a legal colouring of the communication graph),
whereas we focus on computing functions of inputs initially distributed across
the system. This makes it necessary for us to assume a bound on the number of
transient failures, so that those inputs are not lost. Also, we are concerned with
creating a general-purpose transformation that converts an arbitrary algorithm
that works in the failure-free setting into a fault-tolerant algorithm.

The way we transform the specification of a problem for the failure-free pop-
ulation protocol model into a specification for the fault-tolerant model is, in
spirit, analogous to the way such transformations have been done in traditional
distributed systems. Consider for instance the seminal atomic commit problem
from distributed databases [9]. In a failure-free distributed system, one would
typically require a transaction to commit if and only if all servers vote “yes”,
i.e., none detected a concurrency conflict. Such a specification is clearly impos-
sible to implement (even in a synchronous system) if one server can fail: it is
indeed impossible to distinguish an execution where all servers voted “yes” and
one initially crashed, from an execution where this initially crashed server voted
“no”. It is thus typical to allow a transaction to sometimes abort even if all
servers vote “yes” (and one of them fails or is suspected to have failed), or com-
mit a transaction even if a minority of servers vote “no” (e.g., in a replicated
system).

Our approach to describing functions that can be computed in the failure-
prone population protocol model is also related to the condition-based approach
of Mostefaoui, Rajshaum and Raynal [12]. They described exactly what sort of
precondition must be placed on the possible inputs to the consensus problem in
order for it to become solvable in an asynchronous system with f halting failures
using shared read-write registers.

3 Population Protocols

Our formalization of the population protocol model is based on the work of
Angluin et al. [2]. We present a version that assumes non-deterministic, two-
way interactions can take place between any pair of agents, but also allows
halting failures and transient failures. A halting failure causes an agent to cease

When Birds Die: Making Population Protocols Fault-Tolerant 55

functioning and play no further role in the execution. A transient failure corrupts
the state of an agent, but the agent otherwise follows its algorithm correctly.

Each agent in the system is modelled as a finite state machine, and algorithms
must be uniform: each finite state machine is “programmed” identically and the
programming does not depend on the number of agents in the system. This
makes the model strongly anonymous, since there is not enough space in the
state to give each agent a unique identifier.

Let X be a finite input alphabet and Y be a finite output alphabet. Each
agent is provided with an input drawn from X. Since agents are essentially in-
terchangeable, an input to the system can be thought of as a multiset of elements
from X. Let X be a set of all multisets of elements from X. Let D C X be the
set of all input multisets that can actually occur. In general, D may be a proper
subset of X', since there may be preconditions on what inputs are permitted.
The goal of an algorithm is to compute a function f : D — Y. Each agent
must eventually output the value of this function for the input multiset that was
initially provided to the agents.

We now describe how to specify a population protocol. Let @ be the finite
set of states that each agent may take. A population protocol is defined by an
input assignment 7 : X — @, a transition function § : Q@ x Q@ — P(Q x Q) — {0},
and an output assignment o : Q — Y. (The notation P(5) is used to denote the
power set of S.) If two agents in states ¢; and g2 encounter each other, they can
change into states ¢} and ¢}, where (q1, ¢5) € 6(q1, g2). Without loss of generality,
assume the transition function is symmetric: 6(q1, g2) = 6(ga, ¢1). The protocol
is called deterministic if 6(q1,q2) is a singleton set for all ¢1,¢2 € Q.

Let I € D be an input for the system. An execution of the protocol on input
I is an infinite sequence of configurations, Cy, C1,Cy, ..., each of which is a
multiset of states drawn from . The initial configuration Cy is the multiset
{i(z) : © € I}. The configuration Cj, must be obtainable from Cj_; by one of
the following four types of transitions:

Ordinary transition: Cy, = Cy—1—{q1, 92} U{q}, ¢4} where {q1,¢2} C Cr_1 and
(¢1,43) € 6(q1, q2)-

Halting failure: C, = Cr—1 — {q}.

Transient failure: C, = Cx—1 — {q} U {¢'}.

Null step: Cr, = Ci_1.

The output of an agent in state ¢ is o(q). We say that the execution stably
outputs v € Y if every agent eventually outputs v and never changes its output
thereafter. Formally, this means there is an 4 such that for all j > 4, o(q) = v for
every q € Cj.

If every sequence of interactions is considered to be a possible execution in the
model, it would be possible to have isolated agents that never interact with one
another. So the model must incorporate a fairness guarantee. Simply requiring
that every pair of agents eventually meet is insufficiently strong for some in-
teresting protocols, since the two agents might meet only at inopportune times,
when their states prevent a particular kind of interaction from happening. So the
research on population protocols has assumed a stronger fairness condition. In a

56 C. Delporte-Gallet et al.

fair execution, if a configuration C' occurs infinitely often and a configuration C’
can be reached from C by an ordinary transition, then C’ occurs infinitely often.
If, for example, we associate probabilities with different interactions, then an
execution will be fair with probability 1. A protocol stably computes a function
f D — Y if, for every input I € D, every fair execution on input I stably

outputs f(I).

4 The Simulation

In this section, we describe how any population protocol A that stably computes
a function f in a failure-free setting can be adapted to run in a setting where
a bounded number of crash and transient failures can occur. To do this, we
construct an algorithm B that divides agents into groups and simulates, within
each group, an execution of the original protocol A. We shall show in Sect. 5 that,
if we add a precondition on the inputs, this simulation will correctly compute f.
We first define the kind of precondition on the inputs that will be required.

Recall that X and Y are an input and output alphabet, X denotes the set of
all multisets of elements from X, and D C X.

Definition 1. Let a,b € IN. A function f: X — Y is called (a, b)-robust for D
if, for any input multiset I € D and any input I’ € X’ that can be formed from
I by removing up to a elements and then adding up to b elements, f(I) = f(I').

Example 2. Let X =Y = {0,1}. Let f be the majority function: for any
multiset S of 0’s and 1’s, f(S) = 1 if and only if S contains more 1’s than 0’s.
Let D be the set of all input multisets where the number of 0’s differs from the
number of 1’s by at least k. Then f is (a,b)-robust for D for any parameters
a and b satisfying a + b < k. This is because, starting from any input multiset
in D, the number of input values that would have to be added and removed to
change the output of f total at least k.

Let f: X — Y be any function that can be stably computed by a population
protocol in the failure-free environment. We shall show that if f is (¢ + ¢,1)-
robust for D, then f restricted to inputs from D can also be stably computed in
an environment where up to ¢ crash failures and up to ¢ transient failures may
oceur.

Let A be a population protocol that stably computes f in the failure-free
setting. The algorithm A is specified by the state set @Q4, input and output
assignment functions i4 and o4, and the transition function 64. Let Qjnit =
{ia(z) : x € X}. We shall build an algorithm B which simulates A in a way
that tolerates up to ¢ crash failures and ¢ transient failures. We first describe the
simulation. Its correctness is argued in Sect. 5.

The fault-tolerant algorithm B will divide agents up into g groups (where ¢ is
a constant to be chosen later), and simulate the original algorithm within each
group. There will be roughly n/g agents in each group, where n is the number
of agents in the system. (Recall that agents do not know the value of n.) Each

When Birds Die: Making Population Protocols Fault-Tolerant 57

of the agents that comprise a group will simulate up to 2g distinct agents of
the original algorithm A. (For clarity, we shall hereafter refer to the agents of
algorithm B as “agents”, and the simulated agents of algorithm A as “threads”.)
No thread will be simulated by two agents in the same group (except as the result
of a transient failure).

In B, each agent’s state contains seven fields:

— init stores an initial value from Qy, initialized to i4(z), where = is the
input for the agent. (This field is never changed by the algorithm.)

— joined is a boolean variable that says whether the agent has joined a group
yet. Initially, it is set to false.

— group stores a value from {1,2,..., g}, initially g, which will eventually be
the name of the group this agent joins.

— sum will be used for a division subroutine and can take values in the range
{0, ..., group — 1}, initially 1.

— sim stores a multiset of up to 2¢g elements from Q4 representing the states
of the threads that the agent is simulating, initially 0.

— given]l..g] stores an array of g boolean values, with each entry initially set
to false. This will keep track of which groups contain a thread that has been
given a copy of this agent’s input value.

— output[l..g] stores an array of g values from Y, representing the output values
from the simulations carried out by each of the g groups. It can be initialized
arbitrarily.

Note that the state set of algorithm B has |Qinit|g(g+1) (29'*'2|9QA|)29|Y\9 states,
and this quantity is independent of n, the number of agents in the system, as
required by the model. (The number of bits needed to represent an agent’s state
in the simulation is O(glog|Q|).)

The first phase of an agent’s actions is devoted to assigning the agent to one
of the g groups. This phase ends when the agent’s joined field is changed to
true. The second phase will be devoted to gathering input values from approx-
imately g other agents and simulating, within each group, an execution of the
original algorithm. We shall guarantee that each non-faulty agent’s input value
is eventually given to exactly one thread of exactly one agent in each group.
Whenever two agents in the same group meet, they nondeterministically choose
an interaction of two of their threads to simulate. In those groups that have
no faulty agents, the simulation will be a faithful simulation of algorithm A,
and the output of each thread within that group will eventually stabilize to the
correct value. We shall choose g large enough so that agents will be able to rec-
ognize (and output) a value that is being produced by a group of agents that
experienced no failures.

In phase 1, we first execute the division-by-g algorithm described by Angluin
et al. [2] to split off, from the rest of the agents, group number g, which will
contain approximately n/g agents. The remaining agents then execute a division-
by-(g — 1) algorithm to split off group number g — 1 (again of size roughly n/g).
The remaining agents then divide by g — 2, and so on. The group field of the
state keeps track of which division is currently being worked on by the agent.

58 C. Delporte-Gallet et al.

An agent is said to join group i when it sets its joined field to true, if its
group field contains ¢ at that time. Joining a group is an irreversible action for
a non-faulty agent: once the joined variable is set to true, none of the fields
joined, group or sum will ever change again.

To accomplish phase 1, if two agents whose joined, group and sum fields are
(false,i,s) and (false,i,s") with ¢ > 2 meet, they transition to (false,i—1,1)
and (false,i,s+ s') if s+ s < i and to (false,i,s + s