

Lecture Notes in Computer Science 4026
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Phillip B. Gibbons Tarek Abdelzaher
James Aspnes Ramesh Rao (Eds.)

Distributed Computing
in Sensor Systems

Second IEEE International Conference, DCOSS 2006
San Francisco, CA, USA, June 18-20, 2006
Proceedings

13

Volume Editors

Phillip B. Gibbons
Intel Research
4720 Forbes Avenue, Suite 410, Pittsburgh, PA 15213, USA
E-mail: phillip.b.gibbons@intel.com

Tarek Abdelzaher
University of Illinois at Urbana-Champaign, Department of Computer Science
Urbana, IL 61801, USA
E-mail: zaher@cs.uiuc.edu

James Aspnes
Yale University, Department of Computer Science
51 Prospect Street, New Haven, CT 06520-8285, USA
E-mail: aspnes@cs.yale.edu

Ramesh Rao
University of California at San Diego
9500 Gilman Drive, La Jolla, CA 92093-0436, USA
E-mail: rrao@ucsd.edu

Library of Congress Control Number: 2006927240

CR Subject Classification (1998): C.2.4, C.2, D.4.4, E.1, F.2.2, G.2.2, H.4

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-35227-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-35227-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11776178 06/3142 5 4 3 2 1 0

Message from the General Chair

Welcome to DCOSS 2006 – the second version of the meeting series. DCOSS
focuses on distributed computing issues in large-scale networked sensor systems,
including systematic design techniques and tools, algorithms, and applications.

I am indebted to the Program Chair, Phil Gibbons, for his efforts in handling
the review process and composing the technical program. I appreciate his lead-
ership in putting together a strong and diverse Technical Committee to address
various aspects of this interdisciplinary area. I would also like to thank him for
his input in resolving a number of meeting-related issues.

I would like to thank all of the authors who submitted papers, our invited
speakers, the external referees we consulted, the Vice Chairs and the members
of the Program Committee.

I would like to thank Sotiris Nikoletseas for his efforts as the Workshop Chair
for DCOSS 2006.

Several volunteers assisted me in putting together the meeting. I would like to
thank Jim Reich for handling the poster session, Wendi Heinzelman for publiciz-
ing the event, Amol Bakshi for handling Web-based publicity, Loren Schwiebert
for handling the student scholarships, Jie Wu for interfacing with IEEE TCDP
for student scholarships and Yang Yu for his assistance in putting together these
proceedings. Special thanks go to Amol Bakshi for his invaluable input in decid-
ing the meeting focus, format and local arrangements.

I would like to thank Jose Rolim, DCOSS Steering Chair for inviting me to
be the General Chair. Indeed, it was a pleasure working with him and with Jie
Wu, Vice General Chair. Their invaluable input in putting together the meeting
program and in shaping the meeting series is gratefully acknowledged.

I would like to acknowledge support from the IEEE Technical Committee on
Distributed Processing and from the Centre Universitaire d’Informatique of the
University of Geneva.

Rosine Sarafian, our administrative coordinator, deserves special thanks for
her assistance with local arrangements.

The field of networked sensor systems is rapidly evolving. It is my contin-
ued hope that this meeting series serve as a forum for researchers from various
aspects of this interdisciplinary field to interact and in particular to offer oppor-
tunities for those working in algorithmic, theoretical and high-level aspects to
interact with those addressing challenging issues in complementary areas such as
wireless networks, communications and systems composed of these underlying
technologies.

I hope you enjoy the technical sessions as well as San Fransisco.

June 2006 Viktor K. Prasanna

Message from the Program Chair

This volume contains the 33 full papers presented at the Second IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS 2006),
which took place in San Francisco, California, during June 18–20, 2006. These
papers were selected by the Program Committee from 87 submissions received
in response to the call for papers. Submissions were received from 18 countries
across 5 continents, and directed to one of three tracks: algorithms, applications,
or systems. Each track had its own Program Committee that reviewed the pa-
pers and recommended either “accept”, “reject”, or “accept if room”. In a joint
meeting between the Vice Chairs and myself we reviewed and discussed this
latter category of papers to arrive at the final program.

DCOSS 2006 presentations were arranged into seven sessions, ranging from
Data Aggregation and Dissemination to Programming Support and Middleware
to Lifetime Maximization. Papers from the three tracks were intermixed within
the sessions. Other highlights of the conference included keynote talks by Leo
Guibas and Bill Kaiser, two workshops and a poster session.

I would like to add my thanks to Viktor’s to all the DCOSS organizers,
the authors, the external reviewers, and the Program Committee members. I
am especially indebted to the Program Vice Chairs Tarek Abdelzaher, James
Aspnes, and Ramesh Rao for their efforts in forming and running the three track
Program Committees. The 44 Program Committee members are at universities
and research labs from 12 different countries, further evidence that DCOSS is
truly an international conference. The quality of the program reflects positively
on the expertise and dedication of the Vice Chairs and Program Committee
members.

Finally, it was a pleasure working with Viktor Prasanna, General Chair, and
José Rolim, Steering Committee Chair, who both worked tirelessly to ensure the
success of DCOSS 2006.

June 2006 Phillip B. Gibbons

Organization

General Chair

Viktor K. Prasanna University of Southern California, USA

Vice General Chair

Jie Wu Florida Atlantic University, USA

Program Chair

Phillip B. Gibbons Intel Research, Pittsburgh, USA

Program Vice Chairs

Algorithms
James Aspnes Yale University, USA

Applications
Ramesh Rao University of California at San Diego and

Calit2, USA

Systems
Tarek Abdelzaher University of Illinois, Urbana Champaign, USA

Steering Committee Chair

Jose Rolim University of Geneva, Switzerland

Steering Committee

Sajal Das University of Texas at Arlington, USA
Josep Diaz UPC Barcelona, Spain
Deborah Estrin University of California, Los Angeles, USA
Phillip B. Gibbons Intel Research, Pittsburgh, USA
Sotiris Nikoletseas University of Patras and CTI, Greece
Christos Papadimitriou University of California, Berkeley, USA
Kris Pister University of California, Berkeley, and Dust,

Inc., USA
Viktor Prasanna University of Southern California, Los Angeles,

USA

VIII Organization

Poster Chair

Jim Reich Palo Alto Research Center, USA

Workshops Chair

Sotiris Nikoletseas University of Patras and CTI, Greece

Proceedings Chair

Yang Yu Motorola Labs, USA

Publicity Co-chairs

Wendi Heinzelman University of Rochester, USA
Amol Bakshi University of Southern California, USA

Finance Chair

Germaine Gusthiot University of Geneva, Switzerland

Student Scholarships Chair

Loren Schwiebert Wayne State University, USA

Sponsoring Organizations

IEEE Computer Society Technical Committee on Parallel Processing
(TCPP)

IEEE Computer Society Technical Committee on Distributed Processing
(TCDP)

Held in Cooperation with

ACM Special Interest Group on Computer Architecture (SIGARCH)
ACM Special Interest Group on Embedded Systems (SIGBED)
European Association for Theoretical Computer Science (EATCS)
IFIP WG 10.3

Organization IX

Program Committee

Costas Busch Rensselaer Polytechnic Institute, USA
Edgar Chavez University of Michoacana, Mexico
Bogdan Chlebus University of Colorado at Denver, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Alfredo Ferro University of Catania, Italy
Stefan Fischer University of Luebeck, Germany
Mohamed Gouda University of Texas at Austin, USA
Tian He University of Minnesota, USA
Wendi Heinzelman University of Rochester, USA
Jennifer Hou University of Illinois, Urbana Champaign, USA
Anura Jayasumana Colorado State University, USA
Dariusz Kowalski University of Liverpool, UK
Bhaskar Krishnamachari University of Southern California, USA
Phil Levis Stanford University, USA
Jie Liu Microsoft Research, USA
Julia Liu Palo Alto Research Center, USA
Chenyang Lu Washington University in St. Louis, USA
Haiyun Luo University of Illinois, Urbana Champaign, USA
Rajeev Motwani Stanford University, USA
C. Siva Ram Murthy IIT Madras, India
Radhika Nagpal Harvard University, USA
Suman Nath Microsoft Research, USA
Sotiris Nikoletseas University of Patras and CTI, Greece
Boaz Patt-Shamir Tel-Aviv University, Israel
Pino Persiano University of Salerno, Italy
John Regehr University of Utah, USA
Andrea Richa Arizona State University, USA
Kurt Rothermel University of Stuttgart, Germany
Andreas Savvides Yale University, USA
Christian Scheideler Technical University of Munich, Germany
Maria Jose Serna UPC Barcelona, Spain
Devavrat Shah Massachusetts Institute of Technology, USA
Vikram Srinivasan National University of Singapore, Singapore
Mani Srivastava University of California, Los Angeles, USA
Jack Stankovic University of Virginia, USA
Ivan Stojmenovic University of Ottawa, Canda
Gaurav Sukhatme University of Southern California, USA
Violet R. Syrotiuk Arizona State University, USA
Nalini Venkatasubramanian University of California, Irvine
Chieh-Yih Wan Intel Research, USA
Stephen Wicker Cornell University, USA
Peter Widmayer ETH Zurich, Switzerland
Yinyu Ye Stanford University, USA
Ying Zhang Palo Alto Research Center, USA

X Organization

Referees

Rida Bazzi
Karthik Dantu
Hen Fitoussi
Yinnon Haviv
Ronen Kat
Philip Kuryloski
Michael Margaliot
Pedro Marron
Darryl Morrel
Melih Onus
Sameer Pai

Rami Puzis
Hui Qu
Marina Sadetsky
Elad Schiller
Allon Shafrir
Christina Tavoularis
Hector Tejeda
Nir Tzachar
Donglin Xia
Reuven Yagel
Xin Zhang

Limor Lahiani
Olga Brukman
Bodhi Priyantha
Ioannis Chatzigiannakis
Tassos Dimitriou
Athanassios Kinalis
Dennis Pfisterer
Young-ri Choi
Maria Blesa

Table of Contents

Evaluating Local Contributions to Global Performance in Wireless
Sensor and Actuator Networks

Christopher J. Rozell, Don H. Johnson . 1

Roadmap Query for Sensor Network Assisted Navigation in Dynamic
Environments

Sangeeta Bhattacharya, Nuzhet Atay,
Gazihan Alankus, Chenyang Lu, O. Burchan Bayazit,
Gruia-Catalin Roman . 17

Stabilizing Consensus in Mobile Networks
Dana Angluin, Michael J. Fischer,
Hong Jiang . 37

When Birds Die: Making Population Protocols Fault-Tolerant
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui,
Eric Ruppert . 51

Stochastically Consistent Caching and Dynamic Duty Cycling for
Erratic Sensor Sources

Shanzhong Zhu, Wei Wang,
Chinya V. Ravishankar . 67

Distributed Model-Free Stochastic Optimization in Wireless Sensor
Networks

Daniel Yagan, Chen-Khong Tham . 85

Agimone: Middleware Support for Seamless Integration of Sensor
and IP Networks

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman,
Chenyang Lu . 101

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks
Limin Wang, Sandeep S. Kulkarni . 119

The Virtual Pheromone Communication Primitive
Leo Szumel, John D. Owens . 135

Logical Neighborhoods: A Programming Abstraction for Wireless
Sensor Networks

Luca Mottola, Gian Pietro Picco . 150

XII Table of Contents

Y-Threads: Supporting Concurrency in Wireless Sensor Networks
Christopher Nitta, Raju Pandey,
Yann Ramin . 169

Comparative Analysis of Push-Pull Query Strategies for Wireless
Sensor Networks

Shyam Kapadia, Bhaskar Krishnamachari . 185

Using Data Aggregation to Prevent Traffic Analysis in Wireless Sensor
Networks

William Conner, Tarek Abdelzaher,
Klara Nahrstedt . 202

Efficient and Robust Data Dissemination Using Limited Extra Network
Knowledge

Ioannis Chatzigiannakis, Athanasios Kinalis,
Sotiris Nikoletseas . 218

Distance-Sensitive Information Brokerage in Sensor Networks
Stefan Funke, Leonidas J. Guibas, An Nguyen,
Yusu Wang . 234

Efficient In-Network Processing Through Local Ad-Hoc Information
Coalescence

Onur Savas, Murat Alanyali,
Venkatesh Saligrama . 252

Distributed Optimal Estimation from Relative Measurements for
Localization and Time Synchronization

Prabir Barooah, Neimar Machado da Silva,
João P. Hespanha . 266

GIST: Group-Independent Spanning Tree for Data Aggregation in
Dense Sensor Networks

Lujun Jia, Guevara Noubir, Rajmohan Rajaraman,
Ravi Sundaram . 282

Distributed User Access Control in Sensor Networks
Haodong Wang, Qun Li . 305

Locating Compromised Sensor Nodes Through Incremental Hashing
Authentication

Youtao Zhang, Jun Yang, Lingling Jin,
Weijia Li . 321

Table of Contents XIII

COTA: A Robust Multi-hop Localization Scheme in Wireless Sensor
Networks

Yawen Wei, Zhen Yu, Yong Guan . 338

Contour Approximation in Sensor Networks
Chiranjeeb Buragohain, Sorabh Gandhi, John Hershberger,
Subhash Suri . 356

A Distortion-Aware Scheduling Approach for Wireless Sensor Networks
Periklis Liaskovitis, Curt Schurgers . 372

Optimal Placement and Selection of Camera Network Nodes for Target
Localization

Ali O. Ercan, Danny B. Yang, Abbas El Gamal,
Leonidas J. Guibas . 389

An Optimal Data Propagation Algorithm for Maximizing the Lifespan
of Sensor Networks

Aubin Jarry, Pierre Leone, Olivier Powell,
José Rolim . 405

Lifetime Maximization of Sensor Networks Under Connectivity and
k-Coverage Constraints

Wei Mo, Daji Qiao, Zhengdao Wang . 422

Network Power Scheduling for TinyOS Applications
Barbara Hohlt, Eric Brewer . 443

Approximation Algorithms for Power-Aware Scheduling of Wireless
Sensor Networks with Rate and Duty-Cycle Constraints

Rajgopal Kannan, Shuangqing Wei . 463

MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in
Sensor Networks

Jun Luo, Jacques Panchard, Micha�l Piórkowski,
Matthias Grossglauser, Jean-Pierre Hubaux . 480

SenCar: An Energy Efficient Data Gathering Mechanism for Large
Scale Multihop Sensor Networks

Ming Ma, Yuanyuan Yang . 498

A Distributed Linear Least Squares Method for Precise Localization
with Low Complexity in Wireless Sensor Networks

Frank Reichenbach, Alexander Born, Dirk Timmermann,
Ralf Bill . 514

XIV Table of Contents

Consistency-Based On-line Localization in Sensor Networks
Jessica Feng, Lewis Girod, Miodrag Potkonjak . 529

The Robustness of Localization Algorithms to Signal Strength Attacks:
A Comparative Study

Yingying Chen, Konstantinos Kleisouris, Xiaoyan Li, Wade Trappe,
Richard P. Martin . 546

Author Index . 565

Evaluating Local Contributions to Global
Performance in Wireless Sensor and Actuator

Networks

Christopher J. Rozell and Don H. Johnson�

Department of Electrical and Computer Engineering
Rice University, Houston, TX 77025-1892

{crozell, dhj}@rice.edu

Abstract. Wireless sensor networks are often studied with the goal of
removing information from the network as efficiently as possible. How-
ever, when the application also includes an actuator network, it is advan-
tageous to determine actions in-network. In such settings, optimizing the
sensor node behavior with respect to sensor information fidelity does not
necessarily translate into optimum behavior in terms of action fidelity.
Inspired by neural systems, we present a model of a sensor and actua-
tor network based on the vector space tools of frame theory that applies
to applications analogous to reflex behaviors in biological systems. Our
analysis yields bounds on both absolute and average actuation error that
point directly to strategies for limiting sensor communication based not
only on local measurements but also on a measure of how important each
sensor-actuator link is to the fidelity of the total actuation output.

1 Introduction

Recent interest in wireless sensor networks has fueled a tremendous increase in
the study of signal and information processing in distributed settings. Energy
conservation is very important for most interesting applications, which generally
translates into minimizing the communication among sensors to preserve both
individual node power and total network throughput. Consequently, recent sen-
sor network research has primarily focused on adapting well-known signal pro-
cessing algorithms to distributed settings where individual nodes perform local
computations to minimize the information passed to distant nodes (e.g., [1,2,3]).

The goal of many proposed sensor network algorithms has been to get the
information out of the network (via a special node connected directly to a more
traditional data network) with a good trade-off between fidelity and energy ex-
pended. However, in many applications the implicit assumption is that the infor-
mation coming out of the network will be used to monitor the environment and
take action when necessary. A significant and natural extension to the sensor
network paradigm is a wireless sensor and actuator network (WSAN). A WSAN
consists of a network of sensor nodes that can measure stimuli in the environment
� This work was supported by the Texas Instruments Leadership University Program.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 C.J. Rozell and D.H. Johnson

and a network of actuator nodes capable of affecting the environment. While one
possible strategy summarizes information for a system outside the network to
determine actuator behaviors, greater efficiency should be achieved by determin-
ing actions through in-network processing. A more subtle issue is that processing
and communication strategies optimizing sensor data fidelity may not yield the
best results when actuation performance fidelity is the desired metric.

While WSANs are often discussed, quantitative analysis of their performance
has not received much attention. Existing work can be found in areas such as
software development models for WSANs [4] and heuristic algorithms for re-
source competition based on market models [5]. Other recent work [6] has used
techniques from causal inference to evaluate specific actuation strategies. Most
relevant is the recent work of Lemmon et al. [7] analyzing distributed control
systems while considering the underlying communication network. A control sys-
tem approach is certainly appropriate for some WSAN application models, but
may use more communication resources (especially from actuators to sensors)
and may require the sensors and actuators to operate in the same signal space.

Merging sensed information directly into actions without centralizing the in-
formation and decision making has rarely been considered in man-made systems.
Fortunately, we have examples from biology that demonstrate the effectiveness
of this strategy. Neural systems perform a chain of tasks very similar to the
needs of WSANs: sensing, analysis, and response. Furthermore, evidence indi-
cates that neural systems represent and process information in a distributed way
(using groups of neurons) rather than centralizing the information and decision
making in one single location. This shrewd strategy avoids creating a single point
of vulnerability, so the system can function in the presence of isolated failures.

In neural systems, two types of behaviors exist, depending on whether there is
“thinking” involved, which we call conscious and reflex behaviors. In conscious
behavior, biological systems gather sensory information, make inferences from
that information about the structure of their environment, and generate actions
based on that inferred structure. In reflex behavior, a sensed stimulus directly
generates an involuntary and stereotyped action in the peripheral nervous system
before the brain is even aware of the stimulus [8]. An obvious example of a reflex
behavior is the knee-jerk reaction achieved by a doctor’s well-placed tap below
the kneecap. A more subtle example is the eye position correction that allows
our vision to stay focused on an object even when our head is moving.

WSAN applications have an analogous division, which we call object-based and
measurement-based network tasks. For example, the canonical target tracking
scenario is an object-based task because it involves using sensory measurements
to infer information about objects in the environment. On the other hand, an
application such as agricultural irrigation is a measurement-based task because
sensor measurements directly contain all the necessary information — there is
no underlying environmental object to try and infer. In this work we consider
models of measurement-based WSAN applications. While measurement-based
systems are simpler and possibly more limited than object-based systems, they
provide an entry point for analyzing and designing WSAN algorithms.

Evaluating Local Contributions to Global Performance 3

WSANs are complex systems with many interacting layers of operation. There
are significant communication and networking challenges in these systems that
are the focus of current research efforts. While the biological reflex systems de-
scribed earlier do not appear to adaptively change their communication strategy
on short time scales, the nature of wireless networking may necessitate dynamic
decisions to employ different communication strategies based on current net-
work conditions. Networking strategies to limit communication in the system
must weigh the cost of executing individual communication links against the
detrimental effect of performing suboptimal information processing. The role of
our present research is to analyze a distributed WSAN model for a broad class of
applications. We want to determine the optimal information processing strategy
and to quantify the effects of suboptimal strategies resulting from eliminating
communication links. As a simple starting place for our analysis, we will use
vector space methods to model sensors and actuators, leveraging the notion of
frame theory to analyze systems of nodes with overlapping influence.

2 Sensors and Actuators

As an example reflex behavior that will shape our thinking about WSANs, we
consider the crayfish visual system. The crayfish has a dorsal light reflex [9]
where light movement in the visual field elicits predictable reflex movement in
the eyestalk that attempts to keep a constant orientation of the visual field. The
main visual representation (in neurons called “sustaining fibers”) is comprised
of sensory elements that sum light activity in overlapping spatial regions. All of
the information available to the creature about the light stimulus is contained
in this collection of sustaining fiber responses.

The crayfish eyestalk movement is controlled by a set of motorneurons, which
send signals to several small muscles. Each muscle generates movement in one
specific direction. As with the sensory units, the muscle movement directions
also overlap in the movement space (i.e., muscle movements are not “orthogo-
nal”). Most importantly, the activity in each motorneuron is determined directly
from a processed combination of some sustaining fiber inputs. Though all of
the motorneurons have to be coordinated to produce the desired total action,
their distributed individual responses are generated directly from the distributed
sustaining fiber representation and without a centralized decision-making struc-
ture. Previous research has shown that even in this critical behavior, the con-
tributions of each sensory unit to the total action are simple and essentially
linear [10].

Our WSAN model will follow the principles seen in this example from the
crayfish. Though the constraints facing biological systems are different from
the constraints imposed by wireless networking, neural systems must also be
very resource efficient and try to minimize communication (each neural signal
generated means expending more metabolic energy). Biological systems must
have solutions that do a good job (some would even argue optimal) at trading-
off performance and efficiency, and we use them as a rough guide.

4 C.J. Rozell and D.H. Johnson

In our model, a collection of sensors measuring overlapping spatial regions
gather information about a stimulus field. A collection of actuators have indi-
vidual environmental effects that overlap and must be coordinated. Each ac-
tuator determines its individual contribution to a behavioral goal through a
combination of the sensor measurements. We start with the simplest scenario
where only this direct sensor-to-actuator communication is allowed. By elim-
inating inter-sensor and inter-actuator communication, we also eliminate the
communication overhead necessary for such a scenario. It may be possible to
improve system performance by allowing additional communication and coop-
eration, depending on the specific networking model and communication costs
involved.

A major goal in any information processing strategy for WSANs is retaining
good performance in the total actuation while reducing the communication bur-
den from the sensors to the actuators. To analyze the performance of a WSAN
under different design decisions, we use mathematical models based in the fa-
miliar tools and terminology of vector spaces.

2.1 Vector Space Models of Sensors and Actuators

Sensor network models often begin with a collection of sensors distributed over a
2-D spatial field limited to the spatial domain W (e.g., W = [0, 1]2). Sensors are
indexed by k ∈ K, and are located either irregularly or on a regular grid. The
spatial region being sensed contains a stimulus field, denoted by x(w), where
w ∈ W is a vector indicating location in the field.

Sensor measurement models often consist of averaging the stimulus field over
non-overlapping spatial regions surrounding each sensor [11]. We generalize that
notion by representing each sensor by a receptive field sk(w) over W that per-
forms a weighted average over a spatial region. The sensor receptive fields are
defined by the physics of the devices and could indicate sensors that are direc-
tional or have varying sensitivity over a region. Sensor measurements of the field
are therefore given by

mk =
∫

W

x(w)sk(w)dw. (1)

We will not assume any particular arrangement or shape of the sensor fields; in
general we expect sensors to be irregularly spaced and have highly overlapping
receptive fields. The measurement form given in equation (1) includes the special
case of sensors averaging the field over disjoint local regions.

Recasting equation (1), the sensor measurements can be written as an inner
product over the field W , mk = 〈x, sk〉. This vector space view of the sensor
measurements indicates that with no further processing the measurements can
represent any stimulus signal in the space Hx = span ({sk}). The space Hx

represents a restricted class of fields that is consistent with the resolution of
the sensors. For example, Hx may be a space of spatially bandlimited functions
over W . The actual stimulus field in the environment may not be in Hx, but
the sensors have a limited resolution (depending on design and placement of
the sensors) that precludes them from sensing an unrestricted class of signals.

Evaluating Local Contributions to Global Performance 5

Therefore, we assume that x ∈ Hx, though in reality x only represents the
component of the true environmental field within the sensing resolution of the
network.

Just as individual sensors have local but overlapping regions of sensitivity,
actuator networks are composed of individual actuators that each affect the en-
vironment through (possibly overlapping) local regions of influence. Actuators
are indexed by l ∈ L, and again are located either irregularly or on a regular grid.
Whereas each sensor is represented by a receptive field, each actuator is repre-
sented by a influence field over W , denoted by a function al(w). An actuator’s
influence field depends on the physics of the specific problem, and again may
indicate actuators that are directional or have varying influence over a region.

Each actuator responds with an intensity that indicates how strongly it acts
on the environment. We will model an actuator’s intensity dl as weighting its
influence function. The resulting total actuation field over W is y =

∑
l∈L dlal,

where, for simplicity (and to emphasize the vector space view), we drop the ex-
plicit notation of spatial location w ∈ W from the actuator influence function
al(w) and the total actuation field y(w). The collection of actuators can there-
fore cause any actuation field y in the space Hy = span ({al}). The space Hy

represents a restricted class of fields that is consistent with the resolution and
placement of the actuators (e.g., a class of spatially bandlimited signals, etc.).

It is critical to note here that the collection of sensors {sk} and actuators {al}
do not share many characteristics; they can have different numbers of elements
at different locations over W . Most importantly, individual sensor and actuator
functions can have different shapes and even involve different modalities (e.g.,
temperature sensors and water delivery actuators). Consequently, Hx and Hy

can be very different functions spaces, and using general vector space definitions
allows us to connect sensed inputs to actuation outputs.

In order to design effective communication strategies between sensors and ac-
tuators, we need methods to analyze the relationship between individual node
activity (mk and dl) and the resulting impact on signals in Hx and Hy. The
analysis is complicated because of the overlap between both individual sensor
receptive fields and actuator influence fields; in short, the representational el-
ements are not orthogonal. We appeal to the tools of frame theory to analyze
systems of linearly dependent sensor and actuator functions.

2.2 Frame Theory

In section 2.1 we described the sensor measurement process as a projection of a
stimulus field onto a collection of sensor representation functions. Similarly, we
described actuators generating an effect as a weighted sum of individual actuator
representation functions. In both the collections of sensors and actuators, the ba-
sic functions form a representation for a signal space (Hx and Hy, respectively).
The notion of representing a signal in terms of a collection of orthonormal basis
(ONB) vectors is one of the most fundamental ideas in signal processing. Though
the situation here is more complicated than an ONB, the collections of sensors
and actuators are vectors that form a similar representation for their associated

6 C.J. Rozell and D.H. Johnson

signal spaces. In this section, we will consider a general collection of vectors {φj}
indexed over J . Fundamental results about this generic collection of vectors will
be applied to the sensor and actuator representations in section 3.

An orthonormal basis has the property that any energy represented by the pro-
jection onto one vector will not be present in the projections onto any other vec-
tors. As a consequence, reconstructing the signal from the projections is trivial;
the projection coefficients simply weight the same vectors in the reconstruction.
However, in general, collections of sensor receptive fields and actuator influence
fields will not be orthogonal. In fact, in the most general case, these collections
of functions may be linearly dependent and no longer form a basis.

A collection of M vectors {φj} forms a frame [12] for H if there exist constants
0 < A ≤ B < ∞ so that Parseval’s relation is bounded for any x ∈ H,

A ||x||2 ≤
∑
j∈J

|〈φj , x〉|2 ≤ B ||x||2 .

In general, there will be more vectors than are necessary to represent H (M > N ,
where N = dim (H)), meaning that the frame is redundant. When the frame
vectors are normalized ||φj ||2 = 1 (which we assume here), the frame bounds
measure the minimum and maximum redundancy of the system and satisfy
A ≤ M

N ≤ B. Frames were originally introduced in 1952 in the context of nonhar-
monic Fourier series [13] and later played a key role in wavelet theory [14]. They
have recently been used in many other areas, including filterbanks [15], image
processing [16], communications [17], coding [18] and machine learning [19].

The frame condition given above guarantees that the analysis coefficients ob-
tained from projecting a signal onto the frame vectors contains all of the informa-
tion necessary to synthesize (or reconstruct) the signal. Mathematically, the anal-
ysis coefficients are generated through the frame analysis operator Φ : H → l2,
which is given by (Φx)j = cj = 〈φj , x〉. In vector notation, the collection of
all analysis coefficients is given by c = Φx. For finite dimensional frames (as in
practical systems), the operator Φ is a matrix multiplication.

The adjoint of the frame analysis operator is the frame synthesis operator,
Φ′ : l2 → H , given by Φ′c =

∑
j∈J cjφj . Because of the dependency present

between frame vectors, the same set of vectors cannot generally be used for both
analysis and synthesis. Even though Φ′ and Φ are inverse operations in an ONB,
in general Φ will not have a unique inverse. Therefore, the usual reconstruction
will not work, x �= Φ′Φx =

∑
j∈J 〈x, φj〉φj . Instead, the pseudoinverse operator

Φ∗ = (Φ′Φ)−1
Φ′ is used for reconstruction, x = Φ∗Φx = (Φ′Φ)−1 ∑

j∈J 〈x, φj〉φj .
Equivalently, we can view the reconstruction as using a different set of vectors
{φ̃j} called the dual set, x =

∑
j∈J 〈x, φj〉φ̃j . While there are an infinite num-

ber of sets of dual vectors that will work, the canonical dual set is given by
φ̃j = (Φ′Φ)−1

φj . These dual vectors are also a frame for H, with lower and
upper frame bounds

(1
B , 1

A

)
, respectively. Importantly, the frame and dual set

are interchangeable in the reconstruction equation,

x =
∑
j∈J

〈φj , x〉φ̃j =
∑
j∈J

〈φ̃j , x〉φj .

Evaluating Local Contributions to Global Performance 7

The frame bounds are related directly to the eigenstructure induced by the
frame vectors: A = λmin and B = ||Φ′Φ|| = λmax, where {λi} are the eigen-
values of (Φ′Φ). When a collection of vectors has frame bounds that are equal,
A = B = M

N , it is called a tight frame. When a frame is tight, the dual vectors are
simply rescaled versions of the frame vectors, φ̃j = 1

Aφj . A collection of vectors
is an orthonormal basis if and only if it is a tight frame with A = B = 1.

In an ONB, perturbing a measurement coefficient (including removing it en-
tirely) has a proportional impact on the reconstruction — the energy in the
reconstruction error is the same as the energy in the perturbation. The redun-
dancy present in a frame can provide a measure of robustness to perturba-
tions that is not present in orthonormal systems, but it also makes the effect
of such perturbations harder to analyze. When we apply frame theoretic mod-
els to the analysis of sensor and actuator networks, we want to know the im-
pact of reducing communication costs by using approximate coefficients in the
reconstruction.

Stated generally, we need to calculate a bound on the maximum error when
a perturbation pj is added to each frame coefficient cj in the reconstruction,
x̂ =

∑
j∈J (cj + pj) φ̃j . Perturbations may include removing the coefficient from

the reconstruction, pj = − (cj). The error resulting from these perturbations is

||x − x̂||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈J

pj φ̃j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (2)

We recall that the dual set {φ̃j} is also a frame forHx, and we denote the analysis
operator for the dual frame to be Φ̃. Note that the error signal recast in matrix
notation is (x − x̂) = Φ̃′p, where p is the perturbation vector p =

[
p1p2 . . . p|J|

]′
.

Linear algebra can yield a bound on the error,∣∣∣∣∣∣Φ̃′p
∣∣∣∣∣∣2 =

∣∣∣〈p, Φ̃Φ̃′p〉
∣∣∣ ≤ ∣∣∣∣∣∣Φ̃Φ̃′

∣∣∣∣∣∣ · ||p||2 .

Note that because the singular values of Φ̃ are the square roots of the eigenvalues
of both

(
Φ̃Φ̃′

)
and

(
Φ̃′Φ̃

)
, it follows that

∣∣∣∣∣∣Φ̃Φ̃′
∣∣∣∣∣∣ =

∣∣∣∣∣∣Φ̃′Φ̃
∣∣∣∣∣∣. Because the dual set

is a frame for H with upper frame bound
(1

A

)
and because of the relationship

between the eigenvalues of
(
Φ̃′Φ̃

)
and the frame bounds, we can finally write a

useful bound (alluded to in [20]) on the reconstruction error

||x − x̂||2 ≤ ||p||2
A

. (3)

In words, the perturbation energy is reduced in the reconstruction by at least
the minimum redundancy in the set of frame analysis vectors {φj}. The upper
bound in equation (3) is consistent with probabilistic robustness results when
stochastic noise is added to frame coefficients [18].

8 C.J. Rozell and D.H. Johnson

3 Connecting Sensors to Actuators

Following our example of reflex behavior, actuators must generate activity using
received sensors measurements without communicating with other actuators.
The overlapping actuator influence fields prevent a purely greedy approach where
each actuator generates the locally optimal activity. Nearby actuators could be
nearly identical and wildly overcompensate their actions in a greedy approach.
Sensors must coordinate behavior (without communication) to account for the
the action field components covered by the other sensors.

3.1 Generating Optimal Actuation

To formalize this notion of coordination, we draw on our discussion of frame
theoretic models for sensors and actuators in section 2.2. We assume that the
collection of sensors represented by {sk} form a frame for Hx with frame bounds
(As, Bs) and with dual functions given by {s̃k}. Similarly, we assume that the
collection of actuators represented by {al} form a frame for Hy with frame
bounds (Aa, Ba) and with dual functions given by {ãl}. Note that the dual
sets {s̃k} and {ãl} aren’t realized directly in physical systems. For example, the
sensor receptive field dual functions {s̃k} may have spatial characteristics that
would be impossible to build into any type of real-world sensor.

To generate coordinated behavior in the actuator network, we must neces-
sarily start with the ideal solution for generating actions. Each WSAN has
an application specific goal that defines its existence. For example, a system
might use sensed rainfall to order the diversion of floodwater or the deliv-
ery of irrigation to meet specified conditions. Though the actions necessary
to achieve the goal depend on the specific observed stimulus, the goal itself
is stimulus independent. To quantify this application goal, we assume that for
any measured stimulus field x there is a mapping T : Hx → Hy that defines
the ideal action field response, y = Tx. The mapping T would be determined
as a design specification for the WSAN in advance. While it may be possi-
ble to reconfigure a WSAN to perform a different application (with a differ-
ent goal) on long time scales, we assume that the goal (as quantified by T)
stays fixed.

An ideal actuator network would have each node determine action coefficients
{dl} to generate the optimal response Tx =

∑
l∈L dlal. Drawing on the frame

theory results from section 2.2, the coefficients weighting the action influence
field vectors are given by the inner products between the action dual vectors and
the action signal that we are trying to generate,

dl = 〈ãl, Tx〉. (4)

To determine the optimal action coefficients, consider first the reconstruction
equation for the stimulus field based on the sensor measurements,

x =
∑
k∈K

mks̃k. (5)

Evaluating Local Contributions to Global Performance 9

Substituting equation (5) into equation (4), the optimal action coefficients are

dl = 〈ãl, T
∑
k∈K

mks̃k〉 =
∑
k∈K

mk〈ãl, T s̃k〉. (6)

The conversion from sensor measurements m =
[
m1, m2, . . . , m|K|

]′
to actuator

intensity coefficients d =
[
d1, d2, . . . , d|L|

]′
in matrix form is d = V m, where

V =

⎡⎢⎢⎢⎢⎣
ã

′
1T s̃1 ã

′
1T s̃2 · · · ã

′
1T s̃|K|

ã
′
2T s̃1

. . .
...

...
ã

′
|L|T s̃1 · · · ã

′
|L|T s̃|K|

⎤⎥⎥⎥⎥⎦ .

The expression in equation (6) (or equivalently the entries of V) illuminate
the form of the actuator intensity coefficients necessary to generate the optimal
total action Tx. Unfortunately, each coefficient dl is a sum including sensor mea-
surements sk over all k ∈ K; each individual actuator would require knowledge
of every sensor measurement in order to generate an optimal actuation intensity.

A scenario where every sensor in the network communicates its measurement
to every actuator would present an unreasonable communication burden on the
network — approximately |K| · |L| communication links would be necessary.
While a portion of this burden could be reduced through broadcast communi-
cation, some sensor-to-actuator links may involve several communications in a
multi-hop routing scheme. Any realistic networking scheme will have to elimi-
nate some of these communication links based on their communication cost and
their contribution to the total actuation performance. Intuitively, some sensor
measurements will be more important than others in determining an actuators
behavior. For example, a moisture sensor spatially located a long distance away
from the influence field of a specific irrigation actuator will likely have very little
relevance on that actuator’s optimal behavior coefficient. Using the frame the-
ory results presented in section 2.2 along with the vector space model of sensor
and actuator networks, we have tools for analyzing the effects of eliminating
communication links on the total actuation performance.

3.2 Limiting Communication Costs

Each entry of the matrix V indicates a communication link from a sensor to an
actuator. Before blindly reducing communications, a networking scheme must
know the importance of each possible communication. In a sensor network, per-
formance is often judged by assessing the fidelity of the information removed from
the network at representing the original sensor measurements (or the underlying
stimulus field). However, the only performance metric of any consequence in a
WSAN is the fidelity of the resulting total action.

To quantify the importance of individual communications, we must deter-
mine how the total actuation performance is affected when a communication

10 C.J. Rozell and D.H. Johnson

is not executed. We quantify this notion of importance through the results de-
scribed in equation (3). Consider the case where for actuator l, a subset of
sensor nodes El ⊂ K do not transmit their measurement coefficient to this
actuator. Instead of optimal actuator intensity coefficients (see equation (6)),
actuators form approximate intensity coefficients using the received sensor
measurements

d̂l =
∑

k∈(K\El)

mk〈ãl, T s̃k〉. (7)

The approximate actuator intensities generate a total action field approximating
the desired optimal action Tx,

ŷ =
∑
l∈L

d̂lal.

Generating a total action field with the approximate coefficients {d̂l} is equiv-
alent to performing a frame reconstruction with perturbed coefficients, as de-
scribed in section 2.2. Subtly, the actuator frame vectors are performing synthe-
sis, meaning that dual vectors (with lower frame bound 1

Ba
) are now the analysis

set. Therefore, equation (3) relates the fidelity of the approximate actuator in-
tensity coefficients to the fidelity of the resulting total action field,

||Tx − ŷ||2 ≤ Ba

∑
l∈L

|dl − d̂l|2.

Using equations (7) and (6), we can write the total action field error in terms of
individual sensor coefficients not communicated to actuator nodes

||Tx − ŷ||2 ≤ Ba

∑
l∈L

∣∣∣∣∣∑
k∈El

mk〈ãl, T s̃k〉
∣∣∣∣∣
2

(8)

≤ Ba

∑
l∈L

∑
k∈El

|mk〈ãl, T s̃k〉|2 . (9)

As we see in equation (9), the networking strategy for sensor node k can use the
value of |mk〈ãl, T s̃k〉|2 to quantify the maximum contribution it would make to
the total action error by not communicating its measurement to actuator l. The
bound in equation (9) can be used to set a threshold γ guaranteeing an absolute
upper limit on the actuation error.

Importantly, the form of the error bound in equation (9) isolates each com-
munication link as an independent term so that no communication overhead is
required to determine the absolute worst actuation error that can be incurred
by eliminating a communication link1. In applications where a WSAN must re-
spond quickly to critical but rare events (e.g., a fire suppression system), an

1 We are assuming that the setup phase of the WSAN has given nodes information
about the relative locations of their neighboring nodes that can be used to calculate
the necessary inner product.

Evaluating Local Contributions to Global Performance 11

absolute bound on the actuation error computed locally is probably appropri-
ate. To ensure that the actuation error is within an absolute tolerance, the active
communication links between sensors and actuators will necessarily change de-
pending on the input signal. While this dynamic decision making doesn’t impose
a large computational burden on the sensor nodes, the underlying communica-
tions network must be able to handle large fluctuations in demand for resources.

Because the sensor and actuator fields overlap and form a frame (instead of
an orthonormal basis), the contributions from two different sensor measurements
to an actuator coefficient could, in effect, “cancel” each other. Because the er-
ror bound provided in equation (9) is expressly written in terms of local sensor
node measurements, this bound favors a conservative interpretation rather than
accounting for these interactions. Given a specific communication and network-
ing scenario, it may or may not be advantageous to allow sensors to explicitly
communicate to calculate a tighter error estimate (based on the original error ex-
pression in equation 2) and coordinate their communication accordingly. While
the frame theoretic analysis paradigm introduced here would allow such an anal-
ysis, it would necessarily be specific to the application details (particularly the
communication and networking scenario).

In many settings, designing around an absolute error constraint results in a
system that is too conservative in its average behavior. To analyze the aver-
age actuation error one must assume a stochastic model for the measurements,
such as assuming that the sensor measurements have zero mean (E [m] = 0) and
covariance matrix Γm. The covariance matrix Γm will be determined by a com-
bination of the the sensor receptive field properties and the distribution assumed
on x within the signal space Hx. Only the first two moments of the distribution
on m are relevant, so we need not assume Gaussian distributions.

Average WSAN performance is much easier to calculate if we recast equa-
tion (8) using matrix notation. We first need to write approximate actuator
coefficients in equation (7) in terms of a perturbation of V , which captures the
ideal transformation from sensor measurements to actuator coefficients. Let the
approximate actuator coefficient be given by d̂ =

(
V + Ṽ

)
m, where the matrix

Ṽ is defined to remove inactive communication links:

(
Ṽ
)

k,l
=

{
−
(
ã

′
1T s̃1

)
if k ∈ El

0 if k ∈ (K \ El).

Incorporating this definition into equation (8) and taking the expectation of both
sides lets us bound the average error

E
[
||Tx − ŷ||2

]
≤ BaTr

[
Ṽ ΓmṼ

′]
, (10)

where Tr [·] is the trace operator.
A system designer could use equation (10) to characterize (on average) how

important a communication link between a specific sensor and actuator pair is
to generating the total actuation field. Using this information, a WSAN design

12 C.J. Rozell and D.H. Johnson

could choose a priori which communication links between sensors and actuators
will be active in the network. Such a scheme has the disadvantage that it may
not react well to events that are large deviations from the usual behavior. The
advantages to this type of non-adaptive communication scheme in a WSAN are
that the communication resources are used more efficiently most of the time, the
network can count on a limited communication burden for any stimulus field, and
the real cost of executing individual communication links (through a possibly
multi-hop network) can be easily integrated into generating an optimal strategy.
Also, it is worth noting that the bound in equation (10) is tighter than the bound
in equation (9) (because it is based directly on equation (8)), reflecting the fact
that all of the communication links can be considered jointly when designing the
system for average error performance.

4 An Example WSAN System

As an illustrative example, consider a WSAN operating a fire suppression sys-
tem in an office building with four research labs. Each lab contains expensive
equipment, so there is a strong desire to localize the fire suppression to minimize
water damage to adjacent labs. The building space is covered with a network of 21
temperature sensors (modeled with radially symmetric, exponentially-decaying
receptive fields) and 13 actuators (modeled with an oriented and exponentially
decaying influence field), all illustrated in Fig. 1. This WSAN has 273 possible
communication links from the sensor nodes to actuator nodes. In this example
we assume an equal communication cost for each link (i.e., we would like to use
as few links as possible regardless of which links are in use).

We specified a function T mapping the temperature inputs to an imaginary
desired fire suppression output. To illustrate that this mapping may be spatially
varying, we note that fire activity in all labs will induce fire suppression activity
along a path to the main exit. We used two sample temperature fields indicating
a fire in different labs areas (shown in Fig. 2, along with optimal responses). As
discussed in section 3, the quantity |mk〈ãl, T s̃k〉| determines the importance of
each communication link (sorted and plotted in Fig. 3 for these test signals). In
these signals, a threshold of γ = .2 allows approximately 15 of the 273 possible

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Fig. 1. Contour plot of example sensor (Far left) and actuator (Middle left) nodes.
Layout and shape of the sensor (Middle right) and actuator (Far right) nodes.

Evaluating Local Contributions to Global Performance 13

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Fig. 2. Contour plots of sample temperature fields for test signal 1 indicating a fire in
lab 3 (Far left) and test signal 2 indicating a fire in lab 2 (Middle left). Contour plots
of optimal actuation responses to the two test scenarios (Middle right and far right,
respectively). Different spatial response characteristics keep the main exits clear.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Communication link index

|m
k (

a l T
 s

k)|

Test signal 1
Test signal 2

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Active links: signal 1, γ=0.2

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Active links: signal 1, γ=0.05

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Active links: signal 2, γ=0.2

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Active links: signal 2, γ=0.05

Fig. 3. Left: The importance measurements of each communication link (|mk〈ãl, T s̃k〉|)
are sorted and plotted for the two test signals. Right: Connection diagrams for the two
test signals under the two thresholds in the example system. Sensor nodes are marked
with a blue (+) and actuator nodes are marked with a red (*). Active connections from
a sensor to an actuator are denoted by a blue line.

communication links to be active, and γ = .05 allows approximately 40 active
communication links. The resulting active communication links are shown in
Fig. 3. Close examination of the connection diagrams shows that some com-
munication choices are non-obvious; the most important sensor to a particular
actuator is not always the one with heavily overlapping influence functions.

The actuation response is generated for both test signals using threshold val-
ues of γ = .2 and γ = .05, and the resulting total actuation fields are plotted in
Fig. 4. The reduced communication scheme based on the thresholds resulted in
the number of active communication channels and associated percentage errors
given in Table 1. The principles discussed in section 3 allow the WSAN to gen-
erate excellent approximations to the optimal actuation field by using local rules
to activate only a fraction of the communication links. Interestingly, if we acti-

14 C.J. Rozell and D.H. Johnson

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Approximate response to signal 1: γ=0.2

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Approximate response to signal 1: γ=0.05

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Approximate response to signal 2: γ=0.2

Lab 1 Lab 2

Lab 3 Lab 4

Exit

Approximate response to signal 2: γ=0.05

Fig. 4. Contour plots of actuation responses when using only a subset of possible
communication links (determined by thresholding each link’s importance to the total
actuation). Approximate responses to test signal 1 are shown when using 14 and 40
communication links (Far left and middle left). Approximate responses to test signal 2
are shown when using 17 and 45 communication links (Middle right and far right).

Table 1. Results from the example WSAN fire suppression system

γ = .2 γ = .05 γ = .2 γ = .05

Active links 14 40 Active links 17 45

Relative error 2.22% 0.04% Relative error 2.46% 0.15%

Test signal 1 Test signal 2

vate the same number of links using the more intuitive measure |mk〈al, T sk〉|,
the resulting actuation error increases by roughly an order of magnitude.

5 Conclusions and Future Work

WSANs are often discussed as a logical extension to sensor networks, but there
is little research investigating sensor and actuator systems working in concert
together. While algorithms that reduce communications and ensure data fidelity
for sensor measurements are important for many applications, they are not the
ultimate arbiter for obtaining good actuation performance. The total system
must be designed and managed with the final actuation goal in mind. Our
frame-theoretic WSAN model illustrates one strategy for taking such a holis-
tic information management view with actuation fidelity as the relevant metric.

The analytic tools we present characterize the effect of eliminating an indi-
vidual communication link between a sensor and an actuator, both in terms of
absolute (for specific sensor measurements) and average actuation error. Choos-
ing a networking strategy for eliminating communication links is both difficult
and non-intuitive. While intuition would indicate that the relationship between
the activation fields of a sensor and an actuator are the relevant quantity char-
acterizing the importance of the communication between those two nodes, our
work shows that it is the relationship between the mathematical duals of the
activation fields that captures this inherent importance. It is through these dual
functions that the relationship of the whole sensor network to the whole actu-

Evaluating Local Contributions to Global Performance 15

ator network can be accounted for in local communications between pairs of
nodes. Characterizing the importance of individual communication links to the
overall goal points directly to how a networking strategy could weigh the costs
and benefits of each communication link to achieve the desired balance between
performance and energy efficiency. The value of our analysis is highlighted in an
example WSAN system where link activations based on the sensor and actuator
duals performed an order of magnitude better than activations based on the
simple overlap of the sensor and actuator receptive field functions.

Today we are only seeing the beginning of work in information management
in WSANs. In this work, we have given explicit upper bounds on actuation error
that can be determined locally with no cooperation between the sensors. We have
also indicated how this analysis framework could be used in a specific applica-
tion and networking scenario to investigate the benefits of allowing local sensor
coordinate their communications to an actuator. Finally, we have also derived
analogous average error bounds that could be used to design static networking
strategies for applications where that approach is more appropriate.

We are currently working on many extensions to this work. We have consid-
ered the case where perfect (analog) coefficients are sent on active communication
links. While real systems would have to use quantized coefficients, we believe that
typical quantization schemes would have only a second order effect relative to
other actions taken to limit communication (such as eliminating communication
links). However, it is more interesting to consider a variable rate communica-
tion scheme where some links could send coefficients with variable fidelity. Such
variable rate schemes could be particularly interesting as we consider incorporat-
ing information about the variable networking costs of different communication
links. We are working to more tightly integrate the costs and benefits of individ-
ual communication links to find optimal strategies for determining which links
to activate dynamically and with minimal overhead.

Finally, our system model considers a single actuation response to a set of
sensor measurements. This is something of an open-loop system because the
sensors don’t necessarily receive any direct feedback from the actuators. This
generality is appealing in many senses; our model allows sensors and actuators to
live in separate signal spaces and it may be possible that actuation is not directly
observable by the sensors. However, in many practical applications, future sensor
measurements will be affected by actuator behavior even when they operate in
different signal spaces (e.g., fire suppression actions will reduce the temperature
measured by sensors). We are working on methods for extending this work to
consider the dynamic properties of such an implicit feedback system.

References

1. Nowak, R.: Distributed EM algorithms for density estimation and clustering in
sensor networks. IEEE Transactions on Signal Proc. 51 (2003) 2245–2253

2. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Intl.
Symposium on Information Proc. in Sensor Networks (IPSN), Berkeley, CA (2004)

16 C.J. Rozell and D.H. Johnson

3. Blatt, D., Hero, A.: Distributed maximum likelihood estimation in sensor networks.
In: Intl. Conf. on Acoustics, Speech, and Signal Proc., Montreal, Canada (2004)

4. Liu, J., Chu, M., Liu, J., Reich, J., Zhao, F.: State-centric programming for sensor
and actuator network systems. IEEE Pervasive Computing Magazine 2(4) (2003)

5. Gerkey, B., Mataric, M.: A market-based formulation of sensor-actuator network
coordination. In: AAAI Spring Symp. on Intel. Embed. and Dist. Sys. (2002)

6. Coates, M.: Evaluating causal relationships in wireless sensor/actuator networks.
In: Intl. Conf. on Acoustics, Speech, and Signal Proc., Philadelphia, PA (2005)

7. Lemmon, M.D., Ling, Q., Sun, Y.: Overload management in sensor-actuator net-
works used for spatially-distributed control systems. In: Proceedings of the ACM
Sensys Conference. (2003)

8. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science. Third edn.
Appleton & Lange, Norwalk, CT (1991)

9. Neil, D.: Compensatory eye movements. In Sandeman, D., Atwood, H., eds.: The
Biology of Crustacea, Neural Integration and Behavior. Academic Press, New York
(1982) 133–163

10. Glantz, R., Nudelman, H., Waldrop, B.: Linear integration of convergent visual
inputs in an oculomotor reflex pathway. J. of Neurophys. 52(6) (1984) 1213–1225

11. Nowak, R., Mitra, U., Willett, R.: Estimating inhomogeneous fields using wireless
sensor networks. IEEE J. on Selected Areas in Comm. 22(6) (2004) 999–1006

12. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhauser, Boston,
MA (2002)

13. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Transactions of
the American Mathematical Society 72(2) (1952) 341–366

14. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, PA (1992)

15. Bolcskei, H., Hlawatsch, F., Feichtinger, H.: Frame-theoretic analysis of oversam-
pled filter banks. IEEE Transactions on Signal Proc. 46(12) (1998) 3256–3268

16. Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations
of objects with piecewise C2 singularities. Communications on Pure and Applied
Mathematics 57(2) (2004) 219–266

17. Strohmer, T., Heath Jr., R.: Grassmannian frames with applications to coding and
communcations. Applied and Comp. Harmonic Analysis 14(3) (2003) 257–275

18. Goyal, V., Kovačević, J., Kelner, J.: Quantized frame expansions with erasures.
Applied and Computational Harmonic Analysis 10 (2001) 203–233

19. Gao, J., Harris, C., Gunn, S.: On a class of support vector kernels based on frames
in function hilbert spaces. Neural Computation 13 (2001) 1975–1994

20. Balan, R., Casazza, P., Heil, C., Landau, Z.: Density, overcompleteness, and local-
ization of frames, I. Theory. Preprint (2005)

Roadmap Query for Sensor Network Assisted
Navigation in Dynamic Environments

Sangeeta Bhattacharya, Nuzhet Atay, Gazihan Alankus,
Chenyang Lu, O. Burchan Bayazit, and Gruia-Catalin Roman

Department of Computer Science and Engineering,
Washington University in St. Louis

Abstract. Mobile entity navigation in dynamic environments is an es-
sential part of many mission critical applications like search and rescue
and fire fighting. The dynamism of the environment necessitates the mo-
bile entity to constantly maintain a high degree of awareness of the chang-
ing environment. This criteria makes it difficult to achieve good naviga-
tion performance by using just on-board sensors and existing navigation
methods and motivates the use of wireless sensor networks (WSNs) to
aid navigation. In this paper, we present a novel approach that integrates
a roadmap based navigation algorithm with a novel WSN query protocol
called Roadmap Query (RQ). RQ enables collection of frequent, up-to-
date information about the surrounding environment, thus allowing the
mobile entity to make good navigation decisions. Simulation results un-
der realistic fire scenarios show that in highly dynamic environments RQ
outperforms existing approaches in both navigation performance and
communication cost. We also present a mobile agent based implementa-
tion of RQ along with preliminary experimental results, on Mica2 motes.

1 Introduction

Mobile entity navigation is a crucial part of many mission critical applications
like fire fighting and search and rescue operations in disaster areas. These sce-
narios usually involve dynamic environments that make navigation dependent
on up-to-date knowledge of the changing environment. Moreover, information
about a large region around the mobile entity is required in order to achieve
good navigation performance. For example, in the case of a robot navigating a
region on fire, the robot would need real-time temperature information about
the surrounding areas in order to navigate the region without getting burnt.
Also, due to the highly dynamic and unpredictable nature of spreading fire,
temperature information of the surrounding areas would be needed frequently
for continuous awareness of the neighboring environment. On-board sensors have
a limited sensing range and hence cannot provide sufficient information required
to make good navigation decisions. Wireless sensor networks (WSNs), on the
other hand, present new opportunities to obtain frequent, up-to-date informa-
tion about a large expanse of the surrounding area. Information obtained from
the WSN can be used by the mobile entity to make good navigation decisions,

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 17–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 S. Bhattacharya et al.

with reduced risks. Moreover, WSNs are easily deployable and are also econom-
ically feasible. Once deployed, a WSN can serve several mobile entities and can
also be employed to coordinate the movement of multiple mobile entities.

The use of WSNs for navigation in dynamic environments presents important
new challenges. Since frequent sensor data updates are required to maintain
continuous awareness in dynamic environments, the data collection process can
induce a heavy communication workload on the WSN, which usually has lim-
ited bandwidth and energy. The resulting network contention and congestion
may cause excessive communication delay and loss of sensor data, which may
significantly affect the safety and navigation performance of the mobile entity.
Therefore, it is important to design efficient query protocols that can collect up-
dated sensor data needed for safe navigation at minimum communication cost.

In this paper, we present a novel roadmap-based approach for navigation in
dynamic environments. Our approach consists of two components; a roadmap-
based navigation algorithm for the mobile entity and a distributed query proto-
col called Roadmap Query (RQ) for the WSN. The navigation algorithm uses a
roadmap of the region, which is a virtual graph consisting of possible paths in
the region, to search for a safe path to the goal. The path is selected based on
roadmap edge weights derived from current sensor data that is collected from
the WSN using RQ. RQ achieves communication cost savings by querying nodes
only in the vicinity of the mobile entity, called query area, and by using a novel
sampling strategy that queries only a few selected nodes lying along roadmap
edges in the query area. The selective sampling strategy eliminates communica-
tion cost resulting from the collection of unnecessary and redundant data, while
still enabling RQ to provide sufficient data needed for successful navigation in
dynamic environments.

The main contributions of this paper are as follows. (1) We propose a new
approach to mobile entity navigation that integrates roadmap based navigation
algorithms with distributed query protocols; (2) We present Roadmap Query
(RQ), a robust query protocol optimized for navigation in highly dynamic en-
vironments; (3) We provide a mobile agent based implementation of a sensor-
network assisted navigation system on Mica2 motes; (4) We show through simu-
lations that RQ achieves better navigation performance than existing protocols
at only a small fraction of communication cost, in face of realistic fire scenarios
and node failures.

2 Related Work

Several methods for robot navigation have been proposed in the past. These
methods either assume a priori knowledge of the environment or use on-board
sensors to avoid obstacles. A priori knowledge of the environment is not helpful
in dynamic environments while on-board sensors have a limited sensing range
and hence do not provide information about a sufficiently large region. Recent
work in this area suggests integrating WSNs with mobile entities to enable nav-
igation in dynamic environments. The proposed methods fall into two distinct
categories.

Roadmap Query for Sensor Network Assisted Navigation 19

The first category uses some form of global flooding initiated by the goal, the
obstacle or the mobile entity itself. While this approach is effective in relatively
static environments, it is unsuitable for dynamic environments since the need
to constantly maintain a high degree of awareness of the changing environment
(e.g., a spreading fire) would cause frequent flooding of the network. Thus, this
approach may suffer from high communication cost and network contention,
which would lead to poor navigation performance. It also wastes energy, thereby
decreasing network lifetime. Protocols suggested in [1] and [2] fall into this cat-
egory. Both protocols construct global navigational fields to guide the robot to
the goal. In [1], the goal generates an attractive potiential field that pulls the
robot towards the goal, while an obstacle generates a repulsive potential field
that pushes the robot away from the obstacle. We will henceforth refer to this
method as the Dartmouth Algorithm (DA). Unlike DA, the method in [2] uses
value iteration to compute the magnitude of directional vectors that guide the
robot to the goal. The approach presented in [3] addresses navigation of mobile
sensor nodes, to increase coverage of event locations. In this approach, the goal
(an event location) initially floods the network to locate a suitable mobile sensor
node. Mobile sensor nodes respond to the flood by sending a response to the
goal. The protocol then creates a navigation field around the path taken by the
response, to draw the mobile node to the goal. Since the navigational field is
only around a path that does not change until the goal changes, this approach
cannot efficiently handle dynamic obstacles. Unlike the above approaches, the
approach used in [4] assumes that a path already exists in the network, and
uses controlled flooding to guide the robot to the start of the path, after which
the robot follows the path. This approach is not applicable to dynamic environ-
ments where an initially safe path may quickly become unsafe due to changing
conditions.

The second category of protocols do not use global flooding but instead use
a local query strategy to achieve navigation. Our earlier work, presented in [5],
which we will henceforth call Local Query (LQ), falls into this category. In LQ,
the path from the start to the goal is built incrementally as the mobile entity tra-
verses the region, by querying all nodes in the vicinity of the mobile entity. This
approach avoids global flooding by making local decisions. While this method
is more efficient than global flooding in a dynamic environment, it still wastes
significant amount of energy and bandwidth by unnecessarily collecting informa-
tion from all nodes in the query area. In contrast, RQ uses a selective sampling
strategy to collect only necessary information, which is dependent on the envi-
ronment and changes with it. As a result of this strategy, RQ achieves better
navigation performance than LQ at only a small fraction of LQs communication
cost (shown in Section 7). This feature makes RQ especially suitable to resource-
constrained WSNs. Furthermore, LQ ignores the issue of sensor node failures. In
contrast, RQ is designed to handle sensor node failures caused by dynamic ob-
stacles (e.g., being burnt by fire). The robustness of RQ is crucial in such harsh
environments where nodes can be easily destroyed. Another new contribution of
this work is that unlike LQ, which was implemented in native code, RQ has been

20 S. Bhattacharya et al.

implemented using mobile agents that can dynamically reprogram nodes in the
current query area as the mobile entity moves. An important advantage of our
mobile-agent-based implementation is that it enables the adaptive deployment
of navigation applications into pre-deployed WSNs with limited resources.

3 Problem Formulation

The navigation problem that we address in this paper is to find a safe path for a
mobile entity through a sensor field from a start point ps to a goal point pg. We
define a safe path to be a path that is clear of dynamic obstacles, i.e., obstacles
whose location or shape changes with time (e.g., car, fire).

In this paper, we consider fire as the representative example for a dynamic
obstacle. Thus, the temperature of the region traversed by the mobile entity is a
function of time and is affected by the location and movement of fire. In this case,
the problem can be restated as that of finding a safe path for a mobile entity,
from start to goal, without the mobile entity getting burnt. The mobile entity is
assumed to get burnt if the temperature at its location is higher than a threshold
Δburn. A safe path is now redefined as one where the maximum temperature
along the path taken by the mobile entity remains below the threshold ΔT ,
while the mobile entity is on the path. Even though our solution is designed
assuming fire as the dynamic obstacle, it can be generalized to other types of
dynamic environments where safety is defined by changing sensory values (e.g.,
chemical spills, hazardous gas and air pollution).

We make the following assumptions in the paper: (i) Nodes are location aware.
(ii) The mobile entity communicates with the WSN through an on-board gateway
device (e.g., PDA) (iii) Nodes have a limited sensing range RS . RS is chosen such
that if the temperature sensed by a node is below the threshold ΔT , then the
temperature at any point within the sensing range is below the threshold Δburn.
Hence, edges with nodes having temperature above ΔT are unsafe. The sensing
range is thus dependent on the tunable parameter ΔT . A lower ΔT results in a
longer sensing range.

4 Navigation Algorithm

Our navigation algorithm adapts the roadmap method that is commonly used
for navigation in robotics, to make it more suitable for dynamic environments
and for integration with WSNs. The roadmap method builds a roadmap of the
region and uses it to find a path from the start to the goal. It only considers
paths on the roadmap instead of all possible paths in the region and hence,
has low computational complexity. Furthermore, it is particularly suitable for
WSN assisted navigation, since it reduces the amount of sensor data that must
be collected from the WSN by requiring information only along the roadmap
edges.

Thus, our navigation algorithm first constructs a roadmap of the region and
then incrementally finds safe sub-paths (consisting of roadmap edges) leading to

Roadmap Query for Sensor Network Assisted Navigation 21

S

G

(a) Roadmap Generation

S

G

(b) Sub-path Selection

Fig. 1. Working of the Navigation Algorithm. The figures show the grid roadmap.
Roadmap vertices and sensor nodes are depicted by black dots and gray dots, respec-
tively. The start and goal are denoted by S and G respectively. The gray shaded regions
denote fire. Figure (a) shows the generated roadmap. Figure (b) shows the sub-path
selected (dotted arrow) within the query area (shown by the circle). The solid arrows
show the path taken by the robot to reach its current location.

the goal. Sub-paths are selected based on edge weights that are repeatedly up-
dated using temperature information obtained from the WSN, through RQ. The
detailed working of our navigation algorithm is as follows. After constructing
the roadmap, the mobile entity issues a query to obtain the maximum tem-
perature along the roadmap edges lying within the query area. We assume a
circular query area of query radius Rq, centered at the current location of the
mobile entity pe(t). After issuing the query, the mobile entity waits for a time
Tw to receive the query result which contains the maximum temperatures along
the roadmap edges within the query area. At the end of the wait period Tw,
the mobile entity computes the edge weights based on the temperature infor-
mation obtained and finds a safe sub-path to the goal. If the mobile entity
finds a safe sub-path, it starts moving along the sub-path. Otherwise, it re-
issues the query. This entire process is repeated every time the mobile entity
reaches the end of a sub-path, until it safely reaches the goal. Note that the
navigation algorithm handles the dynamics in the environment by generating
the path incrementally, based on fresh information collected from the current
query area.

Thus, the roadmap navigation algorithm has three stages, (i) roadmap gen-
eration, (ii) roadmap edge weight assignment and (iii) sub-path selection. The
roadmap generation stage occurs at the start of the navigation process while the
roadmap edge weight assignment and sub-path selection stages, occur repeatedly
till the mobile entity reaches the goal safely. These stages are discussed next.

(i) Roadmap generation: We use a grid as the roadmap, as shown in Fig-
ure 1(a), where the grid points form the roadmap vertices and the edges form
the roadmap edges. Note that the grid points are virtual points that are placed

22 S. Bhattacharya et al.

in space, without considering sensor locations. Traditional roadmap methods
(e.g., Probabilistic Roadmap Methods [6]) randomly choose points in space and
connect them to construct a roadmap. A benefit of using a grid is that roadmap
information can be easily included in a query message without significantly in-
creasing the message size (see Section 5.1). The grid size is a tunable parameter
that is a tradeoff between communication cost and navigation performance.

(ii) Roadmap edge weight assignment: The roadmap edge weights are used
to find a short, safe sub-path on the roadmap that leads to the goal, as the mobile
entity traverses the roadmap. In order to balance path safety and path length,
we use an edge weight function that is a weighted function of the normalized
maximum edge temperature and the normalized edge length. The maximum
edge temperature is provided by the RQ protocol that queries the WSN. The
weight of an edge e is thus

We =
{

α(δe

ΔM
) + (1 − α)(le

L) δe < ΔT

∞ δe ≥ ΔT
(1)

where δe is the maximum temperature on e based on recent query results, le is
the length of e, ΔM is the maximum possible temperature, L is the maximum
edge length among all roadmap edges E and α ≤ 1 is the weight given to the
temperature field. The tunable parameter α determines the tradeoff between
safety and path length. δe in equation 1 is obtained from the query result and
is approximated as δe = max(δs), s ∈ S, where S is the set of nodes that cover
edge e and δs is the temperature at a sensor s ∈ S. A sensor is said to cover an
edge if the edge or part of the edge lies within its sensing circle. On the other
hand, an edge is said to be covered if certain points on the edge are covered. The
points on the edge that need to be covered are determined by the query protocol
and will be discussed later. If an edge e is not covered by the nodes that respond
to the query, then We is pessimistically set to ∞ so as to avoid traversing that
edge.

Edge weights are timestamped and expire after a certain interval Δexp. Δexp

should be chosen carefully, since a large Δexp will not account for the dynamism
of the environment while a small Δexp may cause the mobile entity to oscillate.
Thus, at the end of a query the edges within the query area have edge weights
based on up-to-date temperature information obtained from the query result
while the edges in the past m query areas have edge weights based on old tem-
perature data, where m depends on Δexp. All other edges have weights based
only on the edge length.

(iii) Sub-path selection: A sub-path consisting of edges lying within the query
area is selected by running the Dijkstra’s shortest path algorithm [7] on the
roadmap. The result of the Dijkstra’s algorithm is a path with the least weight
from the mobile entity’s location to the goal, at that instant. The sub-path
consisting of edges within the query area, is extracted from this least-weight
path. This stage is illustrated in Figure 1(b).

Roadmap Query for Sensor Network Assisted Navigation 23

5 Roadmap Query

In this section, we present the RQ protocol. RQ collects updated temperature
information from nodes covering the roadmap edges in a query area. It is issued
by the navigation algorithm, every time the mobile entity reaches the end of a
sub-path, until the mobile entity reaches the goal. In addition, to improve safety,
it is also issued when the temperature at the mobile entity location rises above
the threshold ΔT . The temperature at the mobile entity location is obtained
using an on-board sensor.

5.1 Basic Roadmap Query Protocol

RQ minimizes the communication workload on the network by reducing the
number of nodes involved in the query process. This is achieved by optimizing
the query protocol in accordance with the roadmap-based navigation algorithm.
Since the navigation algorithm requires the maximum temperature only along
the roadmap edges, the query message, is forwarded only along the roadmap
edges lying within the query area. Moreover, due to the high density of sensor
nodes, the query message is not forwarded by all nodes along an edge, but only
by some selected nodes. These selected nodes form a backbone of nodes along
the roadmap edges that fall within the query area and are called backbone nodes.
RQ requires all backbone nodes to respond to the query. Nodes that hear the
query message but are not on the backbone, respond to the query only if they
satisfy a certain criteria and are called non-backbone nodes. The backbone and
non-backbone nodes form a tree structure with the mobile entity as the root.
The formed tree is used to aggregate and deliver the query results to the mobile
entity. Thus, RQ reduces communication cost not only by reducing the number
of nodes that forward the query message but also by reducing the number of
nodes that respond to a query, within a query area.

In order to achieve communication cost reduction, RQ requires the queried
nodes to have knowledge of the roadmap and to maintain 2-hop neighborhood
information. Since we use a grid as the roadmap, the first requirement is eas-
ily met by including the location of the bottom left corner of the grid and the
grid square size in the query message. Each queried node uses this informa-
tion, to calculate the grid points and edges. The second requirement requires all
nodes in the network to maintain 2-hop neighborhood information which may
introduce some overhead. Neighborhood information is maintained through hello
messages [8], which contain the ID of the sending node and the IDs of its 1-hop
neighbors. Hello messages are broadcasted periodically by each node at an in-
terval called the hello period. On receiving a hello message, the receiving node
records the sending node as its neighbor and also stores the neighborhood infor-
mation of the sending node. Each entry in the neighborhood table is associated
with a timestamp that corresponds to the time the most recent hello message
was received from that neighbor. The timestamp field is used to detect failed
neighbors. We have described a simple neighborhood management technique but
more sophisticated techniques [9] can also be used. Note that similar neighbor-

24 S. Bhattacharya et al.

1. if Query message received
2. Accept if in current query area.
3. Set sending node as parent.
4. Set hi to hop count in msg plus 1.
5. Apply forwarding rule to see if msg should be re-broadcasted.

If yes, re-broadcast msg.
6. Apply reply rule to see if query result should be sent. If yes,

calculate time to send result and set timer SendTimer to time-
out at the right time.

7. else if Query reply received
8. if result not yet sent then store else discard.
9. else if SendTimer timed out

10. Send aggregated Query result to parent.

Fig. 2. Roadmap Query (RQ) Algorithm

hood information is also required by other common services such as routing and
power management.

RQ uses two rules to determine which nodes should forward the query message
or respond to the query. We call the rule that determines if a node should forward
the query message, as the forwarding rule and the rule that determines if a
node should respond to a query, as the reply rule. The forwarding rule identifies
backbone nodes while the reply rule identifies non-backbone nodes.

Forwarding Rule: By the forwarding rule, if a node receives a query message
that is being propagated along edge e = −−−−→pe1pe2 where pe1 and pe2 are the
endpoints of the edge, and the arrow denotes the direction of query message
propagation, then, the node rebroadcasts the message only if it covers edge
e and is the closest to pe2 among its neighbors that can also hear the same
query message. A node knows if a neighbor can hear the same query message by
checking its neighborhood table that contains 2-hop neighborhood information.
Note that, by this method, only a few nodes along the edge, called backbone
nodes, rebroadcast the query message. Thus, some nodes do not rebroadcast the
query message, thinking that another node that is closer to the endpoint will
rebroadcast the message. These nodes listen for a certain time interval to see if
the query message is rebroadcasted. If the query message is not rebroadcasted
within this time, these nodes rebroadcast the message. This method takes care
of situations where the node selected to rebroadcast the query message does not
receive the query message due to collision or other factors.

Reply Rule: The reply rule states that a node should send a query reply, if (i) it
is a backbone node, or, (ii) its temperature is above ΔT and it covers a roadmap
edge that falls within the current query area. The first condition draws query
results from the minimum number of nodes that entirely cover all roadmap edges
within the query area. The second condition identifies non-backbone nodes and
adapts the number of nodes responding to the query, according to the danger
level. This condition enforces the safety of the path by drawing query results

Roadmap Query for Sensor Network Assisted Navigation 25

1
3

2
8

4
5

6
7

B

A

CD

14 15

11

12

9

10 16

13

E

(a)

1
3

2
8

4
5

6
7

B

A

14 15

11
13

CD
12

9

10 16

E

(b)

Fig. 3. Working of RQ protocol. The figures show the backbone (colored black) and
non backbone nodes (colored dark gray) in a query area (solid black circle) centered at
B. Roadmap edges within the query area are colored black. Figure (a) shows the query
message (solid arrow) and query reply (dotted arrow) propagation along edges BA
and BC. The shaded region represents a region with temperature above the threshold.
Figure (b) shows a possible case where RQ fails. The shaded region represents very
high temperature at which all nodes in the region (crossed out) have failed. In this
case, even though the fire spreads across edge BC, the mobile entity considers BC safe
since it hears from enough active nodes with temperatures below ΔT , that cover BC.

from nodes if they sense a dynamic obstacle (e.g. fire) near roadmap edges lying
within the query area.

Given these two rules, RQ works as follows. On receiving a query message,
a node i that lies within the query area, sets the sending node j as its parent,
if the link between the nodes is symmetric and sets its hop count hi to hj + 1
where hj is the hop count of the sending node and is contained in the query
message. The hop count is used to send the query results at a time that facilitates
data aggregation. Node i then applies the forwarding rule to determine if it
should rebroadcast the message. If it is required to rebroadcast the message,
it rebroadcasts the message and then applies the reply rule to determine if it
should respond to the query. If it needs to respond to the query, it calculates
the time tr at which the result needs to be sent and sets a timer to timeout
at that time. When the timer times out, node i sends its parent an aggregated
query result, deduced from its information and the information obtained from its
children. If node i and its children are along the same edge, the MAX function
is applied to the sensor readings. Otherwise, the results are just merged into one
message.

The query reply time tr is calculated such that it facilitates data aggregation
and is set to t0 + hmax−hi

hmax
× Tw, where t0 is the time at which the mobile

entity sends the query request and hmax is a tunable parameter denoting the
maximum possible hop count within a query area. Thus, a node waits for time
interval Tr = tr − tc, where tc is the time at which the node receives the query

26 S. Bhattacharya et al.

message, to receive query replies from its children. The RQ algorithm is shown
in Figure 2 and is illustrated in Figure 3(a).

Figure 3(a) illustrates different aspects of the RQ protocol. (i) It shows the
backbone (colored black) and non-backbone (colored dark gray) nodes selected
by the RQ protocol in response to a query issued by a robot positioned at B.
The resulting query area is shown by a solid circle centered at B. The roadmap
edges lying within the query area are colored black. (ii) The figure illustrates the
query message (solid arrow) propagation along edges BA and BC. The query
message is propagated from node 2 to node 3, to node 4 and then to node 6
and finally to node 7 along edge BA. The query message propagation along
edge BA stops at node 7 since it covers endpoint A, i.e. A lies within node 7’s
sensing range (shown by dotted circle centered at 7). Node 7 then propagates
the message along the adjoining roadmap edges in the query area. Note that
the query message is forwarded by node 4 and then by node 6 and not by
node 5. This is because of the forwarding rule. When node 5 hears the query
message from node 4, it sees that it has a neighbor, node 6, that is also node
4’s neighbor (hence, it must have also heard the query message) and that is
closer to endpoint A. Thus, by the forwarding rule it does not rebroadcast the
query message. (iii) The figure illustrates the outcome of the reply rule when a
portion of the query area (shaded region) has temperature above the threshold.
By the reply rule, nodes 14, 15 and 16 in this area must reply to the query,
since their temperatures are above the threshold and they cover a roadmap edge
lying within the query area. These nodes are thus, non-backbone nodes. (iv) The
query reply (dotted arrow) propagation along edges BA and BC is also shown.
Note how a non-backbone node, node 16, becomes a leaf node, under parent
node 10.

5.2 Extension to Handle Node Failures

Robustness to node failures is especially important in dynamic environments
since nodes can be destroyed by harsh environments such as fire. The basic RQ
protocol cannot handle certain situations arising due to node failures, as shown in
Figure 3(b). In the figure, the shaded region depicts a spreading fire, that burns
nodes in the region. Due to node failures, edges BE and EC are not covered by
working nodes. Hence, the robot does not receive sufficient information about
these edges and considers them unsafe. However, edge BC is completely covered
since even though the fire burns node 11, node 13 (which is unaware of the nearby
fire) takes its place in forwarding the query message, thus giving the robot the
false impression that the edge is safe. If the robot were to choose to traverse
edge BC, it would collide with the dynamic obstacle, the fire, and get burnt.
This scenario shows the importance of fault-tolerance in dynamic environments.
Therefore, we extend RQ to avoid such situations.

In order to make RQ fault-tolerant we include node failure information in the
query results. The mobile entity, uses this information to avoid paths with failed
nodes, assuming that node failures are due to destruction by fire. Node failure
information is obtained, by requiring nodes to send a list of failed neighbors that

Roadmap Query for Sensor Network Assisted Navigation 27

cover roadmap edges in the current query area, along with their sensor reading.
Also, the reply rule is modified slightly such that nodes now send a query reply
if (i) they are backbone nodes, (ii) their temperatures are above a threshold and
they cover a roadmap edge lying within the query area or (iii) they have failed
neighbors that cover roadmap edges lying within the query area.

It can be seen that with these modifications RQ is successful in situations like
the one depicted in Figure 3(b). This is because, by the modified reply rule, the
robot is informed about the failed nodes 11 and 16 by either node 10, node 12 or
node 13. Since node failure is assumed to be due to destruction by fire, the robot
infers that the edge BC is not safe and does not traverse that edge. Thus, the
modifications make RQ robust to situations where the fire destroys only some
nodes along an edge leaving enough working nodes with temperatures below ΔT

to cover the edge, which would give the mobile entity the false impression that
the edge is safe.

The modified RQ protocol depends on node failure information, which is easily
obtainable. Since each node maintains a neighborhood table and receives periodic
hello messages from its neighbors, a node knows if a neighbor has failed, if it
hasn’t heard from the neighbor in n hello periods. The choice of n has to be
made carefully, since a lower value of n will result in more false positives while
a higher value of n will result in delayed awareness of danger, thus leading to
poor navigation performance. In our simulations, we set n = 2.

5.3 Analysis

In this section, we show that RQ successfully gathers the information required by
the navigation algorithm within a query area, under the following two conditions.

The first condition is a sensing covered network. In a sensing covered network,
every point in the region is covered by at least one sensor. Without this network
property, it is impossible to guarantee that a roadmap edge is covered by any
sensor at all. A sensing covered network is desirable, as it increases the mobile
entity’s awareness of the surroundings thus improving its navigation path.

The second condition is the double range property, by which, the communi-
cation range RC of a node is at least twice the sensing range RS of the node,
i.e., RC ≥ 2RS. The double range property guarantees network connectivity in
a sensing covered network [10] and hence is a desirable property for such net-
works. Since the sensing range depends on the temperature threshold ΔT , we
can achieve the double range property by selecting an appropriate ΔT .

Query message propagation in RQ, starts at a node s that receives the query
message from the mobile entity and is closest to the mobile entity’s location.
From node s, the query message is forwarded along edges covered by s and then
along edges that are connected to them, and so on. Message propagation from one
edge to another occurs at nodes that cover the intersection point of two or more
edges. Note, that only roadmap edges that completely lie within the query area,
are considered per query. Since these edges lie completely within the query area,
they form a connected subgraph. Given the above, we can prove that “Given a
sensing covered network with RC ≥ 2RS, every node covering a roadmap edge

28 S. Bhattacharya et al.

lying completely within a query area receives the query message from the mobile
entity, under RQ”. The proof [11] is omitted due to space limitations.

This property of RQ is very useful in environments that do not cause node fail-
ures (e.g., chemical spill and air pollution). Environments like fire that cause node
failures violate the sensing coverage condition, in which case RQ only provides best
effort service. We note that it is extremely difficult to provide any guarantees in the
presence of node failures. However, as shown in our simulations, RQ still provides
sufficiently good performance in a number of realistic scenarios.

6 Implementation

We implemented the basic RQ protocol on Agilla [12, 13], a mobile agent mid-
dleware for the TinyOS [14] platform. A mobile agent based implementation
enables RQ to be used in a pre-deployed WSN without requiring the RQ pro-
tocol to be pre-installed on the WSN. A WSN running some other application
can be quickly re-utilized to run the RQ protocol by just injecting mobile agents
containing the protocol into the network. The capability to flexibly reprogram
a WSN for a different application is particularly important to WSNs that have
limited storage and long operational lifetime [12, 13, 15]. For example, a WSN de-
ployed in a building for temperature monitoring can be quickly re-programmed
to run the RQ protocol in case of a fire emergency. The RQ protocol can then
be used to guide people safely out of the building.

An Agilla application consists of one or more mobile agents that coordi-
nate with each other, to achieve application-specific behavior. An agent is pro-
grammed using a high-level language supported by Agilla. Agilla provides primi-
tives for an agent to move and clone itself from sensor node to sensor node while
carrying its code and state, effectively reprogramming the network. New mobile
agents can be injected onto a sensor node, thereby allowing new applications to
be installed after the network has been deployed. To facilitate inter-agent coor-
dination, Agilla maintains a local tuple space and neighbor list on each sensor
node. Multiple agents can communicate and coordinate through local or remote
access to tuple spaces. Prior experiences with Agilla have demonstrated that it
can provide efficient and reliable services needed by highly dynamic applications
such as fire tracking [13].

6.1 RQ Using Agents

In the agent based implementation of RQ, the mobile entity injects an explorer
agent into the network that collects the edge weights and delivers them to the
mobile entity. Once injected into the network, the explorer agent clones itself
on nodes lying along the roadmap edges according to the forwarding rule. The
reply rule is applied to determine the agents that need to respond to the query.
The agent migration sets up a tree structure along the roadmap edges within
the query area, which is used to collect the query result. Per node query results
are aggregated such that a list of per-edge-maximum-temperatures is forwarded

Roadmap Query for Sensor Network Assisted Navigation 29

START

GOAL

Danger

Danger

(a)

START

GOAL

Fire Moved

(b)

Fig. 4. (a) Experimental environment. (b) The robot avoids the initial path (dotted
line) and follows a safer path (solid line) when the fire spreads.

along the tree branches to the mobile entity through remote tuple space opera-
tions. The mobile entity processes the query result and takes appropriate action
as explained before.

6.2 Experiments

We used a Pioneer-3 DX robot by ActiveMedia [16], as the mobile entity in our
experiments. The robot controller carried a mote as a communication interface
to a WSN consisting of Mica2 motes. The WSN was arranged in a 4x4 grid, with
a grid square length of 2 meters, as shown in figure 4(a). Each node was assigned
an (x,y) coordinate based on its position in an euclidean co-ordinate system. In
the figure, the node in the lower-left corner was assumed to be the origin of the
co-ordinate system with coordinate (0m, 0m). The coordinate of the node in the
upper-right corner is therefore (6m, 6m).

The goal of the robot, in the experiments, was to move from (0m, 1m) to
(7m, 7m) while avoiding the fire. Experiments were conducted with two types
of fire: (a) static fire, and (b) dynamic fire. In the static fire experiments, the
temperatures of the motes were fixed throughout the experiment. Fire was simu-
lated by assigning predefined high temperature values (70oC) to motes located at
(0m, 2m), (2m, 2m), (6m, 2m), (4m, 4m), and (6m, 4m) (motes with white dots
in Figure 4(a)), and 30oC to the remaining motes. Dynamic fire was simulated
by assigning the same predefined values as in the static fire, but the values were
changed during the experiment. More specifically, the temperature of the mote
located at (2m, 4m) was increased while the temperature of the mote located at
(2m, 2m) was decreased, thus simulating a fire spreading northwards.

Static fire. The path found in this scenario is shown as the dotted line in
figure 4(b). As is seen, the robot successfully avoids dangerous places by staying
close to motes with normal temperature.

Dynamic fire. The dynamic fire scenario shows the reaction of the robot when
the fire changes location. In this case, the robot follows the same path as the

30 S. Bhattacharya et al.

(a) Initial state. (b) GQ (c) RQ - intermediate (d) RQ - final

Fig. 5. Path selected by GQ and RQ. (a) Initial state of the environment. The circle
depicts the mobile entity; the cross at the bottom left corner marks the starting point;
and the cross at the top right corner marks the goal. The blue region represents the
safe region and has temperature below 60oC. The red and green regions represent fire
with temperature above 150oC and above 60oC, respectively. (b) Mobile entity gets
burnt on path selected by GQ. (c) Mobile entity incrementally builds path in RQ. (d)
Mobile entity safely reaches the goal on path built by RQ.

static fire until it reaches (4m, 2m). At this point, the fire at (2m, 2m) moves to
(2m, 4m). The robot then successfully finds a new path to avoid the fire. This
scenario is illustrated in figure 4(b). The solid line shows the path followed by
the robot, while the dotted line represents the initial path.

These experiments demonstrate that a robot can use our agent based imple-
mentation of RQ, to successfully find a safe path in the presence of dynamic
obstacles. We further evaluate the performance of RQ and compare it with ex-
isting approaches through simulations under realistic fire scenarios.

7 Simulation Results

In this section, we present the results obtained from simulations in NS-2. We
evaluate and compare RQ with existing protocols, using 9 different realistic fire
scenarios, obtained using the NIST Fire Dynamics Simulator (FDS) [17]. In all
the scenarios, the fire starts in different locations scattered over the region and
then spreads over the region over time. This behavior presents two different en-
vironments, (1) which is very dynamic and occurs when the fire is still spreading
and most of the region is still not on fire, and (2) which is less dynamic and oc-
curs when a large part of the region is already on fire. We test the performance
of the algorithms in both environments, by starting the mobile entity at two
different times of 50s and 200s, after the fire starts spreading.

We evaluate the RQ protocol both with and without the extension for handling
node failures to observe the difference in performance caused by the extension.
We refer to the basic RQ protocol as B-RQ and the RQ protocol with the exten-
sion as Robust RQ (R-RQ). We also compare our protocol to other approaches
like LQ [5], DA [1] and Global Query (GQ). LQ uses local flooding while DA
and GQ use global flooding. LQ and DA were discussed earlier in the related
works section (Section 2) and hence are not described here.

Roadmap Query for Sensor Network Assisted Navigation 31

In GQ, the mobile entity broadcasts a query message, which is flooded
throughout the entire network. On receiving the query message, the nodes re-
spond with their location and temperature. These responses are aggregated and
delivered to the mobile entity which uses the data to compute the edge weights
of all roadmap edges in accordance with Equation 1 to obtain a complete path
from the start to the goal. Since this method employs global data collection, it
has a high communication cost. In addition, it also suffers from a long query
latency, which significantly reduces a mobile entity’s awareness of the region.
This leads to situations where the mobile entity gets burnt while traversing a
path that changes from being safe to being unsafe, due to lack of awareness
of the changing environment. This situation was observed in a simulation run
and is shown in figures 5(a) and 5(b). The white line in Figure 5(b) depicts the
safe path that is initially computed by the mobile entity. As the mobile entity
traverses the path, a part of the path is engulfed by fire. The mobile entity is
unaware of this until it is very close to danger, at which point it stops moving
and issues a query to find a safe path. However, due to the significant query
latency, the fire spreads to the location of the mobile enitity and burns it, before
it finds a safe path. The outcome of using the RQ protocol for the same scenario
is shown in figures 5(c) and 5(d). Since the RQ protocol uses local queries with
low query latency (due to low communication cost) it computes successive safe
sub-paths that successfully lead it to the goal, around the regions on fire.

Each simulation was run with 900 nodes uniformly distributed in a 450m ×
450m area. The mobile entity’s velocity was set to 3m/s and a 5×5 grid was used
as the roadmap, with each grid square, measuring 90m× 90m. The communica-
tion range and bandwidth of the nodes were set to 45m and 40kbps, respectively.
The sensing range of the nodes was obtained using the maximum temperature
gradient δT at the border of a fire. Thus RS = Δburn−ΔT

δT . δT was found to be
4.5oC/m from the simulation scenarios. ΔT and Δburn were set to 60oC and
150oC, respectively, assuming a robot as the mobile entity. These settings result
in RS = 20m, which satisfies the double range property (RC ≥ 2RS). The query
radius (Rq) of B-RQ, R-RQ and LQ was set to 90m in all the simulations, since
it was experimentally found to be optimal. Performance under different query
radii is omitted due to space constraints but can be found at [11].

As mentioned in Section 4, an edge is considered covered if certain points on
the edge are covered. The selection of the points differs with the query protocol.
Since LQ and GQ query all nodes within a query area, any number of points
(≥ 2) on an edge can be considered in these algorithms. Note that the query area
in LQ is a circle (of certain radius) centered at the mobile entity location while
the query area in GQ is the entire region. In our simulations of LQ and GQ,
we considered coverage of five equidistant points on an edge to indicate edge
coverage. However, since fewer nodes respond to queries in RQ, we considered
coverage of only the endpoints of an edge to indicate edge coverage in RQ.

The wait time Tw, during which the mobile entity waits for the query results,
reflects the query latency in LQ, GQ and RQ. Based on experimental results,
it was set to a value that permitted at least 90% query results to be received

32 S. Bhattacharya et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

B-RQ LQ GQ DA

S
uc

ce
ss

 R
at

io

Start time 50s
Start time 200s

(a) Success Ratio

0

100

200

300

400

500

600

B-RQ LQ GQ DA

Ti
m

e
(s

)

Start time 50s
Start time 200s

(b) Path Traversal Time

1

10

100

1000

10000

100000

1000000

B-RQ LQ GQ DA

N
u

m
b

er
 o

f
m

sg
s

Start time 50s
Start time 200s

(c) Communication Cost

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sending Query
Reply

Forwarding
Query Msg

n
o

. o
f

n
o

d
es

 in
 R

Q
/n

o
. o

f
n

o
d

es
 in

L

Q

Start time 50s
Start time 200s

(d) Per query node participation.

Fig. 6. Performance comparison in the absence of node failures

by the mobile entity, in these protocols. RQ achieves a query latency that is ap-
proximately half of that of LQ, due to its low communication cost (Figure 6(c)).
Correspondingly, Tw was set to 10s in RQ, 20s in LQ and 250s in GQ.

We use the following metrics to evaluate the performance of the different al-
gorithms. (1) Success Ratio, defined as the ratio of the number of scenarios in
which the mobile entity safely reaches the goal to the total number of scenarios.
This is the most important metric for the application. (2) Path Traversal Time,
defined as the average time taken by the mobile entity to reach the goal, over
scenarios where the mobile entity successfully reaches the goal in all protocols
being compared. The path traversal time includes the query latency (which de-
pends on the performance of the query protocol) and the time that the mobile
entity spends in navigation. (3) Communication Cost, defined as the average
number of messages sent per scenario, over scenarios where the mobile entity
successfully reaches the goal in all protocols being compared.

In the following subsections, in addition to the average results, we also present
90% confidence intervals. Confidence intervals are not provided for the case where
the robot start time is 200s and there are no node failures, since there are only
two scenarios where the mobile entity safely reaches the goal in all protocols
being compared.

7.1 Performance in the Absence of Node Failures

Performance Comparison. In this sub-section, we compare the navigation
performance and communication cost of GQ, LQ, B-RQ and DA, in the absence
of node failures. Since R-RQ is designed specifically to handle node failures, we
do not include it in this section.

Roadmap Query for Sensor Network Assisted Navigation 33

Success Ratio : Figure 6(a) shows the success ratio of the different protocols at
start times 50s and 200s. As seen in the figure, B-RQ performs better than all
the other algorithms and enables the mobile entity to safely reach the goal in all
tested scenarios. LQ does not perform as well, because unlike B-RQ, it queries
all the nodes in a query area and hence incurs a long query latency, which slows
down the mobile entity’s progress towards the goal. As a result, the mobile entity
sometimes gets caught up amidst the spreading fire with no safe path leading to
the goal, or gets burnt while waiting for the query results.

The success ratio of GQ is the lowest. This is because GQ does not update
the selected path to the goal based on the changing environmental state. At a
start time of 50s, the mobile entity usually gets burnt due to lack of awareness
of the fire encroaching the chosen path. On the other hand, at a start time of
200s, the mobile entity usually fails to obtain a safe path, because, by the time
the mobile entity obtains the query results, which can take as long as 250s,
most of the region is already engulfed by fire, disconnecting the start from the
goal. The success ratio of DA is lower than that of B-RQ and LQ, because of
high data loss due to contention caused by the high communication cost of DA
(Figure 6(c)).

Path Traversal Time : Figure 6(b) shows the path traversal time obtained by the
different protocols. We see that DA achieves the least path traversal time. This
is because DA has very low query latency compared to the other algorithms,
as it requires the mobile entity to query only nearby nodes. The path traversal
time of B-RQ is comparable to that of DA. This is because, B-RQ also has a
low query latency, since it queries only a few nodes per query. LQ and GQ,
on the other hand, have longer path traversal times, since they query a large
number of nodes and hence have long query latencies. Since all protocols achieve
similar path lengths (shown in [11]), the difference in the path traversal times is
dominated by the difference in query latencies.

Communication Cost : A comparison of the communication cost is presented
in Figure 6(c). DA has an extremely high communication cost, since it requires
all nodes in the network to maintain the potential fields, resulting in frequent
flooding of the entire network caused by the spreading fire. In comparison, B-RQ
has the least communication cost, since it queries only a few nodes that lie along
the roadmap edges in a query area, per query. The extent by which RQ reduces
the number of nodes that participate in a query, in comparison to LQ is shown in
Figure 6(d). The figure shows that the number of nodes that forward the query
message, per query in RQ, is only about 25% that of LQ and the number of nodes
that send a query reply, per query in RQ, is only about 40% that of LQ. Thus,
the total number of nodes that participate in a query in RQ is only about 40%
that of LQ, on average. This significant reduction in the number of participating
nodes per query is the reason behind the dramatic reduction in communication
cost achieved by RQ. This saving is found to be 73% for a start time of 50s
and 63% for a start time of 200s, from Figure 6(c). As a result of the reduced
communication cost, RQ also has a lower query latency in comparison to LQ

34 S. Bhattacharya et al.

(almost 50% that of LQ), thus increasing its navigation performance, in terms
of success ratio and path traversal time. This implies that greater the dynamism
of the environment, the better will RQs performance be, in comparison to LQ.
Another positive outcome of reducing the number of nodes participating per
query is that when coupled with a power management protocol, it enables more
nodes to sleep, thereby increasing network lifetime.

As expected, B-RQ also achieves huge communication cost savings over GQ.
In particular, it achieves 70% and 62% lower communication cost for a start time
of 50s and 200s, respectively. Note that, the large differences in communication
cost between B-RQ, LQ and GQ, are not clearly visible in Figure 6(d), due
to the logarithmic scale. The low communication cost of B-RQ is one of its
main advantages, which enhances its navigation performance and also potentially
increases network lifetime.

Overall, B-RQ achieves a higher success ratio and a significantly lower com-
munication cost than all the other protocols as a result of its efficient forwarding
and query reply rules. These results highlight the effectiveness of optimizing the
query protocol in accordance with the navigation algorithm, in order to navigate
successfully in dynamic environments.

7.2 Performance in the Presence of Node Failures

Since it is important to design robust protocols that can tolerate node fail-
ures caused by harsh environments, we now compare the performance of the
algorithms in the presence of node failures. Nodes are assumed to fail at a tem-
perature of 150oC.

Performance Comparison. In this sub-section, we compare the navigation
performance and communication cost of LQ, DA, B-RQ and R-RQ. GQ is
not considered in these simulations, due to its poor performance in the earlier
simulations.

Success Ratio: As shown in Figure 7(a) R-RQ effectively improves the success
ratio of B-RQ when the mobile entity starts at 50s, at which time many new
nodes start failing, due to the spreading fire. This is because R-RQ informs the
mobile entity about failed nodes, thus warning the mobile entity about danger
areas. On the other hand, R-RQ does not outperform B-RQ when the mobile
entity starts at 200s, since by that time, the environment is relatively stable.
In contrast, the performance of LQ and DA are affected significantly by node
failures. R-RQ achieves upto 49% improvement in success ratio over LQ and up
to 77% improvement in success ratio over DA. This demonstrates that R-RQ is
particularly important in dynamic environments.

Communication Cost: Figure 7(b) shows the communication cost incurred by
B-RQ, R-RQ and LQ. The commmunication cost of DA is not shown as it is
significantly higher than the other protocols. As expected, the communication
cost of LQ is much higher than that of B-RQ and R-RQ since it queries all
the nodes in a query area. The communication cost of R-RQ is only slightly

Roadmap Query for Sensor Network Assisted Navigation 35

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

B-RQ R-RQ LQ DA

S
u

cc
es

s
R

at
io

Start time 50s
Start time 200s

(a) Success Ratio

0

500

1000

1500

2000

2500

B-RQ R-RQ LQ

N
u

m
be

r
of

 m
sg

s

Start time 50s
Start time 200s

(b) Communication Cost

Fig. 7. Performance comparison in the presence of node failures

more than that of B-RQ since it requires nodes to respond if they have failed
neighbors even if their temperatures are below the threshold. More specifically,
R-RQ achieves 73% and 69% savings in communication cost over LQ, at a start
time of 50s and 200s, respectively.

8 Conclusion

In summary, we propose a novel approach that integrates roadmap-based nav-
igation with efficient query protocols for navigation in dynamic environments.
We present the Roadmap Query (RQ) protocol that is specially optimized for
collecting fresh data needed for navigation in the presence of dynamic obstacles
and sensor node failures. We also present a mobile-agent based implementation
of our navigation approach on a physical testbed consisting of Mica2 motes and
a robot. Our simulation results demonstrate that RQ can significantly improve
the success ratio of navigation while introducing minimum communication cost
under realistic fire scenarios and node failures. Our results highlight the impor-
tance of joint optimization of navigation and WSN query protocols for efficient
navigation in dynamic environments.

Acknowledgement

This work is funded in part by the NSF under an ITR grant CCR-0325529 and
the ONR under MURI research contract N00014-02-1-0715.

References

1. Li, Q., Rosa, M.D., Rus, D.: Distributed algorithms for guiding navigation across
a sensor network. (In: MobiCom’03)

2. Batalin, M.A., Sukhatme, G.S., Hatting, M.: Mobile robot navigation using a
sensor network. (In: ICRA’04)

3. Verma, A., Sawant, H., Tan, J.: Selection and navigation of mobile sensor nodes
using a sensor network. (In: PerCom’05)

4. Corke, P., Peterson, R., Rus, D.: Coordinating aerial robots and sensor networks
for localization and navigation. (In: DARS’04)

36 S. Bhattacharya et al.

5. Alankus, G., Atay, N., Lu, C., Bayazit, B.: Spatiotemporal query strategies for
navigation in dynamic sensor network environments. (In: IROS’05)

6. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Automat. 12(4) (1996) 566–580

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. 6th edn.
MIT Press and McGraw-Hill Book Company (1992)

8. Whitehouse, K., Sharp, C., Brewer, E., Culle, D.: Hood: a neighborhood abstrac-
tion for sensor networks. (In: MobiSys’04)

9. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multhop
routing in sensor networks. (In: Sensys’03)

10. Xing, G., Wang, X., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and
connectivity configuration in wireless sensor networks. TOSN 1(1) (2005) 36–72

11. Bhattacharya, S., Atay, N., Alankus, G., Lu, C., Roman, G.C., Bayazit, B.:
Roadmap query for sensor network assisted navigation in dynamic environments.
In: Technical Report WUCSE-05-41, Department of Computer Science and Engi-
neering, Washington University in St. Louis. (2005)

12. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of
adaptive wireless sensor network applications. (In: ICDCS’05)

13. Fok, C.L., Roman, G.C., Lu, C.: Mobile agent middleware for sensor networks: An
application case study. (In: IPSN’05)

14. (TinyOS community forum) http://www.tinyos.net/.
15. Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. (In:

ASPLOS X)
16. (Activmedia) http://www.activemedia.com.
17. McGrattan, K.: Fire dynamics simulator (version 4) technical reference guide.

National Institute of Standards and Technology (2004)

Stabilizing Consensus in Mobile Networks

Dana Angluin, Michael J. Fischer, and Hong Jiang�

Department of Computer Science, Yale University

Abstract. Inspired by the characteristics of biologically-motivated sys-
tems consisting of autonomous agents, we define the notion of stabilizing
consensus in fully decentralized and highly dynamic ad hoc systems. Sta-
bilizing consensus requires non-faulty nodes to eventually agree on one of
their inputs, but individual nodes do not necessarily know when agree-
ment is reached. First we show that, similar to the original consensus
problem in the synchronous model, there exist deterministic solutions
to the stabilizing consensus problem tolerating crash faults. Similarly,
stabilizing consensus can also be solved deterministically in presence of
Byzantine faults with the assumption that n > 3f where n is the num-
ber of nodes and f is the number of faulty nodes. Our main result is a
Byzantine consensus protocol in a model in which the input to each node
can change finitely many times during execution and eventually stabi-
lizes. Finally we present an impossibility result for stabilizing consensus
in systems of identical nodes.

1 Introduction

1.1 Fault-Tolerant Consensus

Coordination problems in distributed systems require nodes to agree on a com-
mon action. Lamport, Pease, and Shostak formulated this problem as the agree-
ment problem [1, 2], which remains a fundamental problem in distributed com-
puting. It is usually trivial to reach agreement in reliable systems. In practice,
however, different components in a system don’t always work correctly. Mission-
critical control systems require agreement among non-faulty components even
when some components are faulty. The problem was originally defined for Byzan-
tine faults in which a faulty node in a network can behave arbitrarily. More
benign are crash faults in which a faulty node stops all activity at a certain
point in the execution but behaves correctly until then. Sometimes the recov-
ery of crashed processes is also considered. Lamport, Shostak, and Pease [1, 2]
gave a synchronous f -resilient solution for any f with authentication in the case
of a complete communication graph and proved the impossibility result that
consensus is not solvable without authentication unless the number of faulty
processes is less than one-third of the total. Dolev [3] considered the Byzantine
agreement problem in networks that are not completely connected. The first
polynomial communication algorithm for Byzantine agreement was designed by
� Supported by NSF grant ITR-0331548.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 37–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 D. Angluin, M.J. Fischer, and H. Jiang

Dolev and Strong [4], whose work was subsequently improved by Dolev, Fis-
cher, Fowler, Lynch, and Strong [5]. Fischer, Lynch, and Paterson [6] showed
that in a fully asynchronous environment, there is no 1-resilient solution to the
consensus problem, even for crash failure. A survey on fault-tolerant consensus
by Fischer [7] provides an overview of early work on fault-tolerant distributed
systems.

One of the reasons for the impossibility results for fault tolerance in the asyn-
chronous model is that messages may be delayed arbitrarily as long as they are
eventually delivered. Therefore, there is no way to distinguish between a crashed
node and a slow node, or a lost message and a delayed message. Since distributed
algorithms are expected to terminate, each non-faulty process is required to com-
mit to an output value at some point in its execution when it knows the decision
value that all non-faulty processes will agree on.

1.2 Motivation

In some persistent ad hoc networks, especially biologically-motivated systems, it
is not important that each process be aware of the global status. For example,
imagine the aggregation and migration of birds. During the initial gathering or
a direction change, the movement of the birds is usually chaotic. Although each
bird is not aware of the status of the whole flock, the flock eventually converges
to a stable state in which all the birds head in roughly the same direction. Each
bird adjusts its heading according to what it perceives but does not commit to
a direction at any point, because it is possible that some other birds are still
changing directions.

Vicsek et al. [8] described a compelling model of dynamics in order to investi-
gate the emergence of self-ordered motion in systems of autonomous agents with
biologically motivated interaction. Each agent’s heading is updated from time
to time according to a local rule. They demonstrated that all agents eventu-
ally move in the same direction despite the absence of centralized coordination
and the changing neighbor set of each agent as the system evolves. Agents do
not know accurately when the whole system converges, except for an estimation
of expected convergence time when the agents communicate synchronously and
certain topological properties are guaranteed as the network evolves. Jadbabaie,
Lin, and Morse [9] provided a theoretical explanation for the above behavior and
investigated other similarly inspired models. Agent failures were not considered
in these two papers.

This model is related to some practical applications. For example, imagine the
nodes as unmanned planes that cooperate with each other to determine some
common behavioral parameters such as direction or speed. Some of the planes
might be captured by enemy forces who inject malicious programs in order to
disrupt the consistency of the system. It is desirable if system consistency could
be maintained as long as not too many nodes are compromised.

We discuss asynchronous fault-tolerant consensus in a similar scenario. We
relax the requirement of the original consensus problem that agents know when
a decision is final. We also investigate persistent distributed systems that run

Stabilizing Consensus in Mobile Networks 39

for an extended period and whose inputs may change from time to time, as well
as systems that have incomplete or evolving interaction graphs. We also prove
that stabilizing Byzantine consensus cannot be solved in systems consisting of
identical nodes.

1.3 Other Related Work

Because agreement is a fundamental problem in building distributed systems,
and most practical systems are not synchronous, various methods have been used
to circumvent the impossibility result in [6]. In many practical systems, nodes
periodically send “I’m alive” messages (pings) to each other to detect possible
crashes. In theoretical models, such techniques are captured by the abstract
concept of failure detectors [10]. Generally, a failure detector is a module that
provides information to processes about previous failures. Failure detectors differ
in strength depending on whether they are always correct or whether they detect
all failures [11]. Some failure detectors can be implemented in practical systems
using timeouts.

The agreement problem can be solved in a randomized asynchronous model
which allows each process to flip coins during execution. The problem statement
is modified to require that the processes eventually terminate with probability 1.
The first randomized solution for consensus was given by Ben-Or [12]. Rabin [13]
and Feldman [14] produced more efficient algorithms.

The k-agreement problem [15] is a weakened problem statement that only
requires all the decisions to be in a set of k values. Another weakened variation
is the approximate agreement problem [16] which allows inputs, decisions, and
messages to be real numbers and requires the difference between any two decision
values to be within a small tolerance ε and that any decision value is within the
range of input values.

Lamport invented the PAXOS algorithm [17] for a partially synchronous
model of distributed systems. Asynchrony is considered timing failure. Other
failures allowed are loss, duplication and reordering of messages, and crash failure
of processes. Process recovery is also allowed. The PAXOS algorithm guarantees
safety, meaning that in spite of timing, process, and link failures, and process
recoveries, non-faulty nodes do not decide on inconsistent values. When the sys-
tem stabilizes (no failure occurs, and a majority of the processes are active) for
a sufficiently long time, termination can also be achieved.

Although mobile computing has been under active study for many years, re-
search on fault-tolerance issues has been limited, and many desirable goals are
yet to be achieved. The problems studied include ad hoc routing [18, 19], which
allows nodes to exchange data despite the limited transmission range of wireless
interfaces by routing messages through multiple network hops, broadcasting and
multicasting [20], transaction control [21, 22, 23], group communication [24, 25],
leader election [26], and mutual exclusion [27]. Angluin et al. [28] proposed self-
stabilizing solutions to problems like leader election, ring orientation, token circu-
lation, and spanning-tree construction in a model of pairwise interacting anony-
mous finite-state sensors under a global fairness condition. Basile, Killijian, and

40 D. Angluin, M.J. Fischer, and H. Jiang

Powell [29] gave a survey of fault tolerance in mobile wireless networks. The fault
models considered in existing works are usually mobility, network partitioning,
and sometimes crash failures. Byzantine node failures have generally not been
considered.

2 Model and Definitions

We consider a network of n mobile nodes. Each has a unique ID ∈ [1, n], an
input port, and an output port to send outputs to an external observer. By
assigning unique IDs to the nodes, we give each node the ability to distinguish
between different nodes. Also, the IDs are assumed to be unforgeable in the
sense that a faulty node cannot impersonate a non-faulty node in direct com-
munications (i.e. messages not involving any intermediate nodes). Each node
communicates with other nodes by sending out messages from time to time. A
message may be received by other nodes that are close enough to the sender,
or they may fail to be received by anyone due to a transmission error or be-
cause everyone is out of range. The sender of a message does not know whether
a certain message is received by some node, nor does it know the identities of
the nodes that do receive the message. We assume the fairness condition that
if some node i sends messages infinitely often, every other node receives mes-
sages from i infinitely often. We remark that this model is weaker than the
asynchronous model of distributed systems in [6] because we do not assume that
the asynchronous communication channels are reliable. Therefore one cannot
expect to solve the terminating consensus problem in our model in presence
of faults.

In the literature, two kinds of failures (equivalently, faults) are usually con-
sidered for the consensus problem. The benign type of failure is crash failure: a
faulty node may crash at any time. When a node crashes, it stops operating, oth-
erwise it honestly follows the protocol. We assume that if a node crashes when
sending a message, the incomplete message is discarded by the recipient. Byzan-
tine failures are more severe. A Byzantine node may behave arbitrarily without
the limit of computational power or memory usage to which a non-faulty node
is constrained otherwise.

We define the notion of stabilizing consensus. Instead of requiring that each
node commit to a final output at some point, we assume that each node has
a current output that may change as the execution proceeds. In practical ap-
plications, the output could be interpreted as some parameter that reflects the
behavior of each node. For example, in a flock of mobile nodes, the current
output of each node could be its current speed or current direction.

As in the usual convention, a configuration includes all nodes’ local states
and the pending messages. A configuration C is said to be output-stable if in all
possible executions starting from C, the output of each non-faulty node does not
change. If every non-faulty node outputs x in an output-stable configuration C,
we say the outputs stabilize to x in C.

Stabilizing Consensus in Mobile Networks 41

Definition 1 (Stabilizing Consensus). A protocol P solves the stabilizing
consensus problem if all of the following requirements are satisfied:

Stabilization. The system eventually reaches an output-stable configuration.
Validity. If all nodes have the same input x, the outputs of all non-faulty nodes

eventually stabilize to x.1
Agreement. In any reachable output-stable configuration, all non-faulty nodes

have the same output.

In the following sections, we consider both crash faults and Byzantine faults. We
also discuss consensus in a scenario where each node receives an input that may
change finitely many times and define consensus with stabilizing inputs. Finally
we show that stabilizing consensus cannot be solved in a system consisting of
identical nodes in presence of one Byzantine fault.

3 Stabilizing Consensus with Crash Faults

The following is a simple protocol that solves consensus in the presence of crash
faults, assuming the inputs are non-negative integers. The protocol is based
on the idea of the protocol for synchronous distributed systems from [30]. But
notice that, in general, a node does not know when its output stabilizes, and an
execution does not terminate.

For each node i, xi is its local input (a non-negative integer), and yi is its
output.

– At the beginning, node i sets yi = xi.
– Whenever i is able to send a message, it sends yi.
– Upon receiving message y, node i sets yi = min(yi, y).

The following theorem establishes the correctness of the protocol.

Theorem 1. The above protocol solves stabilizing consensus in presence of f
crash faults for any f < n, where n is the total number of nodes.

Proof sketch. It is easy to see that the outputs will stabilize, because the output
of each node can only decrease and cannot be negative. Also it is clear that the
validity condition is satisfied because if all nodes have the same input value, all
messages will contain this same value, so all nodes will output that value.

For the agreement condition, suppose for the sake of contradiction that two
non-faulty nodes i and j stabilize to different outputs, yi and yj . Without loss
of generality, we assume yi < yj. According to the fairness condition, eventually
j will receive a value of yi from i and set yj = min(yi, yj) = yi. This contradicts
the assumption that the output of j stabilizes to yj.
1 Some authors consider a stronger validity condition that requires agreement on x if

x is the common input value of just the non-faulty nodes. This is equivalent to the
validity condition presented here in the case of Byzantine faults since a Byzantine
faulty node’s behavior is not constrained by its actual input. The same is not true
for crash faults.

42 D. Angluin, M.J. Fischer, and H. Jiang

4 Stabilizing Consensus with Byzantine faults

4.1 A Protocol for Fixed Inputs

In this section we give protocols tolerating Byzantine faults. We assume that
when a node receives a message, it knows the identity of the sender.

We first consider a system where each node i receives a fixed local input xi

at the beginning. For simplicity, we assume xi ∈ {0, 1}. We give a protocol that
tolerates f Byzantine faults, assuming 3f < n where n is the total number of
nodes.

Initially, a node i estimates that every node has input 0. If i’s input is 1,
it always sends its input. It also sends an echo message for another node j if
one or both of two events have occurred: i received j’s input from j at some
time in the past, or i received echo messages for j from sufficiently many (at
least f + 1) nodes. When i receives an echo message for j from enough (at
least n − f) nodes, it changes its estimation of j’s input to 1. The protocol
guarantees that eventually all non-faulty node have the same estimation of any
node j’s input, and if j is non-faulty, the estimation agrees with j’s actual input.
Each non-faulty node outputs 1 when it estimates enough (at least 2f + 1)
nodes have input 1, and it outputs 0 otherwise. A more detailed description
follows.

The state of each non-faulty node i consists of the arrays Ii[n], Ei[n][n] and
Mi[n], in which all elements are initialized to 0.

– When node i is able to send a message, it sends a message including one or
more of the following components:

If xi = 1, it sends (init, i).
For all j such that Ii[j] = 1 or

∑n
k=1 Ei[j][k] ≥ f + 1, i sends (echo, j).

– When i receives (init, j) from j, it sets Ii[j] = 1.
– When i receives (echo, k) from j, it set Ei[k][j] = 1, and if

∑n
k=1 Ei[j][k] ≥

n − f , i sets Mi[j] = 1

Output: The current output of node i is 1 if
∑

j Mi[j] ≥ 2f + 1, otherwise its
output is 0.

It is easy to see that the outputs will stabilize, because each node outputs 0
initially and can flip its output to 1 at most once.

Correctness can be established by verifying the following claims.

Lemma 1. If any non-faulty node i has 1 as input, eventually every non-faulty
node j sets Mj [i] = 1.

Eventually every node receives (init, i) from node i, and all non-faulty nodes will
repeatedly send (echo, i). Therefore any non-faulty node j will receive (echo, i)
from at least n − f nodes and set Mj[i] = 1

Lemma 2. If any non-faulty node i has 0 as input, Mj [i] is always 0 for any
non-faulty node j.

Stabilizing Consensus in Mobile Networks 43

In this case, no non-faulty node receives (init, i) from node i. Suppose node j
is the first non-faulty node that sends (echo, i). It must have been triggered by
receiving (echo, i) from f + 1 faulty nodes, which contradicts the assumption.
A non-faulty node j never sends (echo, i) and receives (echo, i) from at most f
faulty nodes, so it will never set Mj[i] = 1.

Lemma 3. For any i, if Mj[i] stabilizes to 1 in any non-faulty node j, Mk[i]
eventually stabilizes to 1 in any other non-faulty node k.

If any non-faulty node j sets Mj[i] = 1, it must have received (echo, i) from at
least n − f nodes among which there are at least f + 1 non-faulty nodes. The
messages (echo, i) sent by these f +1 nodes are received by all non-faulty nodes,
therefore all non-faulty nodes will send (echo, i) to each non-faulty node k so
that it sets Mk[i] = 1.

Theorem 2. The above protocol solves the stabilizing consensus problem.

Given the above claims, it is easy to see that the protocol satisfies stabilization,
validity, and agreement.

4.2 Stabilizing Inputs

We define a model of stabilizing inputs to a network protocol in which the input
to each node may change finitely many times before it stabilizes to a final value.
We are interested in solving the consensus problem corresponding to the final
stabilized input assignment. This consistent input and output convention makes
a solution suitable as middleware in constructing more complex systems. Here
we define what consensus means in this model.

Definition 2 (Consensus with Stabilizing Inputs). A protocol P solves
consensus with stabilizing inputs if all of the following requirements are satisfied:

Stabilization. If the inputs to the non-faulty nodes stabilize, the system even-
tually reaches an output-stable configuration.

Validity. If all non-faulty nodes have the same stabilized input x, their outputs
eventually stabilize to x.

Agreement. In any reachable output-stable configuration, all non-faulty nodes
have the same output.

Note that fixed inputs are a special case of stabilizing inputs.
The following protocol achieves consensus with stabilizing inputs and tolerates

f Byzantine faults, assuming 3f < n where n is the total number of nodes. We
give only a high-level description of the protocol. Our purpose here is to establish
the possibility of a protocol rather than to present an optimal implementation. In
our description, each node needs to keep track of messages received in the past.
This intensive memory usage could be reduced by garbage-collecting data that is
no longer useful in subsequent computation. We defer details of implementation
and optimization to the full version of the paper.

44 D. Angluin, M.J. Fischer, and H. Jiang

The basic idea of the protocol is similar to the protocol for fixed inputs.
However, the protocol for fixed inputs is biased in the sense that 0 and 1 are
treated differently, whereas the following protocol is not. Many instances of a
consensus protocol are run in parallel. When a node detects that its input has
changed, it tries to restart the instance of the consensus protocol concerning its
input. Each node determines its current output according to the 2f + 1 most
stable (least-frequently changed) estimated inputs.

Each non-faulty node i maintains two arrays Mi[n] and Ci[n]. The elements
of Mi are initialized to 0, and the elements of Ci are initialized to −1. It also
has a counter ci initially equal to 0. Let xi ∈ {0, 1} denote the current reading
of the input port. Node i also maintains a variable x′

i and initially sets x′
i = xi.

– When i is able to send a message:
1. If xi �= x′

i, set x′
i = xi and ci = ci + 1;

2. Always send (init, i, xi, ci);
3. For all j, xj , and cj , such that i has received (init, j, xj , cj) from j, or

i has received (echo, j, xj , cj) from at least f + 1 different nodes, send
(echo, j, xj , cj).

– When i receives (init, j, xj , cj) from j, if cj ≤ Ci[j], the message is ignored,
otherwise it records this message in its event log. If i receives contradicting
init messages from the same node ((init, j, xj , cj) and (init, j, x′

j , cj) with
xj �= x′

j), only the first message is recorded.
– When i receives (echo, j, xj , cj), if cj ≤ Ci[j], the message is ignored,

otherwise it records this message in its event log, and if the same message
has been received from at least n − f different nodes, i sets Mi[j] = xj and
Ci[j] = cj

Output:

– Define the stable set Si to be a set of 2f + 1 distinct integers in [1 . . . n]
that minimizes

∑
j∈Si

Ci[j]. In case of ties, the set that minimizes
∑

x∈Si
x

is chosen.
– Node i outputs 1 if

∑
j∈Si

Mi[j] ≥ f + 1, otherwise it outputs 0.

The variable ci is a counter for node i to keep track of how many times its
input has changed. Each node also uses the counter array Ci to keep track of the
number of times the other nodes change their inputs. Because messages can be
delivered out of order, and “echo” messages corresponding to inputs at different
time can co-exist in the network, the counters also ensure that obsolete messages
are ignored.

Lemma 4. The invariant Ci[j] ≤ cj holds in any real-time snapshot of the
system for any non-faulty nodes i and j.

Proof. Suppose at some point in real time, Ci[j] = a, cj = b and a > b. Then
i must have received (echo, j, m, a) for some m from at least n − f nodes.
Therefore j must have sent (init, j, m, a), because at most f nodes send (echo,
j, m, a) otherwise. This contradicts a > b. Because j would have set cj = a
before sending (init, j, m,a), it must be true that b ≥ a.

Stabilizing Consensus in Mobile Networks 45

Lemma 5. Let i and j be two non-faulty nodes. If i’s input stabilizes to x, Mj[i]
eventually stabilizes to x.

Proof. Suppose Mj [i] stabilizes to y �= x. Then j must have received (echo, i, y,
a) for some a from at least n − f nodes, so i must have sent (init, i, y, a) to at
least f + 1 nodes. Since x is the final input of i, eventually i sends (init, i, x, b)
for some b to all nodes. According to lemma 4 a < b. Suppose the time j receives
(echo, i, y, a) from the (n− f)th node is t, and the time it receives (echo, i, x, b)
from the (n− f)th node is t′. If t < t′, j will set Mj [i] = x. If t′ < t, y is ignored
by j, because at t the value of Cj [i] can only be greater than or equal to b and
a < b. Therefore Mj [i] couldn’t have stabilized to y.

Lemma 6. If i and j are non-faulty nodes, for any k, if Mi[k] stabilizes to x,
Mj[k] also stabilizes to x.

Proof. Suppose Mi[k] stabilizes to x, Mj[k] stabilizes to y, and x �= y. Let (echo,
k, x, a) and (echo, k, y, b) be the corresponding messages received by i and j
respectively when they assigned the final values to Mi[k] and Mj[k].

1. Without loss of generality, we assume a > b. Since i must have received
(echo, k, x, a) from at least n − f nodes, there must be at least f + 1 non-
faulty nodes among them. All non-faulty nodes would receive (echo, k, x, a)
from these f +1 nodes, and therefore would send (echo, k, x, a) to all nodes
they encounter. Thus j would also receive (echo, k, x, a) from at least n− f
nodes. Because a > b, Mj[k] could not have stabilized to y.

2. If a = b, i receives (echo, k, x, a) from n − f nodes, and j receives (echo, k,
y, b) from n− f nodes. This cannot happen, because n > 3f , and according
to the protocol, a non-faulty node only sends one of the two messages but
not both.

Therefore Mi[k] and Mj [k] cannot stabilize to different values for any k. This
property guarantees that all non-faulty nodes will eventually agree on the sta-
bilized entries of vector M .

Lemma 7. Let i and j be any non-faulty nodes. For any k, if Ci[k] stabilizes to
c, Cj [k] also stabilizes to c.

Proof. Suppose Ci[k] stabilizes to c1, Cj [k] stabilizes to c2 �= c1. Without loss
of generality, we assume c1 > c2. Let (echo, k, x, c1) and (echo, k, y, c2) be the
corresponding messages received by i and j respectively when they assign the
final values of Ci[k] and Cj [k]. Since i must have received (echo, k, x, c1) from
at least n− f nodes, there must be at least f +1 non-faulty nodes among them.
All non-faulty nodes would receive (echo, k, x, c1) from these f + 1 nodes, and
therefore would send (echo, k, x, c1) to all nodes they encounter. j would also
receive (echo, k, x, c1) from at least n − f nodes. Because c1 > c2, Cj [k] could
not have stabilized to c2. This property guarantees that all non-faulty nodes will
eventually agree on the stabilized entries of vector C.

46 D. Angluin, M.J. Fischer, and H. Jiang

Lemma 8. In any execution of the above protocol, if the inputs to the non-faulty
nodes stabilize, the outputs of the non-faulty nodes eventually stabilize.

Proof. Let i be any non-faulty node. If xi stabilizes, ci also stabilizes, because
they always change at the same time. According to lemmas 4 and 5, Mj[i] and
Cj [i] also stabilize for any non-faulty j. According to lemma 6 and lemma 7,
all non-faulty nodes will eventually agree on the stabilized entries of the arrays
M and C (at least 2f + 1 entries in each), which include entries corresponding
to non-faulty nodes and entries corresponding to faulty nodes that stabilize at
all. If some of the entries in the M arrays corresponding to faulty nodes do not
stabilize, the corresponding entries in the C arrays of the non-faulty nodes will
eventually be greater than the stabilized entries, because the entries of C arrays
are non-decreasing. Only the 2f + 1 nodes corresponding to the C entries with
the smallest values affect the output, therefore the faulty nodes will eventually
be ignored.

Theorem 3. The above protocol solves consensus with stabilizing inputs.

If all non-faulty nodes have x ∈ {0, 1} as input, according to lemma 5, for any
non-faulty node i at least f + 1 Mi entries corresponding to the stable set will
be x, therefore all non-faulty nodes will output x, and the validity condition is
satisfied. According to lemmas 6 , 7, and 8, agreement and stabilization are also
satisfied.

5 Impossibility of Stabilizing Byzantine Consensus
Among Identical Nodes

In this section we give the impossibility result that stabilizing consensus cannot
be solved in the presence of a single Byzantine fault in a network of nodes that
are identical other than their inputs. We note that any subconfiguration of an
output-stable configuration is also output-stable.

Theorem 4. The stabilizing consensus problem cannot be solved in a set of
identical nodes in the presence of one Byzantine fault.

Proof. Assuming there is a protocol P that solves this problem, consider a system
C = C0 ∪ C1(C0 �= φ, C1 �= φ), in which C0 is the set of nodes with input 0,
and C1 is the set of nodes with input 1. There exists a finite execution E of
P in C that reaches an output-stable configuration in which the outputs of all
nodes have stabilized to the same value. Without loss of generality assume the
common output value is 0. Consider another system C′ = {a}∪C1, in which a is a
Byzantine node, and C1 is the same as in C. Node a runs a two-phase protocol.
In phase one, when it is a’s turn to send a message, it nondeterministically
chooses whether to remain in phase one or move to phase two. If it remains in
phase one, it chooses one of the messages sent by nodes in C0 in the execution E
and sends that message to the recipient. Upon entering phase two, a faithfully
imitates a nondeterministically chosen non-faulty node i from C0 starting from

Stabilizing Consensus in Mobile Networks 47

the state i is in at the end of the execution E. There exists an execution E′ of P
in C′ that simulates E, in the sense that every time there is a message in E sent
between a node in C0 and a node in C1, there is a corresponding message in E′

sent between a and the node in C1, and at the end of E′, node a will faithfully
simulate one node in C0. Thus, the configuration of the system C′ at the end
of E′ is a subconfiguration of the system C at the end of E, and will continue
so at every subsequent time. Thus the outputs of the non-faulty nodes (those
in C1) will remain 0 no matter how execution proceeds from this point. This
violates the validity condition, because the inputs of all non-faulty nodes in C′

are 1.

The proof does not depend on the specific communication model and fairness
assumption; therefore stabilizing Byzantine consensus is impossible even with the
strong fairness condition and two-way interaction model in [28], and unbounded
memory. Note that theorem 4 rules out not only deterministic solutions, but also
randomized solutions2, in the sense that for any candidate protocol P , there
exists an εP > 0, such that the probability of an execution failing to reach
consensus is always greater than εP . εP is any constant less than the probability
that C′ successfully simulates C to the point when all non-faulty nodes are
output-stable.

6 Discussion

6.1 Upper Bound on Faults

It was shown that in synchronous systems, the number of Byzantine nodes must
be strictly less than one third of the total number of nodes for any solution to
the agreement problem [31, 2]. This bound still holds for stabilizing consensus in
our model. We omit the proof here, because the original proof in [31] does not
rely on synchrony and can be adapted to our model easily.

6.2 General Graphs

In some applications the movement of each node is restricted to a certain region,
therefore some nodes may not be able to receive messages from some other
nodes. It was proven in [3] that the Byzantine agreement problem can be solved
in an n-node synchronous network graph G, tolerating f faults, if and only if the
n > 3f bound holds and G is at least (2f + 1)-connected. This result can also
be transferred to our model. Intuitively, since G is at least (2f + 1)-connected,
there are at least 2f + 1 disjoint paths between any two nodes. Let each node
send each message through 2f +1 disjoint paths. Then the majority of the copies
the recipient receives are sent via paths that do not contain faults. Thus, it is
possible to implement reliable communication between any two nodes, and the
2 A randomized solution would guarantee that consensus be reached with probabil-

ity 1, assuming some probabilistic distribution of the nodes’ coin flips and the choices
of the scheduler.

48 D. Angluin, M.J. Fischer, and H. Jiang

above algorithms still work for such communication graphs with messages sent
over multi-hop links.

In some systems, nodes are moving around, but the fairness condition does not
hold, meaning that some nodes do not have infinitely many chances to receive
messages from some other nodes. Some nodes only have chance to receive finitely
many messages from some others, and some won’t get close enough at all. In
their self-stabilizing group membership protocol, Dolev, Schiller and Welch [25]
used random walks of a mobile agent as a means of information dissemina-
tion. Similarly, one or more non-Byzantine message carriers could be used as
a message-ferrying service to simulate our communication model. The message
carriers do not have to be reliable as long as they successfully deliver messages
infinitely often.

6.3 Communication Model and Message Overhead

In our model, there is no reliable way for two nodes i and j to make sure that a
message sent from i is received by j and that both nodes are aware of the event.
As a consequence, all non-faulty nodes send infinitely many messages since they
never know when it is safe to stop sending.

If we augment the model with a stronger communication mechanism by which
the sender of a message can learn whether the message is received and if so by
whom, the protocol could be made eventually quiescent, that is, once the inputs
have stabilized, each non-faulty node eventually stops sending messages. In our
protocol, each node initially only needs to make sure every node has received its
input. After that, it could enter a passive mode in which it listens to other nodes
and only sends messages in response to messages received. When it knows that
its response message has been received by all necessary recipients defined by the
protocol, it can again become passive. Eventually all non-faulty nodes enter the
passive mode and do not initiate new messages. According to our protocols, the
faulty nodes that keep sending messages are eventually ignored, and the subsys-
tem consisting of the non-faulty nodes becomes quiescent. Note that this does
not mean the protocol terminates, because generally each node does not know
whether other non-faulty nodes are passive, but a node can conserve energy
by not sending unnecessary messages. This suggests that energy-efficient imple-
mentations of our protocols are possible when appropriate lower-level service is
provided, either by a lower-level protocol or by additional devices.

7 Conclusions and Future Work

In this paper we defined and investigated fault-tolerant stabilizing consensus in
a model inspired by natural phenomena. We considered crash faults and Byzan-
tine faults in fully asynchronous and decentralized mobile networks, as well as
systems with stabilizing inputs and systems with incomplete or evolving con-
nectivity. The algorithms are useful in controlling distributed systems, such as
sensor networks, that simulate certain biological behaviors. They are also use-
ful as a middleware layer that provides service to higher-level protocols. One

Stabilizing Consensus in Mobile Networks 49

drawback of the algorithm for stabilizing inputs is that it involves unbounded
counters, unless there is a bound on the maximum number of times the in-
puts could change. It is open whether there exists a protocol for this problem
with bounded memory. In many practical ad hoc networks, the graph represent-
ing possible communications changes over time. It is open for future research
whether stabilizing consensus can be solved in these systems without additional
message carriers, possibly using authentication and a fault-tolerant ad-hoc rout-
ing protocol.

References

1. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Advances
in Ultra-Dependable Distributed Systems, N. Suri, C. J. Walter, and M. M. Hugue
(Eds.). IEEE Computer Society Press (1995)

2. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27 (1980) 228–234

3. Dolev, D.: The byzantine generals strike again. Journal of Algorithms 3(1) (1982)
14–30

4. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: Proceedings of the 14th annual ACM symposium on Theory of computing, San
Francisco, California, United States (1982) 401–407

5. Dolev, D., Fischer, M.J., Fowler, R., Lynch, N.A., Strong, H.R.: An efficient algo-
rithm for byzantine agreement without authentication. Information and Control
52(3) (1982) 257–274

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2) (1985) 374–382

7. Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief
survey). Technical Report YALEU/DCS/TR-273, Yale University (1983)

8. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase
Transition in a System of Self-Driven Particles. Physical Review Letters 75 (1995)
1226–1229

9. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control
(2002)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

11. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4) (1996) 685–722

12. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols. In: Proceedings of the Second Annual ACM Synmposium on Principles
of Distributed Computing, Montreal, Quebec, Canada (1983) 27–30

13. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on
Foundations of Computer Science, IEEE, Los Alamitos, California, United States
(1983) 403–409

14. Feldman, P.N.: Optimal Algorithms for Byzantine Agreement. PhD thesis, Mas-
sachusetts Institute of Technology (1988)

15. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation 105(1) (1993) 132–158

50 D. Angluin, M.J. Fischer, and H. Jiang

16. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching ap-
proximate agreement in the presence of faults. Journal of the ACM 33(3) (1986)
499–516

17. Lamport, L.: The part-time parliament. ACM Transaction on Computer Systems
16(2) (1998) 133–169

18. Beraldi, R., Baldoni, R. The Electrical Engineering Handbook Series. In: The
handbook of ad hoc wireless networks. CRC Press, Inc. Boca Raton, FL, USA
(2003) 127–148

19. Royer, E., Toh, C.: A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications (1999) 46–55

20. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: ACM International Symposium on Mobile Ad Hoc Networking and
Computing. (2002) 194–205

21. Barbara, D.: Mobile computing and databases - a survey. Knowledge and Data
Engineering 11(1) (1999) 108–117

22. Bobineau, C., Pucheral, P., Abdallah, M.: A unilateral commit protocol for mobile
and disconnected computing. In: 12th International Conference on Parallel and
Distributed Computing Systems. (2000)

23. Pitoura, E., Bhargava, B.K.: Data consistency in intermittently connected dis-
tributed systems. Knowledge and Data Engineering 11(6) (1999) 896–915

24. Briesemeister, L.: Group Membership and Communication in Highly Mobile Ad
Hoc Networks. PhD thesis, School of Electrical Engineering and Computer Science,
Technical University of Berlin, Germany (2001)

25. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communi-
cation in ad-hoc networks. In: 21st Symposium on Reliable Distributed Systems.
(2002)

26. Malpani, N., Welch, J.L., Vaidya, N.H.: Leader election algorithms for mobile ad
hoc networks. In: Proc. Fourth International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications. (2000) 96–103

27. Walter, J.E., Welch, J.L., Vaidya, N.H.: A mutual exclusion algorithm for ad hoc
mobile networks. Wireless Networks 7(6) (2001) 585–600

28. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Ninth International Conference on Principles of Distributed Systems.
(2005) 79–90

29. Basile, C., Killijian, M.O., Powell, D.: A survey of dependability issues in mobile
wireless networks. Technical report, Laboratory for Analysis and Architecture of
Systems, National Center for Scientific Research, Toulouse, France (2003)

30. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal of Computing 12(4) (1983) 656–666

31. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distributed Computing 1(1) (1986) 26–39

When Birds Die:
Making Population Protocols Fault-Tolerant

Carole Delporte-Gallet1, Hugues Fauconnier1,
Rachid Guerraoui2, and Eric Ruppert3

1 Université Paris 7, France
2 MIT, USA and EPFL, Switzerland

3 York University, Canada

At vobis male sit, malae tenebrae
Orci, quae omnia bella devoratis:

tam bellum mihi passerem abstulistis. [6]

Abstract. In the population protocol model introduced by Angluin et
al. [2], a collection of agents, which are modelled by finite state machines,
move around unpredictably and have pairwise interactions. The ability
of such systems to compute functions on a multiset of inputs that are ini-
tially distributed across all of the agents has been studied in the absence
of failures. Here, we show that essentially the same set of functions can
be computed in the presence of halting and transient failures, provided
preconditions on the inputs are added so that the failures cannot imme-
diately obscure enough of the inputs to change the outcome. We do this
by giving a general-purpose transformation that makes any algorithm for
the fault-free setting tolerant to failures.

1 Introduction

Consider an ad hoc mobile network in which each agent is a very simple com-
ponent, such as a tiny sensor with very severe constraints on memory and
power. Such systems have been envisioned, for example, in Berkeley’s Smart
Dust project [10]. An agent can communicate with other nearby agents through
wireless communication. To make use of data collected by the agents of such a
system, it is necessary to aggregate the data in some way [11, 13].

Angluin et al. [2] introduced the notion of a computation by a population
protocol to model this situation. In their model, the computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come into contact with each other. The goal is to ensure that every agent
can eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur). The agents are simple
devices, and can be represented as finite state machines. The abstraction also
makes absolutely minimal assumptions about the movement of the system’s com-
ponents. In particular, the algorithms designed for such systems cannot dictate

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 51–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 C. Delporte-Gallet et al.

the movement of the agents. Can interesting computations still be performed in
such a model? Angluin et al. showed the answer is yes, assuming no agents fail.
For example, protocols exist to compute parity, majority and constant-threshold
functions, as well as boolean combinations of such functions.

A motivating example for their model was a flock of birds, in which each bird
carries a monitoring device that measures the bird’s body temperature. The
devices can signal other devices within a small distance. They showed that this
sensor network could be used, for example, to determine whether at least five
birds in the flock have an elevated temperature, to trigger an alert indicating that
there might be an illness sweeping across the flock. In this paper, we study what
happens when some of those ill birds drop dead: Can interesting computations
be done in the population protocol model in a way that tolerates failures?

If malicious failures can occur, it is very difficult to do anything useful in the
model: a single Byzantine agent (in collusion with the adversarial scheduler of
interactions) could move around the system, driving each agent into an arbitrary
reachable state by having a sequence of interactions with it. Thus, we consider
two types of less catastrophic failures. A crash failure causes an agent to cease
interacting with other agents. A transient failure is a momentary failure that
can arbitrarily corrupt the state of an agent. The agent continues executing its
algorithm correctly after the transient failure occurs. Transient failures include,
as a special case, sensing failures, which cause the input to an agent to be
incorrect. This is because the input is part of the state of an agent and can
therefore be corrupted by the transient failure. However, transient failures are
more general, since they can affect the entire state of the agent. For example,
they can corrupt any partial data that the agent has collected, as well as its
“programme counter” which keeps track of what part of the algorithm it is
executing. (Such general transient failures might be caused by electromagnetic
interference from the environment during an interaction or by soft errors due to
alpha particle strikes.) We shall assume that both crash failures and transient
failures can occur in an execution and that we have a known upper bound on
the number of failures of each type that should be tolerated.

Clearly, some functions that can be computed without failures will be im-
possible to compute in a model with failures. For example, if we consider the
possibility of experiencing a single halting failure, a population will not be able
to compute with certainty a threshold function that is 1 if at least five of the
birds are ill and 0 otherwise. Consider an execution with exactly five ailing birds,
one of which dies (along with its sensor) before the bird comes into contact with
any other birds. The output should be 1, but this run cannot be distinguished
by any live agent from a run where there are four feverish birds and the output
should be 0. However, with at most one failure, we can still distinguish whether
the number of ill birds is greater than five or less than five. We discuss two ways
to formalize this. We can restrict the domain of the function to be computed,
by adding a precondition that the number of ill birds will either be greater than
five or less than five. Alternatively, we can say that the protocol will compute
the result correctly when the number of sick birds is different from five, but may

When Birds Die: Making Population Protocols Fault-Tolerant 53

output either 0 or 1 in the case where exactly five birds are sick. We explore
both approaches: the former in Sect. 5 and the latter in Sect. 6.

In short, we show that, for any function that can be computed by a popula-
tion protocol in a failure-free environment, it is possible to design a population
protocol that computes the function in a way that tolerates crash failures and
transient failures, provided preconditions are added or incorrect responses are
permitted for inputs that are very close to other inputs that have a different
response, as described above for the example about birds.

As one might expect, we use replication to achieve fault-tolerance, but in a
way that is different from traditional approaches. Given a protocol that computes
a function in a failure-free environment, we run several copies of the protocol.
Because of the severe limitation on the memory of each agent, we need a con-
stant fraction of the agents to cooperate to simulate one instance of the original
protocol; otherwise there would not be enough space to store the states of all of
the simulated agents. We divide the agents into g groups of approximately equal
size. Each group simulates one instance of the failure-free protocol by having
each agent in the group simulate approximately g agents of the original proto-
col. The value of g is chosen to ensure that the output produced by the largest
number of groups’ simulations is correct.

2 Related Work

The population protocol model was introduced by Angluin, Aspnes, Diamadi,
Fischer and Peralta [2]. They defined the concept of stable computation of a
function in this model, focussing on stable computation of predicates, which
are functions whose output is a binary value. They showed that the predicates
computable in this model include all that can be expressed using Presburger
arithmetic and that they are all included within the complexity class NL.

They also considered variants of the model where interactions are restricted.
First, the interactions can be constrained by considering a particular communi-
cation graph, which has an edge between the nodes that represent two agents if
those agents are permitted to come into contact with each other. Second, they
considered a randomized version of the model, where interactions are chosen ran-
domly and uniformly, and the output must be computed with high probability.
In both cases, the power of the system is increased.

Angluin, Aspnes, Chan, Fischer, Jiang and Peralta [1] further studied the
model with a non-complete communication graph. They described properties
of the communication graph itself that can be computed by the agents in the
system. For example, the system can determine whether it contains an odd cycle.

Angluin, Aspnes, Eisenstat and Ruppert [4] considered population protocols
where the interactions between pairs of agents are one-way. Each interaction has
a sender and a receiver, and the sender cannot discover any information about
the receiver’s state in such an interaction. Full or partial characterizations of the
predicates that can be stably computed (with no failures) in several variants of
this model were given.

54 C. Delporte-Gallet et al.

The question of tolerating failures in the population protocol model was raised
by Delporte-Gallet, Fauconnier and Guerraoui [7]. They described how an ex-
ample protocol can be adapted to tolerate failures. However, their approach is
not generally applicable to all population protocols.

The transient failures that we consider in this paper can corrupt the inter-
nal states of agents arbitrarily. We assume that the number of such failures is
bounded. Research on self-stabilizing systems [8] assumes that any number of
processes can have corrupted states, requiring that the system eventually return
to a correct configuration. Angluin, Aspnes, Fischer and Jiang incorporated the
notion of self-stabilization into the population protocol model [5]. They gave
some self-stabilizing protocols for classical problems such as leader election and
token passing. The types of problems they studied differ from the problems
we discuss here. They concentrated on stably maintaining some property (e.g.
having a unique leader, having a legal colouring of the communication graph),
whereas we focus on computing functions of inputs initially distributed across
the system. This makes it necessary for us to assume a bound on the number of
transient failures, so that those inputs are not lost. Also, we are concerned with
creating a general-purpose transformation that converts an arbitrary algorithm
that works in the failure-free setting into a fault-tolerant algorithm.

The way we transform the specification of a problem for the failure-free pop-
ulation protocol model into a specification for the fault-tolerant model is, in
spirit, analogous to the way such transformations have been done in traditional
distributed systems. Consider for instance the seminal atomic commit problem
from distributed databases [9]. In a failure-free distributed system, one would
typically require a transaction to commit if and only if all servers vote “yes”,
i.e., none detected a concurrency conflict. Such a specification is clearly impos-
sible to implement (even in a synchronous system) if one server can fail: it is
indeed impossible to distinguish an execution where all servers voted “yes” and
one initially crashed, from an execution where this initially crashed server voted
“no”. It is thus typical to allow a transaction to sometimes abort even if all
servers vote “yes” (and one of them fails or is suspected to have failed), or com-
mit a transaction even if a minority of servers vote “no” (e.g., in a replicated
system).

Our approach to describing functions that can be computed in the failure-
prone population protocol model is also related to the condition-based approach
of Mostefaoui, Rajsbaum and Raynal [12]. They described exactly what sort of
precondition must be placed on the possible inputs to the consensus problem in
order for it to become solvable in an asynchronous system with f halting failures
using shared read-write registers.

3 Population Protocols

Our formalization of the population protocol model is based on the work of
Angluin et al. [2]. We present a version that assumes non-deterministic, two-
way interactions can take place between any pair of agents, but also allows
halting failures and transient failures. A halting failure causes an agent to cease

When Birds Die: Making Population Protocols Fault-Tolerant 55

functioning and play no further role in the execution. A transient failure corrupts
the state of an agent, but the agent otherwise follows its algorithm correctly.

Each agent in the system is modelled as a finite state machine, and algorithms
must be uniform: each finite state machine is “programmed” identically and the
programming does not depend on the number of agents in the system. This
makes the model strongly anonymous, since there is not enough space in the
state to give each agent a unique identifier.

Let X be a finite input alphabet and Y be a finite output alphabet. Each
agent is provided with an input drawn from X . Since agents are essentially in-
terchangeable, an input to the system can be thought of as a multiset of elements
from X . Let X be a set of all multisets of elements from X . Let D ⊆ X be the
set of all input multisets that can actually occur. In general, D may be a proper
subset of X , since there may be preconditions on what inputs are permitted.
The goal of an algorithm is to compute a function f : D → Y . Each agent
must eventually output the value of this function for the input multiset that was
initially provided to the agents.

We now describe how to specify a population protocol. Let Q be the finite
set of states that each agent may take. A population protocol is defined by an
input assignment i : X → Q, a transition function δ : Q×Q → P(Q×Q)−{∅},
and an output assignment o : Q → Y . (The notation P(S) is used to denote the
power set of S.) If two agents in states q1 and q2 encounter each other, they can
change into states q′1 and q′2, where (q′1, q′2) ∈ δ(q1, q2). Without loss of generality,
assume the transition function is symmetric: δ(q1, q2) = δ(q2, q1). The protocol
is called deterministic if δ(q1, q2) is a singleton set for all q1, q2 ∈ Q.

Let I ∈ D be an input for the system. An execution of the protocol on input
I is an infinite sequence of configurations, C0, C1, C2, . . ., each of which is a
multiset of states drawn from Q. The initial configuration C0 is the multiset
{i(x) : x ∈ I}. The configuration Ck must be obtainable from Ck−1 by one of
the following four types of transitions:

Ordinary transition: Ck = Ck−1 −{q1, q2}∪{q′1, q′2} where {q1, q2} ⊆ Ck−1 and
(q′1, q′2) ∈ δ(q1, q2).

Halting failure: Ck = Ck−1 − {q}.
Transient failure: Ck = Ck−1 − {q} ∪ {q′}.
Null step: Ck = Ck−1.

The output of an agent in state q is o(q). We say that the execution stably
outputs v ∈ Y if every agent eventually outputs v and never changes its output
thereafter. Formally, this means there is an i such that for all j > i, o(q) = v for
every q ∈ Cj .

If every sequence of interactions is considered to be a possible execution in the
model, it would be possible to have isolated agents that never interact with one
another. So the model must incorporate a fairness guarantee. Simply requiring
that every pair of agents eventually meet is insufficiently strong for some in-
teresting protocols, since the two agents might meet only at inopportune times,
when their states prevent a particular kind of interaction from happening. So the
research on population protocols has assumed a stronger fairness condition. In a

56 C. Delporte-Gallet et al.

fair execution, if a configuration C occurs infinitely often and a configuration C′

can be reached from C by an ordinary transition, then C′ occurs infinitely often.
If, for example, we associate probabilities with different interactions, then an
execution will be fair with probability 1. A protocol stably computes a function
f : D → Y if, for every input I ∈ D, every fair execution on input I stably
outputs f(I).

4 The Simulation

In this section, we describe how any population protocol A that stably computes
a function f in a failure-free setting can be adapted to run in a setting where
a bounded number of crash and transient failures can occur. To do this, we
construct an algorithm B that divides agents into groups and simulates, within
each group, an execution of the original protocol A. We shall show in Sect. 5 that,
if we add a precondition on the inputs, this simulation will correctly compute f .
We first define the kind of precondition on the inputs that will be required.

Recall that X and Y are an input and output alphabet, X denotes the set of
all multisets of elements from X , and D ⊆ X .

Definition 1. Let a, b ∈ IN. A function f : X → Y is called (a, b)-robust for D
if, for any input multiset I ∈ D and any input I ′ ∈ X that can be formed from
I by removing up to a elements and then adding up to b elements, f(I) = f(I ′).

Example 2. Let X = Y = {0, 1}. Let f be the majority function: for any
multiset S of 0’s and 1’s, f(S) = 1 if and only if S contains more 1’s than 0’s.
Let D be the set of all input multisets where the number of 0’s differs from the
number of 1’s by at least k. Then f is (a, b)-robust for D for any parameters
a and b satisfying a + b < k. This is because, starting from any input multiset
in D, the number of input values that would have to be added and removed to
change the output of f total at least k.

Let f : X → Y be any function that can be stably computed by a population
protocol in the failure-free environment. We shall show that if f is (c + t, t)-
robust for D, then f restricted to inputs from D can also be stably computed in
an environment where up to c crash failures and up to t transient failures may
occur.

Let A be a population protocol that stably computes f in the failure-free
setting. The algorithm A is specified by the state set QA, input and output
assignment functions iA and oA, and the transition function δA. Let Qinit =
{iA(x) : x ∈ X}. We shall build an algorithm B which simulates A in a way
that tolerates up to c crash failures and t transient failures. We first describe the
simulation. Its correctness is argued in Sect. 5.

The fault-tolerant algorithm B will divide agents up into g groups (where g is
a constant to be chosen later), and simulate the original algorithm within each
group. There will be roughly n/g agents in each group, where n is the number
of agents in the system. (Recall that agents do not know the value of n.) Each

When Birds Die: Making Population Protocols Fault-Tolerant 57

of the agents that comprise a group will simulate up to 2g distinct agents of
the original algorithm A. (For clarity, we shall hereafter refer to the agents of
algorithm B as “agents”, and the simulated agents of algorithm A as “threads”.)
No thread will be simulated by two agents in the same group (except as the result
of a transient failure).

In B, each agent’s state contains seven fields:

– init stores an initial value from Qinit, initialized to iA(x), where x is the
input for the agent. (This field is never changed by the algorithm.)

– joined is a boolean variable that says whether the agent has joined a group
yet. Initially, it is set to false.

– group stores a value from {1, 2, . . . , g}, initially g, which will eventually be
the name of the group this agent joins.

– sum will be used for a division subroutine and can take values in the range
{0, . . . , group − 1}, initially 1.

– sim stores a multiset of up to 2g elements from QA representing the states
of the threads that the agent is simulating, initially ∅.

– given[1..g] stores an array of g boolean values, with each entry initially set
to false. This will keep track of which groups contain a thread that has been
given a copy of this agent’s input value.

– output[1..g] stores an array of g values from Y , representing the output values
from the simulations carried out by each of the g groups. It can be initialized
arbitrarily.

Note that the state set of algorithm B has |Qinit|g(g +1)
(2g+|QA|

2g

)
2g|Y |g states,

and this quantity is independent of n, the number of agents in the system, as
required by the model. (The number of bits needed to represent an agent’s state
in the simulation is O(g log |Q|).)

The first phase of an agent’s actions is devoted to assigning the agent to one
of the g groups. This phase ends when the agent’s joined field is changed to
true. The second phase will be devoted to gathering input values from approx-
imately g other agents and simulating, within each group, an execution of the
original algorithm. We shall guarantee that each non-faulty agent’s input value
is eventually given to exactly one thread of exactly one agent in each group.
Whenever two agents in the same group meet, they nondeterministically choose
an interaction of two of their threads to simulate. In those groups that have
no faulty agents, the simulation will be a faithful simulation of algorithm A,
and the output of each thread within that group will eventually stabilize to the
correct value. We shall choose g large enough so that agents will be able to rec-
ognize (and output) a value that is being produced by a group of agents that
experienced no failures.

In phase 1, we first execute the division-by-g algorithm described by Angluin
et al. [2] to split off, from the rest of the agents, group number g, which will
contain approximately n/g agents. The remaining agents then execute a division-
by-(g − 1) algorithm to split off group number g − 1 (again of size roughly n/g).
The remaining agents then divide by g − 2, and so on. The group field of the
state keeps track of which division is currently being worked on by the agent.

58 C. Delporte-Gallet et al.

An agent is said to join group i when it sets its joined field to true, if its
group field contains i at that time. Joining a group is an irreversible action for
a non-faulty agent: once the joined variable is set to true, none of the fields
joined, group or sum will ever change again.

To accomplish phase 1, if two agents whose joined, group and sum fields are
(false, i, s) and (false, i, s′) with i > 2 meet, they transition to (false, i − 1, 1)
and (false, i, s + s′) if s + s′ < i and to (false, i, s + s′ − i) and (true, i, 0) if
s + s′ ≥ i. We shall argue below that this has the effect of making about 1/i of
the agents that set their group field to i eventually join group i: the sum field
accumulates a count of agents who set their group field to i and when one count
reaches i, an agent can join group i. When an agent whose group field is i has
been counted (but does not join group i), it changes its group field to i − 1.
When two agents whose joined, group and sum fields are both (false, 2, 1), one
transitions to (true, 2, 0) and the other transitions to (true, 1, 0). This has the
effect of splitting the agents whose group field is set to 2; half of them join group
1 and half join group 2.

When an agent p joins group i, it sets its sim field to ∅ (if p’s given[i] field
is true) or to {init} (if p’s given[i] field is false). In the latter case, p also
changes its given[i] field to true. If, at any time, an agent p1 whose value of
given[i] is false meets another agent p2 that has joined group i and does not
have a full sim field, p2 adds p1’s init field to its sim field and p1 sets given[i]
to true. Interactions of this type will have the effect of creating, for each cor-
rect agent p (and possible some faulty ones), a thread inside the sim field of
exactly one agent in group i initialized with the initial state that p would have
in algorithm A.

Whenever two agents p1 and p2 that have joined the same group meet, the
transition function non-deterministically chooses two elements q and q′ from the
union of the two agents’ sim multisets (both elements could possibly be from
the same agent’s sim multiset) and changes the two states q and q′ to a pair of
states given by δA(q, q′). If the union of the two sim multisets contains fewer
than two elements, no state change occurs in either agent.

Whenever an agent p1 meets an agent p2 that has joined some group i and
has a non-empty sim field, p1 sets its output[i] field to oA(q), where q is the first
element of p2’s sim field. The output assignment function for B is defined by
taking the element that appears with the highest multiplicity in the field output.

Our simulation B is non-deterministic, even if the original protocol A is de-
terministic: when two agents in the same group meet, they non-deterministically
choose which two threads should interact. However, it is not difficult to remove
this non-determinism of B by making use of the non-determinism of the order
in which interactions occur, using the technique described by Angluin et al. [1].
Each agent stores a “choice counter” which dictates which of the finite number
of possible outcomes should result from an interaction. The counters are incre-
mented by a circulating token. However, in our model, the token could be lost
when a failure occurs. So instead, we can increment the choice counter of an
agent when it encounters an agent in another group.

When Birds Die: Making Population Protocols Fault-Tolerant 59

5 Correctness

Consider an infinite fair execution C0, C1, C2, . . . of the simulation B on input
multiset I ∈ D. We first show that eventually about n/g agents join each group.
Let

ci = the number of crash failures of agents which have group = i

immediately before the crash,

ti = the number of transient failures of agents which have group = i

immediately before the failure,
t′i = the number of transient failures of agents which have group = i

immediately after the failure,
xg(j) = n,

xi(j) = the number of ordinary steps in C0, . . . , Cj that caused an agent to
set its group field to i, for i < g,

Wi(j) = {p ∈ Cj : p.group = i and p.joined = false}, and
Ji(j) = {p ∈ Cj : p.group = i and p.joined = true}.

Note that Wi(j) and Ji(j) are multisets. They represent the agents in con-
figuration Cj that are waiting to finish the division-by-i algorithm and those
that have joined group i, respectively. Consider the sum Si(j) = i|Ji(j)| +∑
p∈Wi(j)

p.sum. Initially, Si(0) = xi(0). The only time an interaction between

two agents changes this sum is when one agent sets its group field to i, which
increases the value of Si by 1. Thus, an ordinary step changes the values of Si

and xi in the same way. If an agent’s group value is i when it crashes, the crash
decreases the value of the sum by at most i. If an agent’s group value is i just
before it experiences a transient failure, that failure can decrease the sum by at
most i. If an agent’s group value is i just after it experiences a transient failure,
that failure can increase the sum by at most i, since the process’s sum field
cannot exceed its group field. Thus, we have

xi(j) − i(ci + ti) ≤ Si(j) ≤ xi(j) + it′i (1)

If the interaction that causes the change from Cj to Cj+1 happens because
two agents in Wi(j) meet, one agent is removed from Wi(j) to form the set
Wi(j+1), and never returns to Wi(j′) for j′ > j (unless by a transient failure). So,
eventually (i.e. for sufficiently large values of j), Wi(j) will contain at most one
element, so we shall have 0 ≤ ∑

p∈Wi(j)
p.sum ≤ i. So (1) implies that, eventually,

xi(j)−ici−iti−i ≤ Si(j)−i ≤ Si(j)−
∑

p∈Wi(j)

p.sum = i|Ji(j)| ≤ Si(j) ≤ xi(j)+it′i.

(2)

60 C. Delporte-Gallet et al.

Dividing the bounds in (2) by i yields the following bounds on the size of
Ji(j).

xi(j)/i − ci − ti − 1 ≤ |Ji(j)| ≤ xi(j)/i + t′i. (3)

If an agent has set its group field to i (either by a legitimate interaction or
by having a transient failure) before Cj , but did not subsequently change it to
i−1, then either it is still in Wi(j) or Ji(j), or it has failed. For sufficiently large
j, Wi(j) contains at most one agent, so for i > 1 we shall have

xi−1(j) ≥ xi(j) + t′i − |Ji(j)| − ci − ti − 1. (4)

Combining (3) and (4) yields, for large j,

xi−1(j) ≥ xi(j) + t′i − (xi(j)/i + t′i) − ci − ti − 1 = xi(j)
i − 1

i
− ci − ti − 1. (5)

Solving recurrence (5), using the boundary condition xg(j) = n, gives us (for
all i)

xi(j) ≥ ni/g −
g∑

�=i+1

(c� + t� + 1) ≥ ni/g − c − t − g. (6)

Finally, combining (3) and (6) yields

|Ji(j)| ≥ n

g
−2c−2t−g−1 ≥ n + t

2g
(as long as n ≥ 2g(2c+2t+g+1)+t). (7)

This means that there will eventually be at least n+t
2g agents in each group. We

call group i correct if t′i = ti = ci = 0. Note that each agent’s sim field is big
enough to simulate 2g threads, so each correct group will be able to simulate
enough threads to handle all n agents, plus t extra, bogus threads that could be
generated by transient failures. (A transient failure could cause an agent that has
already given an initial value to group i to give another initial value to group i.)

Let simi(j) be the union of all the multisets that are stored in sim fields of
states in Ji(j). Consider the interactions that take place after Cj that set the
given[i] field of some agent to true. Let futurei(j) be the multiset of the values
in the init fields of those agents. These are the values that get added to the sim
fields of agents in group i after Cj .

Lemma 3. For each correct group i, futurei(j) will be empty eventually (i.e.
for sufficiently large j).

Proof. There will eventually be at least n+t
2g agents that join group i and each

can hold 2g values in its sim field. At most n + t values will be added to these
fields (in total), so each agent whose given[i] field is false will eventually either
fail or meet an agent in group i that has enough room to take that agent’s initial
value. Eventually every agent’s given[i] field will become true and stay that way
forever, so futurei(j) will eventually become empty (and remain so forever). ��

When Birds Die: Making Population Protocols Fault-Tolerant 61

Lemma 4. Let i be a correct group in the execution of B. There is a failure-free
execution D0, D1, . . . of the population protocol A with input set futurei(0) such
that, for all j, Dj = simi(j) ∪ futurei(j).

Proof. The only steps of B’s execution that alter the multiset simi(j) ∪
futurei(j) are those involving interactions between two agents that have already
joined group i and have at least two elements in total in their sim multisets.
For each such step, two elements q1 and q2 in the sim multisets are changed to
q′1 and q′2, where (q′1, q

′
2) ∈ δ(q1, q2). Thus, the corresponding step in the con-

structed execution of A is legal. All other steps of the constructed execution are
null steps.

We must still show that the constructed execution is fair. Consider any con-
figuration D that occurs infinitely often in the constructed execution. There is
an infinite increasing sequence j1, j2, . . . such that D = Dj1 = Dj2 = · · · . Let
D′ be a configuration that can be reached from D by some ordinary transition
of A that changes two agents in states q1 and q2 to states q′1 and q′2. We must
show that D′ occurs infinitely often in the constructed execution too.

Consider the sequence of steps Cj1 , Cj2 , Since there are only a finite num-
ber of possible configurations, some configuration C must occur infinitely often
in this sequence. By Lemma 3 the set futurei(j) must be empty for all occur-
rences C, because it eventually becomes empty. So, in C, the union of the sim
fields of agents in group i is equal to D, and therefore includes q1 and q2. Thus,
there is an ordinary transition of the simulation B that changes q1 and q2 in
those sim fields of C to q′1 and q′2 to form a new configuration C′. By the fair-
ness property of the execution of B, C′ must occur infinitely often. Note that
the configuration of the constructed execution that corresponds to each of these
occurrences of C′ is equal to D′. So D′ occurs infinitely often in the constructed
execution. ��
The following corollary follows immediately from the preceding lemma and the
fact that A stably computes f .

Corollary 5. Eventually, for every x in the sim field of any agent that has
joined a correct group i, oA(x) = f(futurei(0)).

Now we show that the set futurei(0) is sufficiently close to the input multiset I
for correct groups.

Lemma 6. For any correct group i, futurei(0) = I∪I+−I− where I+, I− ∈ X
and |I+| ≤ t and |I−| ≤ c + t.

Proof. Consider the multiset I+ that contains, for each transient failure during
the execution that leaves an agent in a state with the given[i] field equal to
false, the init field of the agent immediately after it experiences the transient
failure. This set contains at most t elements. Each of the values in I ∪ I+ can be
given to a sim field of an agent in group i∗ at most once, since doing so changes
the given[i∗] field of an agent from false to true, and it remains true until the
agent experiences a transient failure. Thus, futurei(0) ⊆ I ∪ I+.

62 C. Delporte-Gallet et al.

Furthermore, as argued in the proof of Lemma 3, every value in I ∪ I+ will
eventually be transferred to the sim field of some agent in group i, unless the
agent holding that value experiences a failure before the transfer occurs. So, at
most c + t of the elements of I ∪ I+ are not in futurei(0). Let I− be the set of
those elements. Then |I−| ≤ c + t, and futurei(0) = I ∪ I+ − I−. ��

Now, by choosing g appropriately, we can guarantee that the output produced
by each agent in the simulation is the output produced by the simulated thread
of some correct group, and this will be the correct output value.

Theorem 7. If f : X → Y is stably computable in an environment with no
failures and f is (c+ t, t)-robust for D ⊆ X , then f : D → Y is stably computable
in an environment with up to c crashes and t transient failures, provided n ≥
2((|Y | + 2)(c + 2t) + 2)2.

Proof. We use the simulation B described above, taking g = |Y |(c + 2t) + 1.
The assumption that n ≥ 2((|Y | + 2)(c + 2t) + 2)2 guarantees that n ≥ 2g(2c +
2t + g + 1) + t for our choice of g, so the requirement for inequality (7) is
satisfied.

Consider any execution of the simulation. By Corollary 5, there is some time
after which every thread in every correct group i outputs f(futurei(0)). Also,
there is a time after which no agent experiences a failure. After these two times
have both passed, every agent will eventually meet an agent in each correct
group i and store f(futurei(0)) in its local variable output[i]. Let Cj be the
configuration of the execution of B when all of this has happened.

Let r be any agent. We shall show that, after Cj , r stably outputs a correct
value. The most common value in r’s output[1..g] field occurs with multiplicity
at least c + 2t + 1. Therefore, it is output[i∗] for some correct group i∗, since at
most c + 2t groups can be incorrect. Therefore, the value that r outputs will be
f(futurei∗(0)) for the correct group i∗.

Let I ′ = futurei∗(0). By Lemma 6, I ′ = I ∪ I+ − I−, where |I−| ≤ c + t and
|I+| ≤ t. By the robustness property of f , we have f(I) = f(I ′). Thus, agent r
stably outputs f(I ′) = f(I), which is correct. ��
We have shown that (c + t, t)-robustness is sufficient to compute the function f
in an environment with c crash failures and t transient failures. We now show
that a weaker robustness condition is necessary.

Proposition 8. Suppose that f : D → Y can be stably computed by a population
protocol in an environment with up to c crash failures. Then f can be extended
to the domain X so that f : X → Y is (c, 0)-robust for D.

Proof. Let y0 be any element of Y . Let A be a population protocol that stably
computes f . We extend f to all input multisets I ∈ X as follows: if A produces
a stable output in some fair, failure-free execution EI with input I, let f(I) be
that output value. Otherwise, define f(I) = y0. Note that this is an extension of
f since, for I ∈ D, A stably computes f .

When Birds Die: Making Population Protocols Fault-Tolerant 63

We now show that the extension of f is (c, 0)-robust. Let I ∈ D and let
I ′ = I − I−, where I− ∈ X and |I−| ≤ c. We must show that f(I ′) = f(I).
Consider an execution of A on input I in which the agents with inputs from I−

immediately fail, and then the remaining agents execute EI′ . By the hypothesis
of the proposition, this execution must stably output f(I). But this execution
was used to define f(I ′), so f(I ′) = f(I). ��
There is a gap between the (c + t, t)-robustness condition which is sufficient
to compute a function in the presence of failures (Theorem 7) and the (c, 0)-
robustness condition that is necessary (Proposition 8). Closing this gap re-
mains an open question. However, for systems in which there are only crash
failures (i.e. t = 0) the condition of (c, 0)-robustness is both necessary and
sufficient.

6 Computing Multivalued Functions

We now generalize the model used for stably computing functions to cover the
possibility that the output is not uniquely determined by the input multiset. As
before, let X and Y be finite input and output alphabets, and let X be the set
of all multisets of elements from X . Let F : X → P(Y) − {∅} be a function,
where F (I) represents the set of legal outputs for the input multiset I ∈ X . A
population protocol is defined exactly as in Sect. 3. However, we have a weaker
definition of stable computation for such multi-valued functions. We say that a
protocol stably computes F if, in every fair execution on input I, there is a time
after which every agent outputs only values in F (I). Notice that the output of
an individual agent may oscillate forever, but it eventually stabilizes in the sense
that it eventually becomes a legal output and remains so forever. Furthermore,
different processes may output different values. This definition of stable compu-
tation coincides with the original one in the case where F (I) is a singleton set
for all I.

This formulation of stable computation for multi-valued functions allows us
to describe the performance of our simulation in a different way.

Theorem 9. Let c, t ≥ 0. Suppose F : X → P(Y)−{∅} is a multivalued function
that can be stably computed in an environment with no failures. Then the function
Fc,t : X → P(Y) − {∅} defined by Fc,t(I) =

⋃
|I−|≤c+t

|I+|≤c

F (I ∪ I+ − I−) is stably

computable in an environment with up to c crash failures and t transient failures,
provided n ≥ 2((|Y | + 2)(c + 2t) + 2)2.

Proof (Sketch). We can run the simulation described in Sections 4 and 5, again
taking g = |Y |(c + 2t) + 1. The proof is very similar to the proof of Theorem 7.
Consider any execution on input I. It follows from Lemma 4 that the threads in
each correct group i eventually stabilize to produce outputs in F (futurei(0)).
Consider the portion of the execution after this has occurred and all failures
have occurred, and then every agent has met some agent in each correct group.

64 C. Delporte-Gallet et al.

Consider any moment after all of this has occurred. For any agent r, the most
common value in r’s output field at that time appears in its output[i∗] field for
some correct group i∗. Let I ′ = futurei∗(0). By Lemma 6, I ′ = I ∪ I+ − I−

where |I+| ≤ t and |I−| ≤ c+t, so F (I ′) ⊆ Fc,t(I). Thus the value that is output
by r is in Fc,t(I), as required. ��
Remark. It follows from this proof that, in an execution of the simulation on
input I where c′ ≤ c crash failures and t′ ≤ t transient failures actually occur, the
value produced as the output will be in Fc′,t′(I). In particular, if the execution
happens to be failure-free, the value produced will be in F (I).

Example 10. Suppose X = {1} and Y = {0, 1, . . . , 99}. Let F (I) = {|I|
mod 100}. Then, F1,2(I) = {F (I)−3, F (I)−2, F (I)−1, F (I), F (I)+1, F (I)+2}
(where addition is done modulo 100). Since F can be stably computed in the
failure-free model [2], our simulation will stably compute F1,2 in an environment
that can have up to 1 crash and 2 transient failures. Thus, it is possible to
count the number of agents modulo 100, even when failures can occur, if we are
satisfied with an approximate answer.

7 Concluding Remarks

If the communication graph G, which specifies which pairs of agents can come
into contact with each other, is not complete, our simulation technique can be
applied in a straightforward way to compute any function that can be computed
in the complete graph, provided G is (c + 1)-connected so that c crashes can-
not disconnect the graph. This can be done by having the two agents in each
interaction non-deterministically choose whether to swap states, just as in the
failure-free model [2].

Angluin, Aspnes and Eisenstat have recently shown that the only predi-
cates that are stably computable in the failure-free population protocol model
are those defined by semilinear sets of inputs [3]. This might make it possible
to use a somewhat streamlined version of our simulation to compute all sta-
bly computable binary predicates in a fault-tolerant way. This is because the
known protocols for computing semilinear predicates have a relatively simple
form.

There are a number of directions for future work on fault-tolerant population
protocols. One is to close the gap between the (c + t, t)-robustness condition
that is sufficient to compute a function and the (c, 0)-robustness condition that
is necessary. Angluin et al. describe another type of function computation in
the population protocol model, where the output does not come from a finite
alphabet [2]. Instead of producing the output at each agent, the output is dis-
tributed across the system, just as the input is distributed. As an example, the
division-by-g algorithm that we use in our construction starts with n agents and
outputs 1 at n/g of them, and 0 at all others. As is shown by our construction,
we can at least approximate the result of the division algorithm in a failure-prone
environment. It would be interesting to characterize the set of functions that can

When Birds Die: Making Population Protocols Fault-Tolerant 65

be computed in this sense, in a fault-tolerant way, if some limited inaccuracy in
the outcome is permitted.

This paper was concerned with the fundamental computability question: is it
possible to do computations in the presence of failures? Another issue to examine
is how much complexity increases as a result of incorporating failures into the
model. In our model, the powerful adversary can delay convergence to a stable
output for an arbitrarily long time by isolating some agents from one another.
Thus, to measure complexity, one would have to consider a weaker adversary.
One measure would be the expected time to converge (after the last transient
failure), given some probability distribution on the interactions.

Acknowledgements

We thank James Aspnes for helpful conversations. This research was funded
by the Natural Sciences and Engineering Research Council of Canada, the ACI
Fragile, and the Swiss National Science Foundation through NCCR-MICS.

References

1. Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong
Jiang, and René Peralta. Stably computable properties of network graphs.
In Proc. International Conference on Distributed Computing in Sensor Systems,
volume 3560 of LNCS, pages 63–74, 2005.

2. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. Computation in networks of passively mobile finite-state sensors. In
Proc. 23rd ACM Symposium on Principles of Distributed Computing, pages 290–
299, 2004. Expanded version to appear in Distributed Computing.

3. Dana Angluin, James Aspnes, and David Eisenstat. Stably computable pred-
icates are semilinear. In Proc. 25th ACM Symposium on Principles of Distributed
Computing, July 2006. To appear.

4. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the
power of anonymous one-way communication. In Proc. 9th International Confer-
ence on Principles of Distributed Systems, 2005.

5. Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-
stabilizing behavior in networks of nondeterministically interacting sensors. In
Proc. 9th International Conference on Principles of Distributed Systems, 2005.

6. Gaius Valerius Catullus. Carmen 3. In Carmina. “But curse upon you, cursed
shades of Orcus, which devour all pretty things! Such a pretty sparrow you have
taken away.” (Transl. Francis Warre Cornish).

7. Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui.
What dependability for networks of mobile sensors? In Proc. First Workshop on
Hot Topics in System Dependability, 2005.

8. Shlomi Dolev. Self-stabilization. MIT Press, 2000.
9. Vassos Hadzilacos. On the relationship between the atomic commitment and

consensus problems. In Proc. Workshop on Fault-Tolerant Distributed Computing,
pages 201–208, 1990.

66 C. Delporte-Gallet et al.

10. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for “smart dust”. In Proc. 5th ACM/IEEE International Conference
on Mobile Computing and Networking, pages 271–278, 1999.

11. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: a tiny aggregation service for ad-hoc sensor networks. In Proc.
5th Symposium on Operating Systems Design and Implementation, pages 131–146,
2002.

12. Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal. Conditions
on input vectors for consensus solvability in asynchronous distributed systems.
Journal of the ACM, 50(6), pages 922–954, 2003.

13. Boaz Patt-Shamir. A note on efficient aggregate queries in sensor networks. In
Proc. 23rd ACM Symposium on Principles of Distributed Computing, pages 283–
289, 2004.

Stochastically Consistent Caching and Dynamic
Duty Cycling for Erratic Sensor Sources�

Shanzhong Zhu, Wei Wang, and Chinya V. Ravishankar

Department of Computer Science and Engineering
University of California, Riverside, CA 92521

{szhu, wangw, ravi}@cs.ucr.edu

Abstract. We present a novel dynamic duty cycling scheme to maintain
stochastic consistency for caches in sensor networks. To reduce transmis-
sions, base stations often maintain caches for erratically changing sensor
sources. Stochastic consistency guarantees the cache-source deviation is
within a pre-specified bound with a certain confidence level. We model
the erratic sources as Brownian motions, and adaptively predict the next
cache update time based on the model. By piggybacking the next update
time in each regular data packet, we can dynamically adjust the relaying
nodes’ duty cycles so that they are awake before the next update message
arrives, and are sleeping otherwise. Through simulations, we show that
our approach can achieve very high source-cache fidelity with low power
consumption on many real-life sensor data. On average, our approach
consumes 4-5 times less power than GAF [1], and achieves 50% longer
network lifetime.

1 Introduction

Power-efficient sensor data acquisition has become important as large-scale sen-
sor networks become increasingly practical. A framework for data acquisition
in sensor networks was introduced in [2], and various power-efficient techniques
have been proposed in [3, 4, 5, 6] for sensor data collection in multi-hop wireless
environments. Typically, users present their queries to a base station (BS), which
collects data appropriately and generates responses.

In this paper, we show how to combine two strategies for reducing sensors’
power consumption: base station caching and dynamic duty cycling. These ideas
have been applied independently, but little work exists on strategies for combin-
ing them effectively in sensor networks.

1.1 Caching to Reduce Data Transmissions

Caching is commonly used to reduce data transmissions, which dominate power
consumption in sensor networks. Several models for caching have been explored
in the literature. In the first such model, exemplified by [3, 2], queries explicitly
specify the sampling rate for sensor data. Queries arriving at intermediate times
� This work was supported by a grant from Tata Consultancy Services, Inc.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 67–84, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 S. Zhu, W. Wang, and C.V. Ravishankar

are handled using cached data at the BS. Source and relaying transmissions are
scheduled to occur as required by the known sampling times. The sensors can
also be put to sleep in between, saving even more power. Although simple, this
model cannot offer any guarantees on the precision of the cached data, especially
when the underlying source data change rapidly and unpredictably.

Another approach is represented by [7], in which sources continuously stream
updates to a central server which handles a large number of aggregate queries
registered by users. The server caches a copy of each source object. Sampling
times are not presepecified, but each aggregate query is associated with a preci-
sion requirement , indicating the maximum error the user will tolerate. A filter ,
or error bound, is installed on each source, and only values exceeding the filter
bounds will be sent to the server. Filter bounds are adaptively set to minimize
transmission costs, while ensuring that the precision requirements are met.

Unfortunately, for all the reasons discussed in [8], this approach wastes power
if directly used in sensor networks. In addition, since sampling intervals are not
fixed, updates arrive unpredictably, so all relaying nodes must always have their
radios on. It is well-known that sensors consume significant amount of power in
the listening mode [9, 10]. For example, in MICA2, the power consumed in lis-
tensing/receiving mode (7mW) is very close to the power consumed in transmit-
ting mode (10mW); while in MICAz, the power consumed in listening/receiving
mode (19.7mW) is even higher than in transmitting mode (17mW) [11]. Thus,
to conserve power in sensor networks, we must put sensors into sleep as often as
possible, while still guaranteeing cache consistency requirements.

Erratic Data Sources and Stochastic Consistency. Power optimization is
particularly challenging in sensor networks that monitor erratic data sources [12].
Erratic data are numerical data that change frequently and unpredictably, such
as temperature, pressure, and humidity. It is hard to predict erratic data behav-
ior, making it hard to ensure cache-source consistency.

Strict cache-source consistency is unrealistic in sensor networks, since power
is limited and wireless channels are volatile. However, users are often willing to
tolerate some error, as long as it remains within pre-specified bounds. Stochastic
consistency, first introduced in [12], captures this idea, and guarantees the
cache-source deviation is within an error bound with a certain confidence level.

For example, in a sensor network to monitor temperatures, a user may be
satisfied with a value within 2◦F of the true value, with confidence 90%. There-
fore, the source sensor needs to update the cached copy at the BS only when
the cache-source deviation is no longer within 2◦F with confidence 90%. We
address the issue of maintaining stochastic consistency with minimum power
consumption in sensor networks.

1.2 Dynamic Duty Cycling to Reduce Power Consumption

Our goal is to let each sensor node dynamically adjust its duty cycle so that
it is in sleep most of the time, but has its radio on whenever an update must
be relayed to the BS. Lowering duty cycles is known to be an effective way to

Stochastically Consistent Caching and Dynamic Duty Cycling 69

time

: wake−up periodSensors

BS

Fig. 1. Duty-cycling sensor nodes

extend the lifetime of the network [13, 14, 15, 1]. Our approach is illustrated in
Figure 1, in which s1 and s2 are two sources, whose updates are delivered to the
BS through s3 and s4. Both s3 and s4 turn on their radios only when an update
packet is expected to arrive. The key challenge is how to let each relaying node
estimate the arrival time of the next update, so that it can adjust its duty cycles
accordingly.

Approaches such as GAF [1] and SPAN [15] try to maintain a routing back-
bone to ensure connectivity of the wireless ad hoc network, while allowing as
many nodes as possible to sleep. At least one routing node is guaranteed to be
within the transmission range of any node. GAF uses geographic location in-
formation (from GPS) to determine node equivalance for routing. SPAN uses
a distributed randomized algorithm to maintain the backbone. Unfortunately,
neither scheme exploits source data characteristics which may not require a con-
nected backbone at all times.

In a sample network with 100 nodes uniformly distributed in a 1500m×300m
region mentioned in [1], the resulting GAF routing backbone consists of 45 nodes.
Hence, GAF always has 45 nodes listening, whether or not a message is active. In
contrast, our approach captures source data characteristics, so that each source
can predict update times, letting relaying nodes safely sleep till that time. Our
approach will save more power especially under light source rates, since the
relaying nodes are allowed to sleep more often than in GAF or SPAN (see Fig. 6).

We predict update times using the Brownian motion model [16], a stochas-
tic model widely used to characterize randomly fluctuating data. Based on
the user-provided consistency requirement and current data characteristics, the
model adaptively determines the due time of the next update so that errors are
bounded. The next update time is piggybacked on the current update message
and delivered to the relaying nodes en route to the BS, which can safely turn off
their radios and sleep before the arrival of the next update.

In our approach, each source delivers updates only at the times predicted by
the Brownian motion model. In contrast, in approaches such as [7], updates
are delivered at the times the source detects that the actual value has exceeded
the error bound. The correctness of our approach is determined solely by how
well our model matches future data behaviour under the stochastic consistency
model. As shown by our extensive experiments (see Section 6), our method
achieves high consistency (or fidelity) on various real-life sensor data, while saving
a significant amount of power.

70 S. Zhu, W. Wang, and C.V. Ravishankar

1.3 Our Contributions

We make several contributions in this paper. First, we experimentally verify that
sensor data, such as temperature, humidity and ocean salinity, can be modeled
as Brownian motions. This model has been successfully used in earlier work
to model many other real-world erratic data sources [12, 17]. We confirm that
model parameters, such as the drift and diffusion parameters, can capture the
short-term linear trend and variance, respectively, with high confidence.

Next, we propose a dynamic duty cycling scheme based on the Brownian mo-
tion model, to allow nodes to turn off their radios frequently, while guaranteeing
consistency requirements. A node will turn on its radio only when an update
message is expected to arrive. In general, duty cycles are driven by the consis-
tency requirements and source data characteristics.

Finally, we verify the correctness and efficiency of our approach with extensive
simulations, which show that we can achieve high fidelity using far less power
than GAF.

The rest of this paper is organized as follows: We review some related work
in Section 2. Our system architecture and routing scheme are described in Sec-
tion 3. In Section 4, we briefly introduce the Brownian motion model and perform
experiments to verify its applicability on many sensor generated data. Our dy-
namic duty cycling scheme is presented in Section 5. The experimental results
are presented in Section 6. Section 7 concludes our work.

2 Related Work

Various consistency models have been proposed to accommodate different re-
quirements for cache freshness. For example, quasi-caching [18] allows the cached
value to deviate from the source value in a controlled way (say, delay-bounded
or error-bounded). Probabilistic consistency [19] guarantees that cached values
are temporally consistent with the true value with a probability p. The concept
of stochastic consistency was introduced in [12], and aims to provide an error-
bounded cached copy with a given confidence. This model has been successfully
used in pull-based replicated systems for erratic data streams [12]. We use this
model in sensor environment.

2.1 Duty Cycling

Dynamic duty cycling is another technique widely used to achieve power effi-
ciency in sensor networks. In GAF [1] and SPAN [15], nodes adaptively switch
between sleeping and listening, while guaranteeing the existence of a capacity-
preserving backbone routing network at any time. In GAF, each node used geo-
graphic location information (provided by GPS) to associate itself with a virtual
grid. All the nodes in a virtual grid are equivalent for routing. SPAN is a dis-
tributed randomized algorithm, in which nodes can locally determine whether to
sleep or stay awake in the backbone routing network, without knowledge of their
geographic locations. Periodically, the set of routing nodes is changed to ensure

Stochastically Consistent Caching and Dynamic Duty Cycling 71

even power dissipation. LEACH [20] aims to provide a cluster-based routing hi-
erarchy where all sensor nodes are divided into clusters. A cluster head is elected
to route data on behalf of the other nodes in each cluster. In our approach, duty
cycles are driven by the source update rates, which are in turn governed by
consistency requirements. In Section 6, we show that our approach lets sensors
sleep more often, thus saving more power than GAF.

A periodic duty cycling scheme was introduced in S-MAC [21], in which nodes
periodically switch between the listening and sleeping modes to conserve power.
Neighbouring nodes exchange their listen/sleep schedules to synchronize their
duty cycles. To deliver a packet, a sending node waits till the next hop node
wakes up. However, significant latency will still be introduced since delays are
accumulated along multiple-hop paths to the BS. A similar scheme was proposed
in STEM [14], which assumes that two separate radios, a wakeup radio and a data
radio, are available to each sensor node. To send a packet, the wakeup radio of
the sending node polls the receiving node until it wakes up, and turns on its data
radio. Again, data packets will experience significant delays because such delays
at each hop will accumulate over the route. Both schemes are clearly not suitable
in our situation, where updates must reach the BS as soon as possible, to ensure
cache freshness. In TAG [3], the nodes along the aggregation tree are periodically
synchronized with each other to relay and aggregate new sensor data. Since the
source sampling rate is specified in the query, their synchronization scheme is
much simpler than ours.

The success of our scheme relies on modeling the underlying data as Brownian
motions. Applying probabilistic models to sensor data has been shown to be
effective in conserving power while providing quality results [22,23,17]. Section 4
confirms earlier work that has shown that Brownian motions can model erratic
data streams with high confidence [12, 17].

2.2 Stochastic Consistency

Stochastic consistency [12] guarantees that the deviation between a cached value
and the true value is within a pre-specified error bound ε with a confidence at
least p. Let vi(t) and ci(t) be the source and the cached values, respectively, of
object oi at time t. The cache is stochastically consistent with source at t if

Pr[|vi(t) − ci(t)| ≤ ε] ≥ p. (1)

We must update the cached copies frequently enough to maintain stochastic
consistency. On the other hand, to save cache/source communications, we must
send the updates right before the confidence that cache-source deviation is within
ε starts to drop below p. In Section 4, we discuss how to determine update times
under this model.

3 Our System

Sensor networks typically consist of a BS with ample resources and a set of
resource-limited sensor nodes communicating with the BS over multi-hop wire-

72 S. Zhu, W. Wang, and C.V. Ravishankar

. . .

: sensor source

cached data

User Queries

requirement

Cache Manager

BS Architecture Sensor Network

RN Manager

Fig. 2. The BS Architecture

less channels (see Figure 2). The BS serves as the destination for sensor data, and
as the interface to user queries. It maintains caches to reduce communications
and provide prompt responses. Our focus is on how to maintain cache-source
consistency in a power-efficient way. Our caching system can support a broad
spectrum of queries, ranging from monitoring single sensor’s readings to aggre-
gate queries as in [7, 3].

Fig. 2 also shows an architectural schematic for the BS. The cache manager
manages all cached objects. The object oi represents a data source sensed by
sensor si. Each object oi is associated with a consistency requirement (εi, pi)
determined by user requirements. (Converting user requirements to object con-
sistency requirements is an orthogonal concern we do not address. An example
can be found in [7].)

An object’s consistency requirement is also available at the corresponding
source sensor, which determines when a cache update must be sampled and
delivered. A cache update takes the form (vi(t), μi(t)), where vi(t) is the sam-
pled value at time t, and μi(t) is the current drift parameter estimated at the
source. The drift parameter is a Brownian motion parameter and represents the
current linear trend of oi. It helps to provide a more accurate cache value at
the BS (see Section 5.1). The next update time Δtu is adaptively evaluated
under the stochastic consistency model, and included with each update so that
each relaying node en route can sleep for time Δtu. The BS responds to queries
by retrieving the current values from the cache, calculating query results, and
returning them to users.

The RN manager maintains a view of the routing network (RN), which is
a collection of routes through which sensors may reach the BS. Based on this
information, the BS can determine a power-efficient route for each newly cached
object source (see Section 3.1).

3.1 Routing

In principle, our dynamic duty cycling scheme is independent of the routing
protocol, as long as routes are persistent , that is, the route for each source re-
mains unchanged for a certain time. This property allows nodes on each route

Stochastically Consistent Caching and Dynamic Duty Cycling 73

to obtain the wake-up time for the next update from each update message (see
Section 5.3). Many ad hoc routing protocols for sensor networks generate per-
sistent routes [4, 3, 24, 25]. In our work, we use a energy-aware routing scheme
similar to [24] and [26], to avoid bottleneck nodes that would otherwise dissipate
their power much faster than the others. First, we build a routing network (RN)
through which sensor nodes can communicate with the BS. Typically, the RN
includes good-quality wireless links to ensure reliable transmissions. Besides, as
power is our major concern, it is desirable that each route in the RN be the
shortest path from the source to the BS.

A common approach to building a RN is to assign a level number to each
sensor node depending on its distance to the BS [3, 6, 26]. The BS is at level 0;
Those nodes 1-hop away from the BS are at level 1, and so on. Initially, the BS
broadcasts a query message containing its ID and level number. Upon receiving
this message from its neighbours, each node determines its level and parents,
and rebroadcasts the query message with its own ID and level number. After
the query messages have flooded the entire network, a RN is formed where each
node has one or more parents through which it can send packets towards the BS.
Any path is the shortest one in the resulting RN. A more detailed description
of constructing the RN can be found in [26]. The above algorithm must be
run periodically to accommodate topology changes. To allow the BS maintain a
view of the RN, each node must send a message containing its level number and
parents to the BS.

After the RN is set up, the RN manager is responsible for determining a
route for each newly cached object source. To balance power consumption, we
choose routes with the maximum remaining power. A route’s remaining power
is defined as the minimum remaining power on its en-route nodes. Each node
periodically determines its remaining power level and piggybacks the value on
regular update messages destined for the BS. The RN manager periodically
re-evaluates the remaining power on each route and chooses the one with the
maximum power left.

4 Modeling Sensor Data

Sensor data are often numerical values, and change continuously. Modeling their
behavior is central to our dynamic duty cycling scheme.

4.1 Standard and Drifting Brownian Motion Models

The Brownian motion model [27] is a continuous-time stochastic process widely
used to characterize highly fluctuating data, and has been successfully used to
model stock prices [28] and other erratic data sources [12] such as temperature
and computer system loads. A Standard Brownian motion (SBM) W (t) satisfies:
1) W (0) = 0; 2) W (t)−W (s) is normally distributed with mean 0 and variance
t− s (t ≥ s); 3) W (t) −W (s) is independent of W (v) − W (u) if (s, t) and (u, v)
are non-overlapping time intervals.

74 S. Zhu, W. Wang, and C.V. Ravishankar

Table 1. Average p-values from the W-S test for various sensor traces and time inter-
vals, confidence interval: 95%, all traces obtained from TAO Project

time temp traces salinity traces humd traces slp traces
interval (Depth) (Long./Lat.) (Long./Lat.) (Long./Lat.)

36M 47M 5N/180W 2N/180W 0N/155W 2N/140W 2N/110W 2S/95W
10 min 75.21% 72.96% 77.44% 76.65% 80.14% 81.13% 76.54% 80.12%
15 min 72.38% 75.90% 76.26% 76.60% 79.47% 79.79% 75.88% 79.17%
20 min 73.45% 73.55% 76.10% 75.15% 76.45% 77.31% 75.45% 76.92%
30 min 71.47% 66.13% 75.00% 74.84% 72.60% 75.14% 74.38% 73.04%

A variant of the SBM is the drifting Brownian motion (DBM) S(t), which
includes a secular drift in the expectation of the process. The increment of S(t)
is modeled as:

ΔS(t) = μ(t)Δt + σ(t)ΔW (t), (2)

where μ(t) and σ(t) are the drift and diffusion parameters for S(t), respec-
tively. W (t) is a SBM process. The drift parameter models a secular upward or
downward trend in the random data, while the diffusion parameter models the
randomness of the data. Hence, the DBM is a combination of a predictable linear
trend and a Brownian motion process. It is easy to see that the increment ΔS(t)
also follows a Normal distribution: ΔS(t) ∼ N(μ(t)Δt, σ2(t)Δt). In Section 4.2,
we show that the DBM model is applicable to many real-life sensor data.

4.2 Verifying DBM on Sensor Data

In [12], we have already shown that real-life data sources such as stock traces,
ocean temperatures, and system load data can be successfully modeled as DBM.
In this work, we further verify that this model is appropriate for a wider variety
of sensor genearted data, using the same methodology as in [12]. Since data in-
crements are normally distributed in the DBM model, we will perform normality
tests [29] on increments of sensed data. Various methods for normality testing
have been proposed, and, as explained in [12], the Wilk-Shapiro (W-S) test [29]
is the most appropriate in our case.

Our sensor data traces were taken from the TAO project [30] at the Pa-
cific Marine Environmental Laboratory (PMEL). We tested four categories of
data generated by ocean sensors: ocean temperature (temp), relative humid-
ity (humd), salinity (salt), and sea level pressure (slp). Each category included
data traces generated at different geographical locations (Longitude/Latitude) or
ocean depths (Depth). Each data trace comprised about a year’s data sampled
at every 1 minute. Table 1 shows the results of the W-S test on these traces.

Each value in Table 1 represents the average p-value [16] evaluated on incre-
ment samples over a certain time interval. The W-S test calculates a test statistic
for each data series. The p-value measures the probability that the test statistic
will take on a value that is at least as extreme as the calculated value when the
samples are normal. The p-value measures the probability that the tested data

Stochastically Consistent Caching and Dynamic Duty Cycling 75

are drawn from a normal distribution. The significance level (α) of our test is
set to 0.05. The larger the p-value, the stronger the confidence with which we
may accept the samples as normal [29]. As shown in Table 1, The p-values for
our data are far higher than α, indicating that we can believe the increments are
normal with high confidence. For longer intervals, the p-value drops somewhat,
suggesting the model may evolve in the long run.

The W-S test strongly supports our hypothesis that the sensor data are DBMs.
On the other hand, since the model may evolve along with time, it is important
to periodically estimate the model parameters μ(t) and σ(t) to accurately char-
acterize the underlying data. We will discuss how to estimate the two parameters
in Section 5.2.

5 Dynamic Duty Cycling

We achieve power efficiency by operating sensors in low duty cycles, while guar-
anteeing that cache updates will arrive on time at the BS. The update intervals
change dynamically due to the erratic nature of data sources. An approach to
maintaining cache consistency similar to that of [7] would be for each source
to constantly sample the underlying data. If it finds the sampled value deviates
from the last update by more than ε, it forwards the value as a cache update.
This approach forces relaying nodes to be awake all the time since update times
are unpredictable. We need a more intelligent approach that can predict the
due time of the next update, and let the relaying nodes sleep safely until that
time.

Our approach models erratic data sources as Brownian motions, estimates the
times when the cache-source deviation is expected to exceed ε, and schedules the
next cache update at that time. When a source is ready to deliver an update, it
also determines the time interval Δtu until the next update, based on the DBM
model. The source then sends the update along with Δtu, so that each relaying
node can obtain Δtu. Since it knows that the next update from the source will
arrive after time Δtu, it can safely turn off its radio and sleep for time Δtu. Our
approach allows the relaying nodes to dynamically synchronize with each other
and form a connected path whenever an update is ready to be sent.

We discuss how to adaptively derive Δtu in Section 5.1. The drift and diffusion
parameters must be estimated regularly from the underlying data. The issue of
parameter estimation is discussed in Section 5.2. Our scheme to perform dynamic
duty cycling is presented in Section 5.3. In Section 5.4, we analyze the power
cost for our scheme.

5.1 Determining Cache Update Times

The drift and diffusion parameters characterize the current linear trend and
randomness, respectively, of the sensor data. Each sensor source can use these
parameters to adaptively determine Δtu, the time till the next update. Let t0
be the last time an update was delivered for object oi, and vi(t) and ci(t) be
the true and cached values of oi at time t, respectively. Stochastic consistency

76 S. Zhu, W. Wang, and C.V. Ravishankar

requires the next update to be delivered before our confidence that the cache-
source deviation is within ε drops below p. We must solve Δtu from the following
equation:

Pr[|vi(t0 + Δtu) − ci(t0 + Δtu)| ≤ ε] = p. (3)

Based on the DBM, we have vi(t0 + Δt) = vi(t0) + μi(t0)Δt + σi(t0)ΔW (t), if
μi(t0) and σi(t0) are the drift and diffusion parameters estimated at time t0, and
W (t) is the SBM (see Equation 2). Clearly, the expected value of vi(t0 + Δt) is
vi(t0) + μi(t0)Δt, which is also the best estimate the cache can make at time
t0+Δt, given that the last cache update is (vi(t0), μi(t0)). Therefore, ci(t0+Δt) =
vi(t0)+μi(t0)Δt. We can easily derive that the cache-source deviation is normally
distributed:

vi(t0 + Δt) − ci(t0 + Δt) ∼ N(0, σ2
i (t0)Δt). (4)

From Equations 3 and 4, we can obtain:

Δtu =
1
2

(
ε

σi(t0) erf−1(p)

)2

, (5)

where erf−1(p) is the well-known inverse error function [31]. The detailed deriva-
tion of Equation 5 can be found in the Appendix of [32].

Δtu must be recomputed on-line at sensor sources. Since erf−1(p) can be
precomputed and stored for the required p, computing Δtu requires only some
simple arithmetic operations, and is easily affordable for sensors.

5.2 Estimating Model Parameters

Obtaining accurate estimates for μi(t) and σi(t) is critical to the success of our
approach. According to the DBM model, increments follow the normal distribu-
tion N(μi(t)Δt, σ2

i (t)Δt). Assuming both μi(t) and σi remain relatively constant
over small time intervals, we may estimate μi(t) and σi(t) by estimating the mean
and variance of increment samples over a small time interval. The simplest un-
biased estimators [16] of the mean and variance of a sample {x1, . . . , xn} are
x̂ = (

∑
xi)/n and σ̂2 =

∑
(xi − x̂)2/(n − 1).

Let μ̂i(t) and σ̂i(t) be the estimated values of μi(t) and σi(t), respectively.
Our estimation scheme works as follows: Let t1 be the time of the next update.
Starting at time t1 − δ, we sample the underlying data every h time units, where
h < δ. Thus, at time t1, we collect n data samples: vi[1], vi[2], · · · , vi[n], where
n = δ/h + 1. The obtained n − 1 increments vi[j + 1] − vi[j] (1 ≤ j < n) are
independent normal samples, and since δ is small, these samples are identically
distributed. Thus, we calculate μ̂i(t1) as follows:

μ̂i(t1) =
(vi[n] − vi[1])

δ
. (6)

We can also estimate obtain σ̂i(t1) from:

σ̂i
2(t1) =

1
(n − 2)h

n−1∑
j=1

(vi[j + 1] − vi[j] − μ̂i(t1))2. (7)

Stochastically Consistent Caching and Dynamic Duty Cycling 77

In typical sensors, such as those for light, temperature, or magnetic fields, the
sampling time is on the order of 0.1ms [2].

A relatively small δ ensures accurate estimation of μi(t) and σi(t), since these
parameters remain constant during small intervals with high probability. On
the other hand, a smaller h leads to more samples but may increase power
consumption. A larger h saves power but may result in inaccurate estimates
due to too few samples. Thus, we must choose both δ and h carefully to bal-
ance estimation accuracy and power consumption. In our experiments, we set
δ = 10h. Our results show that the obtained sample size is appropriate for our
purpose.

5.3 Our Scheme

Each node can be in the active or idle state, depending on whether or not it is
actively delivering/relaying update packets. Initially, all nodes are idle. During
the RN setup phase, each node is assigned a wakeup interval tw. It wakes up
every tw time units to check for pending caching requests from the BS. Upon
receiving a request R(si), an idle node switches to the active state, since it
knows it will participate in relaying updates for source si. The choice of tw
must balance power consumption against response time (how long the BS must
wait until receiving the first cache update). Larger tw values let nodes sleep
longer, but increase response times. We chose a moderate value for tw in our
experiments.

When the BS must query sensor si, it first consults the RN manager to find a
route to si (see Section 3.1). It then sends the request R(si) and the consistency
requirement to si. If a node sj1 along the route finds the next node sj2 to be
still asleep, sj1 will poll sj2 until it wakes up. Node sj2 records the sending node
sj1, so that it knows where to deliver si’s updates. Each en-route node remains
in listening mode until it receives the first update from si, and lets the Δtu
supplied by si drive its duty cycles after that point.

At the source si, Δtu is evaluated on a regular basis according to Equation 5.
A series of samples must be collected for parameter estimation before deliver-
ing the update message. Each update message contains the most recent sample
v(tupdate), the drift parameter μ(tupdate), and the next Δtu.

Each node on the return route to the BS obtains Δtu from the message con-
taining the sensor update, and schedules to wake up at tnext = tcurr + Δtu − te,
where tcurr is the current system time, and te is a small time offset to accom-
modate variations in wireless transmission delays. In our simulations, we set
te = 10ms with moderate traffic in the network. Since a node may relay mes-
sages for several sources, it maintains a list to hold the future wakeup times.
After relaying an update message, the node can safely turn off its radio and
sleep until the next time entry in the list is due. Since the BS may make data
requests while the node is asleep, the node must check for such requests to avoid
poor response times. If the time interval until the next wakeup time entry is
larger than tw, the node must wake up at tw to perform this check. More details
on our scheme can be found in [32].

78 S. Zhu, W. Wang, and C.V. Ravishankar

Every time a user requests oi’s value from the cache at the BS, the cache
manager returns vi(tl) + μi(tl)(tcurr − tl), where tcurr is the current time, and
tl is the last time an update message was received.

5.4 Analysis of Power Consumption

Power is charged for communication, computation, and data sampling on sensor
nodes. We ignore the power consumed by computation in our analysis since it
is orders of magnitude lower than that by communication [2]. A sensor’s radio
may be in one of the following modes: transmitting (T), receiving (R), idle(I),
or sleeping (S). In the idle mode, it listens to the wireless channel, waiting for
incoming packets. In the sleeping mode, it turns off its radio, so the consumed
power is negligible compared with other modes. Let the power consumed in
transmitting, receiving, and idle mode be PT , PR, and PI , respectively, and let
PS be the power consumed by sampling the underlying data. The total consumed
power is simply P = PT + PR + PI + PS .

Our approach enables each node to remain in the sleeping mode most of the
time and wake up only when an update is expected to arrive. Ideally, the idle
time on each node is zero. Thus, P = PT +PR+PS. Let Pt0 and Pr0 be the power
consumed for transmitting and receiving one bit of data, respectively, and let Ps0

be the power consumed by sampling one piece of data from the environment (we
assume each sensor has only one sensing module). Node si’s power consumption
rate at time t is

Pi(t) =
(∑

sj∈Ri

fj(t)
)

M(Pt0 + Pr0) + I(si)fi(t)
(

MPt0 + (
δ

h
+ 1)Ps0

)
, (8)

where M is the size of the update message, Ri is the set of sources whose updates
are relayed by si, fj(t) is the rate of updates generated by source sj at time
t, and I(si) is an indicator function which is 1 if si is also a source, and 0
otherwise. Equation 8 suggests that a relaying node’s power consumption is
proportional to the aggregate amount of update traffic it relays, and a source’s
power consumption is also governed its updating frequency.

Combining Equations 5 and 8, we can further obtain:

Pi(t) =
(∑

sj∈Ri

(βjσ
2
j (t))

)
M(Pt0 +Pr0)+I(si)βiσ

2
i (t)

(
MPt0 +(

δ

h
+1)Ps0

)
, (9)

where βj = 2(erf−1(pj)
εj

)2. In Equation 9, a relaying node’s power consumption
Pi(t) is a function of its upstream sources’ consistency requirements (εj and pj)
and their current data variance (σ2

j (t)). Not surprisingly, the higher the variance,
the greater the number of updates to be delivered to maintain a certain level of
consistency, and the greater the power consumption. On the other hand, a more
stringent consistency requirement (small εj and large pj) also results in higher
power consumption, which is illustrated in Fig. 6.

If si is a source, its power consumption is also governed by its own consistency
requirement (εi and pi) and data variance (σ2

i (t)). Every time an update is

Stochastically Consistent Caching and Dynamic Duty Cycling 79

required, additional δ/h samples must be collected for parameter estimation
(see Equation 9). Since the power required for sampling (Ps0) is very low for
many typical sensors such as light, temperature, and accelerometer [2] (on the
order of 0.1 μJ), such sampling overhead is affordable.

6 Experiments

We conducted extensive experiments to demonstrate the correctness and effi-
ciency of our dynamic duty cycling scheme using the ns-2 simulation package [33].

6.1 Simulation Setup

We uniformly deployed 100 sensor nodes in a 1500×1500 m2 region with the BS
at the center. We chose UDP as the transport layer protocol and 802.11 [34] as
the MAC layer protocol. The ns-2 simulator currently supports three propagation
models, among which the shadowing model [35] is the most realistic and widely-
used. This model has two parts: a path loss model, and a statistical model for
the variation of reception at certain distances. We set the value of the path loss
exponent as 2.0, and the value of the shadowing deviation as 4.0, representing
a typical outdoor environment. We set the radio communication range to 250m
and chose 0.95 as the rate of correct reception.

A subset of sensor nodes were chosen as sources. We used various categories
of real-life sensor data as the source traces such as the ocean temperature traces
(temp), the relative humidity traces (humd), and the ocean salinity traces (salt),
all obtained from the TAO project [30] (see Section 4.2). Each source was asso-
ciated with one data trace every time. In each experiment, we used 5 different
traces from each category and demonstrated the average results. We purposely
selected sources from the most distant nodes from the BS, since it is more chal-
lenging to maintain cache consistency for the distant sources. We chose a fixed
payload size of 16 bytes for each update message including the data value, the
drift parameter, and the Δtu value.

To measure power, we adopted the power parameters from the Chipcon
CC1000 RF transceiver [10], which is used as the radio module in MICA2 and
MICA2DOT sensor models. When operated at 433MHz, its receiving power
is 22.2mW , and the transmitting power is 31.2mW , with the output power of
0dBm. Each node was set to the same power level initially, and we measured
the remaining power after the simulation ran for some time.

6.2 Measuring the Fidelity

We define the fidelity f(oi) as the percentage of time that the object oi’s source-
cache deviation is within the error bound, that is,

f(oi) =
the time cache-source error ≤ ε

the total simulation time
. (10)

80 S. Zhu, W. Wang, and C.V. Ravishankar

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

0.6

0.7

0.8

0.9

1

absolute error bound (ε)

fid
el

ity

p=0.95
p=0.90
p=0.85

(a) the salt trace

1.0% 1.2% 1.4% 1.6% 1.8% 2.0% 2.2% 2.4%
0.5

0.6

0.7

0.8

0.9

1

relative error bound (ε
r
%)

fid
el

ity

p=0.95
p=0.90
p=0.85

(b) the humd trace

Fig. 3. The fidelity

Fidelity measures how well our scheme meets the consistency requirements.
The higher the f(oi) value, the more confidence we have to achieve stochastic
consistency. Ideally, the fidelity value must match the user-provided confidence
probability p, indicating the drifting Brownian motion model is accurate in char-
acterizing source data.

Fig. 3 shows the fidelity values for the salt and humd traces under absolute
error bounds (ε) and relative error bounds (εr%), respectively. We randomly
generated a topology of 100 nodes and picked a source s∗ at the highest level.
We associated different data traces to s∗ one at a time, and measured its fidelity.
Each data point in Fig. 3 represents an average fidelity value over five traces from
the same category. To generate a certain amount of traffic in the network, we
chose ten other sources in the topology, each associated with the same data trace,
with a randomly chosen error bound.

Our scheme clearly achieves high fidelity for s∗ under both categories of traces.
The obtained fidelity value is very close to the corresponding confidence level
p. For example, under the confidence level 90%, the average fidelity for the salt
trace is 89.2%, while it is 89.5% for the humd trace. This is strong evidence for
the accuracy of our DBM-based approach.

In Fig. 4, we show the impact of different network traffic loads on the fidelity.
We used the same 100-node topology and chose a source s∗, associated with
the temp trace with the error bound 0.1, at the highest level. We also chose a
certain number of other nodes as sources, each associated with the same temp
trace and the same error bound. We varied the number of sources from 10–65
and observed s∗’s fidelity. The amount of traffic in the network increases as the
number of sources increases. Our scheme achieves a high and stable fidelity at
confidence levels of 90% and 95%.

We also compared our scheme with GAF [1], an adaptive scheme that main-
tains a routing backbone in the wireless network, and puts other nodes to sleep
as much as possible. We simulated GAF on the top of AODV [36]. With the
same topology and input traces, GAF achieves the same fidelity as our scheme
under light traffic loads, but much lower fidelity under heavy traffic loads.

Stochastically Consistent Caching and Dynamic Duty Cycling 81

10 15 20 25 30 35 40 45 50 55 60 65
0.5

0.6

0.7

0.8

0.9

1

number of source nodes

fid
el

ity

our scheme, p=0.95
GAF, p=0.95
our scheme, p=0.90
GAF, p=0.90

Fig. 4. Fidelity under various traffic
loads (temp trace, ε = 0.1)

10 15 20 25 30 35 40 45 50 55 60 65
0.6

0.7

0.8

0.9

1

number of source nodes

pe
rc

en
ta

ge
 o

f r
ec

ei
ve

d
up

da
te

s

GAF, p=0.95
GAF, p=0.90
our scheme, p=0.95
our scheme, p=0.90

Fig. 5. The percentage of received up-
dates at BS (temp trace, ε = 0.1)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

absolute error bound (ε)

po
w

er
 c

on
su

m
pt

io
n

(J
ou

le
)

our scheme, p=0.90
our scheme, p=0.95
GAF, p=0.90
GAF, p=0.95

Fig. 6. The average power consump-
tion per node (temp trace, 1000 secs)

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation time (sec)

P
er

ce
nt

ag
e

of
 s

ur
vi

vi
ng

 n
od

es

GAF, p=0.95
GAF, p=0.90
our scheme, p=0.95
our scheme, p=0.90

Fig. 7. The fraction of surviving nodes
(temp trace, ε = 0.1, 100 nodes)

This behavior is explained by Fig. 5, which shows the percentage of s∗’s update
packets received by the BS, under various traffic loads. Starting from 45 sources,
the percentage of received packets begins to drop rapidly under GAF, while it
remains stable under our scheme. Since GAF ensures that a connected routing
backbone is always available, heavy traffic loads will lead to severe contention
in the wireless channel. Our scheme, however, is more flexible in adjusting each
node’s duty cycle, causing less channel contention and increasing throughput
under heavy traffic loads.

6.3 Power Consumption

In Fig. 6, we show the average power consumption per node in the 100-node
sensor network, under our scheme and under GAF. Let Ei0 and Eir be node
si’s intial energy level and remaining energy after simulation, respectively. The
average power consumption per node is

∑
i (Ei0−Eir)

100 . To ensure that no node
runs out of power during our simulation, we set a high initial energy level (100
J). We chose 15 sources located as far from the BS as possible, each associated

82 S. Zhu, W. Wang, and C.V. Ravishankar

with the same temp trace and the same consistency requirement. We increased
the error bound from 0.1 to 0.45 and measured the power consumption for a
simulation time of 1000 secs.

In general, our approach consumes far less power than GAF. As the error
bound increases, the difference is more significant, since fewer updates are gen-
erated, and our approach allows the nodes to sleep more often. More power is
consumed for a higher confidence level (p = 0.95) since more updates must be
generated and delivered to the BS.

To compare sensor network lifetimes under our scheme and under GAF, we
show the fraction of nodes surviving after a given simulation time in Fig. 7. The
initial energy level was set to 15 J. For simulation time less than 600 secs, all
the nodes survive under our scheme as well as under GAF. However, beyond 600
secs, the survivor fraction drops rapidly under GAF, while it still remains 100%
under our scheme. With p = 0.9, we can achieve 67% longer network lifetime
than GAF, while with p = 0.95, our lifetime is 50% longer.

7 Conclusions

We have proposed a novel approach to maintain stochastic consistency for erratic
sensor sources. We achieve power efficiency by dynamically adjusting sensors’
duty cycles. A node is guaranteed to be awake when an update message needs to
be delivered/relayed, and asleep at other times. We model erratic sensor sources
as drifting Brownian motions, and adpatively evaluate the model parameters at
the sources. We have verified on various categories of real-life sensor traces that
the DBM model faithfully captures the erratic data characteristics in the short
term, and helps the source to adaptively evaluate when the next cache update
is due, and notify the relaying nodes to wake up before this time.

Our scheme achieves high fidelity under the stochastic consistency model. Our
fidelity is higher than that of GAF, which maintains a connected routing back-
bone and puts the other nodes to sleep, under heavy traffic loads and stringent
consistency requirements, suggesting that we can attain higher throughput than
GAF. Our approach also consumes significantly less power than GAF, since it
is more flexible in adjusting each node’s duty cycles, thus saving more power.

References

1. Y.Xu, J.Heidemann, D.Estrin: Geography-informed energy conservation for ad hoc
networks. In: Proc. of the MobiCom Conf, Italy (2001)

2. S.Madden, M.J.Franklin, J.M.Hellerstein, W.Hong: The design of an aquisitional
query processor for sensor networks. In: Proc. of the 2003 ACM SIGMOD Conf,
San Diego (2003)

3. S.Madden, M.J.Franklin, J.M.Hellerstein, W.Hong: Tag: a tiny aggregation service
for ad-hoc sensor networks. In: The 5th Symposium on OSDI. (2002)

4. C.Intanagonwiwat, R.Govindan, D.Estrin: Directed diffusion: A scalable and ro-
bust communication paradigm for sensor networks. In: Proc. of the ACM/IEEE
MobiCom Conf. (2000)

Stochastically Consistent Caching and Dynamic Duty Cycling 83

5. Q.Han, S.Mehrotra, N.Venkatasubramanian: Energy efficient data collection in
distributed sensor environments. In: Proc. of the 24th ICDCS Conf. (2004)

6. M.A.Sharaf, J.Beaver, A.Labrinidis, P.K.Chrysanthis: Tina: A scheme for tempo-
ral coherency-aware in-network aggregation. In: Proc. of the 3rd ACM MobiDE
Workshop. (2003)

7. C.Olston, J.Jiang, J.Widom: Adaptive filters for continuous queries over dis-
tributed data streams. In: Proc. of the 2003 ACM SIGMOD, San Diego (2003)

8. A.Deligiannakis, Y.Kotidis, N.Roussopoulos: Hierarchical in-network data aggre-
gation with quality guarantees. In: Proc. of the 9th EDBT, Greece (2004)

9. ASH Transceiver Designer’s Guide, http://www.rfm.com, May, 2002.
10. Chipcon CC1000 RF Transceiver Datasheet, http://www.chipcon.com.
11. MPR/MIB Mote Sensor Hardware Users Manual, http://www.xbow.com.
12. S.Zhu, C.V.Ravishankar: Stochastic consistency, and scalable pull-based caching

for erratic data sources. In: Proc. of the 2004 VLDB Conf, Toronto, Canada (2004)
13. F.Bennett, D.Clarke, J.B.Evans, A.Hopper, A.Jones, D.Leask: Piconet: Embedded

mobile networking. In: IEEE Personal Communications Magazine. (1997)
14. C.Schurgers, V.Tsiatsis, S.Ganeriwal, M.Srivastava: Optimizing sensor networks

in the energy-latency-density design space. In: IEEE Transactions on Mobile Com-
puting. (2002) 1(1)

15. B.Chen, K.Jamieson, H.Balakrishnan, R.Morris: Span: An energy-efficient coordi-
nation algorithm for topology maintenance in ad hoc wireless networks. In: Proc.
of the IEEE/ACM MobiCom Conf, Rome, Italy (2001)

16. S.Karlin, H.M.Taylor: A First Course in Stochastic Processes, 2nd Edition. Aca-
demic Press (1975)

17. S.Zhu, C.V.Ravishankar: A scalable approach to approximating aggregate queries
over intermittent streams. In: Proc. of the 2004 SSDBM Conf, Santorini Island,
Greece (2004)

18. R.Alonso, D.Barbara, H.Molina: Data caching issues in an information retrieval
system. In: ACM Trans. Database Systems. (1990) 15(3)

19. H.Zou, N.Soparkar, F.Jahanian: Probabilistic data consistency for wide-area ap-
plications. In: Proc. of the 16th ICDE Conf. (2000)

20. W.Heinzelman, A.Chandrakasan, H.Balakrishnan: Energy-efficient communication
protocols for wireless microsensor networks. In: Proc. of the Hawaii Intl. Conf on
Systems Sciences. (2000)

21. W.Ye, J.Heidemann, D.Estrin: An energy-efficient mac protocol for wireless sensor
networks. In: Proc. of the 21st InfoCom Conf, New York, NY (2002)

22. A.Deshpande, C.Guestrin, S.Madden, J.M.Hellerstein, W.Hong: Model-driven data
acquisition in sensor networks. In: Proc. of the 30th VLDB. (2004)

23. G.Hartl, B.Li: infer: A baysian inference approach towards energy efficient data
collection in dense sensor networks. In: Proc. of the 25th ICDCS Conf. (2005)

24. S.C.Huang, R.H.Jan: Energy-aware load balanced routing schemes for sensor net-
works. In: Proc. of the 10th Intl Conference on Parallel and Distributed Systems,
Newport Beach, California (2004)

25. A.Woo, D.E.Culler: A transmission control scheme for media access in sensor
networks. In: Proc. of the MobiCom Conf. (2001)

26. X.Hong, M.Gerla, W.Hanbiao, L.Clare: Load balanced, energy-aware communica-
tions for mars sensor networks. In: Proc. of the Aerospace Conf, vol 3. (2002)

27. A.M.Mood, F.A.Graybill, D.C.Boes: Introduction to the Theory of Statistics, 3rd
Edition. McGraw-Hill (1974)

28. S.N.Neftci: An Introduction to the Mathematics of Financial Derivatives, 2nd
Edition. Academic Press (2000)

84 S. Zhu, W. Wang, and C.V. Ravishankar

29. H.C.Thode: Testing for Normality. Marcel Dekker, Inc. (2002)
30. The TAO Project, http://www.pmel.noaa.gov/tao/index.shtml.
31. http://mathworld.wolfram.com/InverseErf.html.
32. S.Zhu, W.Wang, C.V.Ravishankar: Stochastically Consistent Caching and Dy-

namic Duty Cycling for Erratic Sensor Sources, Technical Report, Univ. of Cali-
fornia, Riverside (2005), http://www.cs.ucr.edu/∼szhu/sensorcache.pdf.

33. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/.
34. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi-

cations, IEEE 802.11 Standard, 1997 Edition.
35. T.S.Rappaport: Wireless Communications, Principles and Practice. Prentice Hall

(1996)
36. C.E.Perkins, E.M.Royer: Ad hoc on-demand distance vector routing. In: Proc. of

the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New
Orleans, LA (1999)

Distributed Model-Free Stochastic Optimization
in Wireless Sensor Networks

Daniel Yagan and Chen-Khong Tham

Department of Electrical and Computer Engineering,
National University of Singapore

{daniel.yagan, eletck}@nus.edu.sg

Abstract. With the improvement in computer electronics in terms of process-
ing, memory and communication capabilities, it has become possible to scatter
tiny embedded devices such as sensor nodes to monitor physical phenomena with
greater flexibility. A large number of sensor nodes, communicating over the wire-
less medium, also allows information gathering with greater accuracy than cur-
rent systems. This paper presents a new stochastic technique known as Incremen-
tal Simultaneous Perturbation Approximation (ISPA) for performing optimization
in wireless sensor networks. The proposed algorithm is based on a combination
of gradient-based decentralized incremental (GBDI) optimization and Simulta-
neous Perturbation Stochastic Approximation (SPSA) techniques. The former is
based on Incremental Sub-Gradient Optimization (ISGO) techniques that allow
the algorithm to be performed in a distributed and collaborative manner. The lat-
ter component addresses the limitations of the GBDI component especially in
real-world sensor networks. Specifically, the SPSA component is a model-free
technique that finds the optimal solution without requiring a functional model
such as an input-output relationship and a cost gradient. Simulation results show
that the proposed ISPA approach not only achieves distributed optimization in a
stochastic environment, but can also be implemented in a practical manner for
resource-constrained devices.

1 Introduction

Optimization problems are central to the design, control and analysis of most engineer-
ing systems. However, most of the common optimization techniques (i.e. linear pro-
gramming, geometric programming, convex optimization) do not tackle a number of
key issues especially when applied in actual real-world systems. For instance, a closed-
form solution may not be available analytically due to the usually unknown dynam-
ics of the system. It is thus evident that a mathematical framework which iteratively
searches for the optimal solution is desired. Usually, the system designer may perform
offline analysis and create rule-based heuristics. However, an unforeseen condition may
have a significant impact on system performance. It is desirable that the algorithm be
executed online or as the system interacts with the environment (i.e. perform online
optimization and adjust to varying circumstances). Another issue is the notion of noisy
data which may come from actual measured readings. The algorithm should handle
inaccurate measurements as well as disruptive changes in the system. In addition, the

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 85–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

86 D. Yagan and C.-K. Tham

implementation issues should also be dealt with in a practical and cost-effective manner.
Extending these objectives to distributed systems with a number of processing devices
poses a non-trivial problem in terms of achieving the globally optimal solution. Employ-
ing these optimization algorithms in resource-constrained devices can be considered a
natural extension, but is definitely more challenging.

In this paper, we present an optimization technique that tries to achieve the above-
mentioned objectives in sensor networks. In recent years, research on sensor networks
has been increasing in momentum due to its enormous potential applications in real-
time monitoring, tracking and estimation. It is known that wireless sensor networks
provide the missing link between the digital and physical worlds. The major constraints
in sensor networks are the limited energy, computation and communication resources.
Although these constraints limit the data collection and communication capability of
this type of network, in many applications, the main objective is not merely the common
transfer of data from source to destination, but rather to estimate certain phenomena or
functions of interest in the environment (i.e. average ambient temperature readings in
a region or location of a moving object). The need for collaborative and distributed
processing among the sensor nodes is thus evident in order to cope with the resource
constraints.

We formulate estimation in real-time monitoring as a distributed optimization prob-
lem. This paper is organized as follows. Section 2 first describes a gradient-based de-
centralized incremental (GBDI) optimization scheme for the estimation of required
system parameters [1]. This scheme is based on the Incremental Sub-Gradient Op-
timization (ISGO) algorithm [2], but applied in a decentralized manner. In Section
3, we highlight some weaknesses of the GBDI scheme especially in practical and
real-world sensor network applications. We then present the optimization technique
known as Simultaneous Perturbation Stochastic Approximation (SPSA) [3] in Section
4 for solving the limitations of the GBDI algorithm and for achieving the following
objectives:

i. Robust estimation and the ability to handle noisy measurements;
ii. Stochastic objective cost functions which may be more applicable if the readings

are noisy, and to capture other unknown system dynamics;
iii. An online and model-free approach;
iv. Local and global convergence in spite of non-convexity and non-determinism in the

system; and
v. Practical and cost-effective distributed implementation.

Section 5 discusses how the SPSA algorithm can be easily applied in a decentralized
manner. We propose a decentralized scheme known as the Incremental Simultaneous
Perturbation Approximation (ISPA) algorithm that combines the GBDI and SPSA tech-
niques. Section 6 presents simulation results to show the effectiveness of ISPA. Finally,
we conclude and present possible research directions in Section 7.

2 Decentralized Incremental Optimization

Interesting prior work on decentralized incremental optimization were presented in
[1, 4]. We first summarize their ideas as follows:

Distributed Model-Free Stochastic Optimization 87

Consider the scenario of n sensor nodes uniformly distributed over a unit square
area where each collects m measurements. Assuming that the objective is to compute
or estimate the average value of all the measurements, the possible solutions are:

i. All sensors transmit to a central sink node which computes the average. This re-
quires O(mn) bits to be transmitted over O(1) meter on the average.

ii. Each sensor computes a local average and transmit it to the sink node which then
computes the global average. This requires only O(n) bits over O(1) meter.

iii. Find a path to the sink node, which passes through and visits each node once. The
global average can be computed by a single accumulation process from the start
node to the sink along the path where each node updates the estimate of the global
average from its own local average. This requires O(n) bits over only O(n−1/2)
meters.

The last approach may be more efficient than the first two approaches. It is known that
radio communication has significant energy consumption and hence, the last approach
also contributes to higher energy savings. It can also be shown that a similar procedure
can be used to compute any average quantity.

The authors in [1] highlighted that computing averages can be considered as mini-
mizing quadratic cost functions. Quadratic optimization problems are special since the
solutions are linear functions of input data. In this case, a single accumulation proce-
dure leads to a solution. It turns out that similar procedures exist for computing general
types of estimates.

Specifically, many estimation criteria can be expressed in the following form:

f(θ) =
1
n

n∑
i=1

fi(θ) (1)

where:
θ is the parameter of function to be estimated,
f(θ) is the cost function to be minimized which is expressed as the average of n local
functions {fi(θ)}n

i=1 from each sensor i.
For the average criterion,

fi(θ) =
1
m

m∑
j=1

(xi,j − θ)2 (2)

and

f(θ) =
1

mn

n∑
i=1

m∑
j=1

(xi,j − θ)2 (3)

where xi,j is the jth measurement at the ith sensor.
Computing the average of the sensor readings xi,j can thus be reformulated by find-

ing θ that minimizes the cost function in (3). The decentralized incremental optimiza-
tion algorithm in [1] operates by having an estimate of the parameter θ which is passed
from node to node. Each node updates the parameter θ with respect to its local cost and
gradient, and passes the updated value of θ to the next node.

88 D. Yagan and C.-K. Tham

For a quadratic cost function, such as in (3), a single pass or cycle among the nodes
is enough to find the required estimate θ. Several cycles are needed for general cases
of cost functions. The algorithm can be considered as an incremental sub-gradient op-
timization [2, 5] in which the number of cycles or passes among nodes are the number
of iterations and can be analyzed theoretically. Essentially, the nodes collaborate to per-
form an in-network decentralized optimization for parameter estimation.

2.1 Incremental Sub-gradient Optimization

The basic concepts of incremental sub-gradient optimization are first reviewed in this
sub-section. The concept of sub-gradient comes from the important property of the
gradient of a convex differentiable function:

For a convex differentiable function f : Θ → R, the following holds for the gradient
of f at point θ0 for all θ ∈ Θ :

f(θ) ≥ f(θ0) + (θ − θ0)T∇f(θ0) (4)

In general, for a convex function f , a sub-gradient of f at θ0, observing that f may
not be differentiable at θ0, is any direction g such that:

f(θ) ≥ f(θ0) + (θ − θ0)T g (5)

The sub-differential of f at θ0, denoted as ∂f(θ0), is the set of all sub-gradients of
f at θ0. If f is differentiable at θ0, then ∂f(θ0) := {∇f(θ0)}, which implies that the
gradient of f at θ0 is the only direction satisfying (4).

When considering the average measurement from n sensor nodes where each sensor
collects m readings, the estimate parameter vector is defined as follows:

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

fi({xi,j}m
j=1, θ) (6)

where:

θ is the global parameter vector readings which describe the sensed phenomena (i.e.
average temperature and light),
θ̂ is the estimate of the parameter vector θ,
fi(θ) := fi({xi,j}m

j=1, θ) is the convex cost function, which may not be differentiable,
from the m readings of sensor i given parameter vector θ.

The formulation in (6) computes the average. In general cases, appropriate cost func-
tions other than the average value can be formulated.

Gradient and sub-gradient methods (i.e. gradient descent) are commonly used for it-
eratively solving such optimization problems. Usually, these algorithms are performed
in a centralized manner. For the sub-gradient descent approach for solving (6), the up-
date equation is:

θ̂(k+1) = θ̂(k) − α

n∑
i=1

gi,k (7)

Distributed Model-Free Stochastic Optimization 89

where:

θ̂(k) is the estimate vector after k iterations,
gi,k ∈ ∂fi(θ̂(k)) is a sub-gradient, where ∂fi(θ̂(k)) is the set of sub-gradients
α is a positive step size,
k is the iteration number.

At each iteration step, this centralized approach uses data from all n sensors. Since
a distributed or decentralized approach is needed, the authors in [1] use the following
incremental approach that divides the update equation in (7) into a cycle of n sub-
iterations. We refer to their algorithm as a gradient-based decentralized incremental
(GBDI) algorithm. Each sub-iteration tries to optimize a single component fi(θ). The
update equation after k cycles or iterations is as follows:

θ̂(k) = ψ(k)
n (8)

where ψ(k)
n is from the n sub-iterations:

ψ
(k)
i = ψ

(k)
i−1 − αgi,k, i = 1, 2, ..., n (9)

where gi,k ∈ ∂fi(ψ
(k)
i−1) and ψ

(k)
0 = ψ(k−1)

n . Each sub-iteration can be mapped directly
to the optimization of sensor i for its local cost function fi(θ).

As mentioned in [1], diminishing step size in (9) is desirable so that the algorithm is
guaranteed to converge to the optimal value. However, the rate of convergence generally
becomes very slow as the step size gets smaller. In sensor networks, applications usually
require deployment in a dynamic environment for the purpose of not only identifying
(i.e. estimating), but also tracking the phenomena of interest. The authors in [1] have
used a fixed step size to make the algorithm more adaptive to handle the non-stationary
conditions in sensor networks. They have also stated that K cycles of the algorithm
will produce an estimate θ̂ satisfying: f(θ̂) ≤ f(θ∗) + O(K−1/2) where θ∗ is the
optimal solution. For a network of n nodes uniformly distributed over a unit square
area and m measurements per node, the amount of communication required for the
algorithm is approximately a factor of K/(mn1/d) (i.e. d is the dimensionality of θ̂)
less than the required number to transmit all measurement readings to a central location
for processing.

3 Weaknesses of the GBDI Algorithm

We present two applications described in [1, 4] to identify the limitations of the GBDI
algorithm.

3.1 Applications of the GBDI Algorithm

Robust Estimation. As sensor networks are deployed for monitoring, the need for a
robust system is crucial especially in a hostile environment where some sensors may
give noisy readings.

Suppose that each sensor collects a set of m pollution level measurements. The sam-
ple mean pollution level is obtained as: R = 1

mn

∑
i,j

xi,j . If each measurement has a

90 D. Yagan and C.-K. Tham

variance σ2 and assuming independent and identically distributed samples, the variance
of R is σ2

mn . If a fraction of the sensors are damaged, say 10%, the variance of the
readings will be 100σ2, i.e. the estimator variance of R increases by approximately 10
times. It is evident that the readings from the damaged sensors should be removed from
the estimation process. If this is not possible, robust estimation techniques is the next
logical step.

The GBDI algorithm can be used by replacing the classical least square loss function
‖x − θ‖2 with a more general and robust loss function ρ(x, θ). The choice of ρ(x, θ)
should give less weight to those samples that deviate greatly from the parameter θ. The
cost function for the optimization can then be defined for this case as:

frobust(θ) =
1

mn

n∑
i=1

m∑
j=1

ρ(xi,j , θ) (10)

where:

fi(θ) =
1
m

m∑
j=1

ρ(xi,j , θ) (11)

An example of ρ(x, θ) is the Huber loss function:

ρh(x; θ) =
{ ‖x − θ‖2

/2 for ‖x − θ‖ ≤ γ
γ ‖x − θ‖ − γ2/2 for ‖x − θ‖ > γ

(12)

The authors in [1] have showed that, by simply replacing the cost function with a
more robust loss function, there is a significant improvement in the variance of the
estimate of θ.

We observe that, as long as the new loss function ρ(x, θ) satisfies the conditions in
(4) and (5), and its gradient can be computed analytically, it can be used as a substitute
function in the GBDI algorithm. This is also application-specific and may include other
considerations such as giving less importance to readings from damaged sensors in the
loss function.

Energy-Based Source Localization. The GBDI algorithm can also be used for local-
ization of energy-based sources such as acoustic sources.

Consider the case where a source emits energy isotropically and is positioned at
an unknown position θ. The sensors are uniformly distributed in either a square or
cube with side length D � 1 and each sensor knows its own location ri for i =
1, 2, ..., n relative to a fixed point. The task is to estimate θ from the nm sensor readings.
The isotropic energy propagation model for the jth received signal strength at sensor i
used is:

xi,j =
A

‖θ − ri‖β
+ wi,j (13)

where:

A is a positive constant,
β ≥ 1 is the attenuation characteristics of the medium,
wi,j ∼ N(0, σ2) are independent and identically distributed Gaussian samples with
zero mean and variance σ2, and ‖θ − ri‖ > 1, ∀i.

Distributed Model-Free Stochastic Optimization 91

The maximum likelihood estimate of the source location is found by solving:

θ̂ = argmin
θ

1
mn

n∑
i=1

m∑
j=1

(
xi,j − A

‖θ − ri‖β

)2

(14)

where:

fi(θ) =
1
m

m∑
j=1

(
xi,j − A

‖θ − ri‖β

)2

(15)

The gradient of fi(θ) can be obtained as:

∇fi(θ) =
2βA

m ‖θ − ri‖β+2

m∑
j=1

(
xi,j − A

‖θ − ri‖β

)
(θ − ri) (16)

3.2 Limitations of GBDI

The algorithm mainly relies on the cost function formulation, especially on the indi-
vidual loss fi(θ) such as in (11) and (15). Once an application-specific cost function
is defined mathematically, performing the algorithm is straightforward as shown in (8)
and (9).

It is apparent that the algorithm can be used to optimize other types of performance
measures by defining an appropriate cost function. However, there are some limitations
such as the following:

i. The cost function is dependent on an assumed model such as the energy isotropic
propagation model in (13). This propagation model may not be accurate enough in
actual real-world sensor networks. Fixing a model before obtaining the best esti-
mate or optimal solution means that the algorithm may not be robust enough if the
actual scenario departs from the assumed model. For instance, the sensor reading
xi,j in (13) for sensor i assumes Gaussian independent and identically distributed
readings which fail to capture the correlation among the m readings as well as
the cross-correlation of other sensors’ readings in the vicinity of sensor i. We may
require a generic model-free approach to find the optimal solution.

ii. A new defined cost function may not be easy to differentiate analytically to obtain
the gradient of fi(θ) which is used in (9). It should be noted that the algorithm
needs a closed-form expression for ∇fi(θ) beforehand at each sensor node. An-
other issue is the computational complexity of the gradient which is not viable in
a tiny sensor node. Looking at (16), a sensor node needs to perform a number of
complex calculations to obtain the gradient.

iii. The algorithm does not include the cost of transmitting the new estimate to the next
node. This may play a role in minimizing the cost of energy consumption. It can
be deduced that, if there is a large number of n sensors, performing the algorithm
for a few cycles may even drain the energy of some sensors. If a number of sensor
nodes fail along the path, the accuracy of the estimate suffers as well.

92 D. Yagan and C.-K. Tham

iv. Including other cost terms in the cost function may require careful consideration.
As an example, the cost of transmission and battery or energy drain in an actual
real-world scenario may be non-deterministic and unknown beforehand. The trans-
mission energy obviously depends on a number of parameters such as the medium
access control (MAC), routing, remaining battery and sleep-wake pattern. As men-
tioned earlier, fixing a model initially may not be advisable.

v. The validity and convergence of the algorithm uses the convexity and gradient
∇fi(θ) of the cost function. If the cost function becomes non-deterministic or
stochastic and unknown, which is evidently more appropriate in a real-world sensor
network, the GBDI algorithm may not apply and may suffer divergence. Therefore,
thorough analysis is required to study the stochastic nature of the cost function for
guaranteed convergence.

The next section presents a novel optimization technique that effectively addresses these
limitations of the GBDI algorithm. Specifically, a model-free optimization approach is
investigated with the following objectives:

i. Robust estimation and the ability to handle noisy measurements;
ii. Stochastic objective cost functions that include energy, communication and pro-

cessing costs, which may be more applicable if the readings are noisy and to capture
other unknown system dynamics;

iii. An online and model-free approach;
iv. Local and global convergence in spite of non-convexity and non-determinism in the

system; and
v. Practical and cost-effective distributed implementation.

4 Online Model-Free and Robust Stochastic Optimization

Finding the best estimate parameter vector that satisfies (6) clearly falls under the general
formulation of finding θ∗ that solves min

θ∈Rp
L(θ) where L(θ) : Rp → R1 is a loss function

overθ, ap-dimensional vector. We assumeθ represents a vector of continuous parameters.
In addition, we assume that the objective function L(θ) cannot be expressed as a closed-
form expression. Finding the gradient with respect to θ is thus not possible. Hence, one
can use an iterative approach that improves an initial guess θ1 towards the optimal θ∗.

In classical deterministic optimization, it is assumed that one can obtain perfect infor-
mation about the loss function and its derivatives if needed, and such information is used
to improve the search direction in a deterministic manner. In practical scenarios, such
an assumption may not be valid due to inevitable noise effects. However, deterministic
methods, such as linear and non-linear programming, steepest descent, Newton-Raphson
and conjugate gradient, provide a starting point for the analysis of non-deterministic or
stochastic methods. Many techniques in both deterministic and stochastic optimization
for continuous problems rely on the gradient vector of the loss function:

g(θ) =

⎡⎢⎣
∂L
∂θ1
...

∂L
∂θp

⎤⎥⎦ (17)

Distributed Model-Free Stochastic Optimization 93

4.1 Gradient-Based Stochastic Algorithms

The most common gradient-based stochastic algorithm (i.e. stochastic gradient method)
is the Robbins-Monro stochastic approximation (RMSA) which may be considered as
a generalization of the following techniques: deterministic steepest descent, Newton-
Raphson, neural network back-propagation and infinitesimal perturbation analysis-
based optimization for discrete-event systems. RMSA relies on the direct measurements
of the gradient g(θ) which yield an unbiased estimate of the gradient due to the presence
of noise in the input data. RMSA has the form:

θ̂(k+1) = θ̂(k) − αkY (θ̂(k)) (18)

where:

αk is a non-negative step size,
θ̂(k) is the estimate vector after k iterations,
Y (θ̂(k)) is the direct measurement of the gradient g(θ̂(k)).

Obtaining Y (θ̂(k)) in RMSA usually requires detailed knowledge of the functional
relationship between the parameters being optimized and the cost function being min-
imized. Such a relationship can be difficult to obtain such as in the cases of non-linear
feedback controller design and simulation-based optimization.

In areas such as recursive parameter estimation, there may be large computational
savings in calculating or measuring the loss function itself, rather than the gradient. This
is also one of the weaknesses mentioned in Section 3 for gradient-based methods. In con-
trast, gradient-free algorithms require only the measurement samples of the loss function
which does not require the full input-output functional relationship for the gradient.

4.2 Gradient-Free Stochastic Algorithms

In these types of algorithms, no direct measurement of the gradient g(θ) is assumed.
However, it is assumed that measurements of loss function L(θ) are available which
may include added noise. The recursive update equation used is the general stochastic
approximation update:

θ̂(k+1) = θ̂(k) − αkĝk(θ̂(k)) (19)

where ĝk(θ̂(k)) is the estimate of the gradient g(θ̂(k)) at the iterate θ̂(k) based on loss
function measurements.
Under appropriate conditions, (19) converges to θ∗ in some stochastic sense usually
almost surely (i.e. with probability 1) [3, 6]. The main component of (19) is the gradient
estimate ĝk(θ̂(k)). Two methods for calculating ĝk(θ̂(k)) are presented here.

Let ck be a small positive number, that decays as k gets larger. One-sided gradient
approximations involve loss measurements y(θ̂(k)) and y(θ̂(k) + perturbation), while
two-sided gradient approximations involve two measurements of the form y(θ̂(k) ±
perturbation), where y(·) = L(·) + noise.

94 D. Yagan and C.-K. Tham

Finite Difference Stochastic Approximation (FDSA). Each component of θ̂(k) is
perturbed one at a time, and the corresponding loss measurements y(·) are obtained.
The ith component of estimate gradient vector ĝk(θ̂(k)) for a two-sided finite-difference
approximation is:

ĝk,i(θ̂(k)) =
y(θ̂(k) + ckei) − y(θ̂(k) − ckei)

2ck
(20)

where ei is a p-dimensional vector with one in the ith place and zeros elsewhere, for
i = 1, 2, ..., p.

Simultaneous Perturbation Stochastic Approximation (SPSA). All elements of θ̂(k)

are perturbed randomly together to obtain two measurements of y(·), but each compo-
nent is formed from the ratio involving the individual components in the perturbation
vector and the difference in the two corresponding elements:

ĝk(θ̂(k)) =

(
y(θ̂(k) + ck�k) − y(θ̂(k) − ck�k)

2ck

)⎡⎢⎢⎢⎣
�−1

k,1
�−1

k,2
...

�−1
k,p

⎤⎥⎥⎥⎦ (21)

where �k =
[�k,1 �k,2 · · · �k,p

]T
is a p-dimensional random perturbation vector.

The perturbation vector satisfies conditions to be discussed in the Section 4.3. It can
also be observed that the number of loss function measurements in each iteration for
FDSA is 2p, since each component of ĝk(θ̂(k)) is obtained from two loss measurements
(i.e. y(θ̂(k) + ckei) and y(θ̂(k) − ckei)) that arise from the two-sided perturbation of the
ith component of θ̂(k). In addition, each ith component is perturbed separately.

For SPSA, all the vector components of θ̂(k) are perturbed simultaneously (i.e. hence
the name simultaneous), resulting in only two loss measurements y(θ̂(k) + ck�k) and
y(θ̂(k) − ck�k), regardless of vector dimension p. This provides a potential advantage
for SPSA to achieve larger computational savings to estimate θ. It should be noted that
this advantage is only realized if the number of iterations required for effective conver-
gence to θ∗ does not increase in a way that cancels measurement savings per gradient
approximation in each iteration. This is discussed further in the following subsection.

4.3 Simultaneous Perturbation Stochastic Approximation (SPSA) Theory

Sufficient conditions for the convergence of SPSA in the stochastic sense using a dif-
ferential equation approach was presented in [3, 6]. Some of these conditions are sum-
marized as follows:

i. The gain sequences ak and ck both go to zero at some specified rate;
ii. L(θ) is sufficiently smooth or several times differentiable near θ∗;

iii. The sequence {�k,i} for i = 1, ..., p are independent and symmetrically distributed

about zero, with finite inverse moments E
(
|�k,i|−1

)
for all k, i. An example

of such a distribution is the symmetric Bernoulli ±1 distribution. Two common
distributions that do not satisfy the conditions are the uniform and the normal.

Distributed Model-Free Stochastic Optimization 95

It is also shown in [3, 6] that the probability distribution of an appropriately scaled
θ̂(k) is approximately normal (with specified mean μ and covariance matrix Σ) for
large k:

kβ/2
(
θ̂(k) − θ∗

)
−→ N(μ, Σ) as k → ∞ (22)

where β > 0 depends on the gain sequences ak and ck,
μ depends on both the Hessian and third derivatives of L(θ) at θ∗,
Σ depends on the Hessian matrix at θ∗.

The asymptotic normality result can be used to study the relative efficiency of SPSA
as compared with FDSA, which effectively justifies the use of SPSA. The efficiency
depends on the shape of L(θ), values of the gain sequences ak and ck, distribution of
the sequence {�k,i} and noise measurement terms. It is shown in [6, 7] that in most
practical problems, SPSA will be asymptotically more efficient than FDSA. In partic-

ular, by equating the asymptotic mean-squared error E

(∥∥∥θ̂(k) − θ∗
∥∥∥2
)

in SPSA and

FDSA, it is known that:

Number of measurements of loss function in SPSA
Number of measurements of loss function in FDSA

→ 1
p

(23)

as the number of loss measurements in both procedures gets large. Equation (23) im-
plies that the p-fold savings per iteration in gradient approximation as mentioned in
Section 4.2 translates directly into a p-fold savings in the overall optimization
process.

4.4 Extensions to the Basic SPSA Algorithm

The work in [8] has considered the problem of choosing the best distribution for the ran-
dom perturbation vector �k. Based on asymptotic distribution results, it is shown that
the optimal distribution for the components of �k is symmetric Bernoulli. This sim-
ple distribution has also been effective in many finite-sample practical and simulation
examples.

SPSA can also be used in feedback control problems where the loss function
changes with time [9, 10]. A gradient smoothing idea (similar to momentum in neu-
ral networks literature) may help reduce noise effects and enhance convergence. Alter-
natively, it is possible to average several simultaneous perturbation gradient approx-
imations at each iteration to reduce noise effects at the cost of additional function
measurements [3].

An important extension of SPSA is the global minimization as discussed in [11, 12].
The first approach is based on a step-wise slowly decaying sequence ck and possibly
ak, while the second approach is based on the principle of injected Monte Carlo noise
in the right-hand side of the basic SPSA updating equation in (19). This latter approach
is a common way of converting stochastic approximation to global optimizers.

The problem of constrained (equality and inequality) optimization using SPSA is
presented in [13] using a projection approach. While the projection approach has a con-
cise mathematical representation and may be simple to implement, it is often restricted
in the types of constraints that can be handled. An alternative approach to constrained

96 D. Yagan and C.-K. Tham

optimization is given in [14] that includes a penalty term in the loss function. In practical
problems, constraints are only implicit in θ and the penalty function is well-suited to
handle such cases.

5 SPSA for Distributed Model-Free Optimization

SPSA [3, 6, 9] is a gradient-free algorithm that has the following novel properties:

i. Handles stochastic cost functions and shows robustness to noise in the loss function
measurements;

ii. An online and model-free approach that does not need the loss function gradient
obtained from the explicit functional input-output relationship;

iii. Exhibits theoretical and experimental convergence for relative efficiency as com-
pared with FDSA;

iv. Local and global convergence in spite of non-convexity and non-determinism in the
system;

v. Handles constrained optimization; and
vi. Practical and cost-effective implementation: SPSA needs only two loss measure-

ments for each iteration, compared with FDSA that uses 2p, where p is the vector
dimension.

It can be easily seen that SPSA can be used for estimating the gradient for the decen-
tralized incremental optimization method in [1, 4] for sensor networks.

Formally, by following the idea in Section 2.1, we divide the update equation of the
centralized model-free SPSA algorithm in (19) into n sub-iterations, where n is the
total number of sensors. The update equation after k cycles or iterations is:

θ̂(k) = υ(k)
n (24)

where υ(k)
n is from the n sub-iterations or sensors:

υ
(k)
i = υ

(k)
i−1 − αĝi,k, i = 1, 2, ..., n (25)

ĝi,k =

(
yi(υ

(k)
i−1 + ck�k) − yi(υ

(k)
i−1 − ck�k)

2ck

)⎡⎢⎢⎢⎣
�−1

k,1
�−1

k,2
...

�−1
k,p

⎤⎥⎥⎥⎦ (26)

where υ
(k)
0 = υ(k−1)

n and yi is the loss measurement of sensor i. Each sub-iteration is
thus effectively mapped directly to the optimization of sensor i for its local measure-
ment function yi.

We propose the combination of the SPSA and GBDI components as the Incremental
Simultaneous Perturbation Approximation (ISPA) algorithm. ISPA operates by having
an estimate θ̂ that is passed from node to node, where each node updates the estimate
parameter θ̂ with respect to its local loss measurement function and estimated gradient.

Essentially, ISPA addresses the limitations mentioned in Section 3. Other stochastic
function terms can be included in the objective function to handle estimation of param-
eters in a cost-effective manner.

Distributed Model-Free Stochastic Optimization 97

6 Simulations and Discussions

To verify the effectiveness of ISPA, we perform a simulation similar to the energy-based
source localization discussed in Section 3.1. We compare ISPA with the model-based
GBDI that was proposed in [1, 4].

We assume that 100 sensors are uniformly distributed in a 100 × 100 square area,
where each sensor has 10 measurements. Each sensor i knows its current position ri

and the task is to estimate the location θ of the source in a decentralized manner.
For the model-based GBDI, we assume the isotropic energy propagation model in

(13) to obtain the gradient in (16). For ISPA, as discussed in Section 4.2, a node needs
to measure the loss function itself, since we assume that ISPA does not require the
functional mapping found in (15), nor the gradient. However, for simulation purposes,
we assume that the loss measurement for ISPA is defined as:

yi(θ) ≡ fi(θ) + noise =
1
m

m∑
j=1

(
xi,j − A

‖θ − ri‖β

)2

+ zi (27)

where zi ∼ N(mz , σ
2
z) are independent and identically distributed Gaussian samples

with mean mz and variance σ2
z . For the simulation, we let zi ∼ N(0, 100) and wi,j ∼

N(0, 1).
We also use the symmetric Bernoulli ±1 distribution for the random perturbation

vector �k and let ck = αk = 1/(k+1) as found in (19) and (21). We use the following
parameter values: A = 100 and β = 2.

Figure 1 shows the loss function values for ISPA and GBDI. GBDI assumes perfect
knowledge of the functional mapping and a closed-form expression for the gradient
and thus, it can obtain the optimal limiting value of 0.00861. On the other hand, ISPA
achieves close to the optimal performance despite its model-free and gradient-free prop-
erties. Figure 2 shows the mean squared error (MSE) for ISPA with respect to the mean

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

Lo
ss

 F
un

ct
io

n
V

al
ue

Cycles or Iterations

ISPA
GBDI

Fig. 1. Loss Function Comparison

98 D. Yagan and C.-K. Tham

 0

 5

 10

 15

 20

 50 100 150 200 250 300 350 400 450 500

M
ea

n
S

qu
ar

ed
 E

rr
or

Cycles or Iterations

ISPA

Fig. 2. Mean Squared Error (MSE) for ISPA

value of 0.00861 from GBDI obtained in Figure 1. Since the MSE decays with time,
this indicates that ISPA converges to the optimal value.

We also study the case of time-varying measurements where, after a cycle of passes
or iterations (i.e. the estimate θ̂(k) is passed among the n sensors in cycle k), we assume
that the sensors have new measurement readings. The variation of readings may come
from noisy data, instrumentation errors or node failures. For simulation purposes under
GBDI, we use the same model defined earlier in (13) but the readings vary at every
cycle. We also assume that with a small probability pr, the sensor readings obey a
similar isotropic energy propagation model as in (13):

xi,j =
A

‖θ − ri‖β
+ ηi,j (28)

where ηi,j ∼ N(0, 100) which is different from wi,j ∼ N(0, 1). We let pr = 0.3 in
the simulation. For ISPA under the time-varying scenario, we assume the same model
in (27), but we also vary the readings at every cycle or iteration.

Figure 3 shows the loss function values for ISPA and GBDI. ISPA clearly achieves bet-
ter performance even when the sensor readings vary after each cycle or iteration. GBDI
assumes perfect knowledge of the functional mapping and closed-form expression for
the gradient. However, if the measurements vary due to noise effects, GBDI may not per-
form well due to its fixed mapping and model-based gradient computation. ISPA achieves
better performance since it assumes a general stochastic cost or loss function without re-
quiring the input-output relationship, and at the same time, it only requires possibly noisy
loss function measurements. ISPA also achieves better computational savings by not per-
forming complicated gradient calculations which are required in the GBDI algorithm.

In terms of practicality in actual sensor networks, ISPA clearly provides the advan-
tage of computational savings. It is also model-free since it does not require the func-
tional relationship and closed-form expression for the cost gradient.

Distributed Model-Free Stochastic Optimization 99

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400 450 500

Lo
ss

 F
un

ct
io

n
V

al
ue

Cycles or Iterations

Time-Varying Measurements
ISPA
GBDI

Fig. 3. Loss Function Comparison under Time-Varying Measurements

7 Conclusion

This paper presents a distributed incremental optimization technique for sensor net-
works which can be applied to parameter estimation and source localization tasks. The
algorithm is able to cope with the stochastic nature of the environment through the use
of stochastic cost functions without the need for complete knowledge of the functional
relationship between the parameters being optimized and the cost function being mini-
mized. It also handles the inevitable noise effects, as well as unknown system dynam-
ics. The ISPA algorithm can be performed online and implemented in a practical and
cost-effective manner. Furthermore, since ISPA is an SPSA-based algorithm, it exhibits
local as well as global theoretical convergence properties. In future work, we plan to
investigate the use of the proposed ISPA algorithm on actual distributed wireless sensor
networks.

References

1. Rabbat, M., Nowak, R.: Distributed Optimization in Sensor Networks. In: Proc. Information
Processing in Sensor Networks, Berkeley, CA, USA (2004)

2. Nedic, A., Bertsekas, D.: Incremental Subgradient Methods for Non-differentiable Optimiza-
tion. Technical Report LIDS-P-2460, Massachusetts Institute of Technology, Cambridge,
MA, USA (1999)

3. Spall, J.C.: Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gra-
dient Approximation. IEEE Trans. Automat. Contr. 37 (1992) 332–341

4. Rabbat, M., Nowak, R.: Quantized Incremental Algorithms for Distributed Optimization.
IEEE J. Select. Areas Commun. 23(4) (2005) 798–808

5. Nedic, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms. In Urya-
sev, S., Pardalos, P., eds.: Stochastic Optimization: Algorithms and Applications. Kluwer
Academic Publishers (2000) 263–304

100 D. Yagan and C.-K. Tham

6. Spall, J.C.: A Stochastic Approximation Algorithm for Large-Dimensional Systems in the
Kiefer-Wolfowitz Setting. In: Proc. IEEE Conf. on Decision and Control. (1988) 1544–1548

7. Chin, D.: Comparative Study of Stochastic Algorithms for System Optimization Based on
Gradient Approximations. IEEE Trans. Syst., Man, Cybern. B 27 (1997) 244–249

8. Sadegh, P., Spall, J.: Optimal Random Perturbations for Multivariate Stochastic Approx-
imation Using a Simultaneous Perturbation Gradient Approximation. In: Proc. American
Control Conf. (1997) 3582–3586

9. Spall, J.C., Cristion, J.A.: A Neural Network Controller for Systems with Unmodeled Dy-
namics with Applications to Wastewater Treatment. IEEE Trans. Syst., Man, Cybern. B 27
(1997) 369–375

10. Spall, J.C., Cristion, J.A.: Nonlinear Adaptive Control Using Neural Networks: Estimation
Based on a Smoothed Form of Simultaneous Perturbation Gradient Approximation. Stat.
Sinica 4 (1994) 1–27

11. Chin, D.C.: A More Efficient Global Optimization Algorithm Based on Styblinski and Tang.
Neural Networks 7 (1994) 573–574

12. Maryak, J.L., Chin, D.C.: Efficient Global Optimization Using SPSA. In: Proc. American
Control Conf. (1999) 890–894

13. Sadegh, P.: Constrained Optimization via Stochastic Approximation with a Simultaneous
Perturbation Gradient Approximation. Automatica 33 (1997) 889–892

14. Wang, I.J., Spall, J.: A Constrained Simultaneous Perturbation Stochastic Approximation
Algorithm Based on Penalty Functions. In: Proc. American Control Conf. (1999) 393–399

Agimone: Middleware Support for Seamless
Integration of Sensor and IP Networks

Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis MO 63130-4899, USA

Abstract. The scope of wireless sensor network (WSN) applications
has traditionally been restricted by physical sensor coverage and lim-
ited computational power. Meanwhile, IP networks like the Internet offer
tremendous connectivity and computing resources. This paper presents
Agimone, a middleware layer that integrates sensor and IP networks as
a uniform platform for flexible application deployment. This layer allows
applications to be deployed on the WSN in the form of mobile agents
which can autonomously discover and migrate to other WSNs, using
a common IP backbone as a bridge. Agimone is the first system that
allows mobile agents to migrate between sensor and IP networks. It fa-
cilitates data sharing between WSNs and the IP network through remote
tuple space operations, allowing sensors to easily defer expensive compu-
tations to more-powerful devices. We demonstrate the expressiveness of
Agimone’s programming model by examining a prototype cargo-tracking
application. We also provide an empirical evaluation that demonstrates
the efficiency of Agimone using two WSNs consisting of Mica2 motes
connected by an IP network.

1 Introduction

Wireless sensor networks (WSNs) consist of tiny sensors embedded within the
environment. Many applications require that sensor nodes be deeply embedded
in areas where they are difficult to physically access, such as scattered in forests,
making it is impractical to physically gather the nodes in order to collect data or
deploy new applications. This necessitates WSN systems in which the nodes op-
erate for very long periods of time without physical access. Thus, data collection
and application deployment is done over wireless networks. These long system
lifetimes also mandate the flexibility to adapt to changing user requirements
without completely reprogramming the sensors.

However, typical WSN platforms often lack sufficient support for flexible
application deployment. For example, the TinyOS [1] operating system hard-
wires software components. Once deployed, application behavior can only be
marginally tweaked by changing specific parameters defined prior to deploy-
ment. To complicate matters, the sensors’ power consumption must be very low
so that they can be deployed for months or even years without battery replace-
ment. This requires that memory and other computational resources be scarce,

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 101–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

102 G. Hackmann et al.

and radio range and reliability be sacrificed [2]. These limitations impose severe
restrictions on the complexity and scope of WSN applications.

Many of these restrictions can be eased by logically combining multiple, phys-
ically disconnected WSNs using a common IP network. For example, WSNs can
be used for cargo tracking and monitoring by attaching sensors to individual
cargo containers. However, containers are frequently too far apart to be cov-
ered by a single WSN, since they are housed in separate warehouses and even-
tually relocated by boat or rail. Thus, the sensors form multiple independent
WSNs which are unable to directly communicate with each other. The utility
of the cargo tracking application would greatly increase if the user could issue
a query — such as searching the containers for a specific item — simultane-
ously to all of these containers, even though their WSNs are not physically
connected.

PCs with attached WSN gateways, or embedded devices like Stargate [3],
can act as gateways between the IP network and their respective WSNs. By
coordinating these disjoint networks to act as one logical network, sophisticated
WSN applications can be developed. This way, thousands of nodes located in
clusters around the world can collaborate autonomously on a single task.

However, communication and coordination between these networks is a com-
plex task, since WSNs are constantly forming and reshaping as the application
evolves. Hence, WSN nodes must be able to determine the availability of other
WSNs at run-time. Further, agent transactions across hosts should not be af-
fected by temporal disconnections and other short-term communication failures.
For these WSN applications to be useful to clients on the IP network, application
developers must be able to channel data between devices on the IP network and
nodes in the WSNs in a simple and straightforward manner.

Middleware aims to meet these needs, providing high-level programming con-
structs that greatly simplify WSN application development and increase utility.
To address the limitations of existing WSN middleware systems, we have de-
veloped Agilla [4], a middleware for wireless sensors. Limone [5], a lightweight
middleware for communication and coordination over IP networks, provides a
similar programming model and benefits to devices ranging from PDAs to desk-
top computers. Both middleware use a mobile agent-based paradigm, where
programs are composed of agents that can migrate across nodes.

Though these middleware offer similar programming models, they partition
the application into two sets of distinct, incompatible APIs and data struc-
tures. This discrepancy is not limited to these two middleware platforms. WSN
operating systems like TinyOS offer such different APIs and capabilities from
general-purpose operating systems like Windows and Linux, that the need for
two incompatible development platforms is inevitable. Traditionally, developers
have been forced to manually develop a translation layer for each application
that crossed middleware boundaries, a tedious and error-prone procedure.

The main contribution of this paper is providing a general-purpose model
which WSN devices can use to exploit the vast computational resources, includ-
ing other WSNs, found in IP networks such as the Internet. We have developed

Agimone: Middleware Support for Seamless Integration 103

Agimone, a thin and reusable integration layer between the Agilla and Limone
middleware, which facilitates agent interactions that cross middleware bound-
aries. In Section 2, we discuss the shortcomings of the state-of-the-art and explain
the motivation behind our general-purpose integration layer. Section 3 provides a
brief overview of the programming models used by Agilla and Limone. Section 4
describes Agimone’s architecture. Section 5 presents a cargo tracking application
that highlights the capabilities and expressiveness of Agimone. A performance
evaluation is provided in Section 6. We discuss related middleware systems in
Section 7. Finally, we conclude in Section 8.

2 Problem Statement

As the number and size of WSN deployments increase, so does the capacity
for sophisticated WSN applications. This potential remains largely untapped
due to the difficulty in distributing and coordinating applications across WSN
boundaries. In this section, we discuss how this potential can be realized using
a middleware system that integrates IP networks and WSNs.

2.1 Cargo Tracking: A Motivating Application

Consider the problem of cargo tracking. 7 million cargo containers arrive an-
nually into the United States, making it impossible to manually inspect every
container. Instead, each shipping container can be equipped with a sensor, which
will form a WSN with the other sensors and monitor the containers’ contents.
These sensors need to be accessed by many different types of users — such
as customs agent, shipping companies, and customers — who have different
and evolving requirements. It is impossible to predict all of these users’ needs
ahead-of-time, and so deploying a single monolithic application on each sensor
is infeasible. Mobile agents are invaluable for this scenario. Each authorized user
can deploy custom mobile agents to query the sensors on the containers.

However, the limited radio range of individual sensors forces WSNs to form
physically-localized clusters. If we rely solely on the sensors’ radios, users must
interact individually with each of these clusters. This requirement is unreason-
able and greatly limits the sophistication of WSN applications. Instead, the
current state-of-the-art is to deploy base stations in each cluster. These base
stations are connected together using a common IP network. This provides an
infrastructure which WSN applications can exploit for inter-WSN interactions.
It also provides a means for sensors to interact with clients on the IP network.

2.2 Challenges

Though these capabilities are essential, they are difficult to satisfy. The sensors
that populate WSNs have vastly different capabilities from the devices connected
to the IP network, preventing the deployment of a uniform software layer across
all devices. Today, complex WSN applications consist of separate software sup-
port platforms for WSNs and the IP network. Application-specific software is

104 G. Hackmann et al.

Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migrate

remote
access

Tuple Space

Fig. 1. The Agilla Architecture

A
Q

L

Mobile Host 1 Mobile Host 2

migrate

remote
access

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

A
Q

L

Fig. 2. The Limone Architecture

used to pass messages and translate queries between these two classes of devices.
However, writing this support layer requires programming experience with both
types of devices. Also, this layer must often be modified and redeployed when
application features or protocols change. This is unacceptable for applications
which have a constantly-evolving set of capabilities, like cargo tracking.

In this work, we present a middleware platform that supports seamless inte-
gration of WSNs and IP networks into a uniform software platform. Our middle-
ware’s services facilitate the development of WSN applications which exploit the
IP network as a resource for computation and communication. Mobile agents in
a WSN are provided a list of all other WSNs attached to the same IP network.
Agents can autonomously migrate over the IP network to any of the WSNs in
this list. Finally, we provide a common data space where devices on the IP net-
work and WSNs can share messages and data. These services offer application
developers a straightforward yet powerful programming model for implementing
complex WSN applications, like the cargo tracking application described above.

3 Background

This section provides a brief overview of the programming models offered by Ag-
illa and Limone. More details on the implementation are available in [4] and [5].

3.1 Agilla

Agilla programs are mobile agents that coordinate through tuple spaces. Agilla’s
architecture is shown in Figure 1. Each agent is hosted on a virtual machine with
dedicated instruction and data memory. An agent may execute special instruc-
tions that allow it to interact with the environment and move across nodes.
Multiple agents can coexist on a node. Agilla provides agents with local data
storage in the form of a heap and operand stack. Agilla agents use a stack-
based architecture and are programmed in a bytecode language based on that
of Maté [6], but tailored to the mobile agent paradigm. Like Maté, most Agilla
instructions fit in a single byte. Agilla is available for Mica2, MicaZ, and Tyn-
dall25 nodes and is distributed through TinyOS’ source respository. See Agilla’s
website [7] for more details.

Agimone: Middleware Support for Seamless Integration 105

Agilla’s tuple spaces offer a lightweight shared data space where the datum is
a tuple that is accessed via pattern matching. This allows one agent to insert a
tuple containing data (such as a sensor reading) and another to later retrieve it
without the two knowing each other, thus achieving a high level of decoupling.
Unlike messages passed over sockets, tuples placed in a tuple space survive tem-
poral disconnections, which frequently occur due to node mobility or unreliable
links. Tuple spaces offer many of the same programming benefits as shared data
systems, but with far less message-passing.

Each sensor in the WSN has a sin-
1: pushn mrk // string “mrk”
2: pushcl 15 // integer 15
3: pushc 2 // length of tuple
4: out // out(<15, “mrk”>)

Fig. 3. Agilla out Code Snippet

1: pushn mrk // string “mrk”
2: pusht VALUE // type VALUE (integer)
3: pushc 2 // length of template
4: rd // rd(<VALUE, “mrk”>)

Fig. 4. Agilla rd Code Snippet

gle local tuple space. Data is stored
in the form of fields; tuples containing
one or more fields can be added to the
tuple space using the out primitive.
rd and in operations respectively re-
move and copy tuples from a tuple
space; these operations are parame-
terized by templates that specify the
forms of matching tuples. In Agilla,
tuple and template fields contain one
of a handful of well-known 16-bit data
types (integer, string, sensor reading,
etc.). Alternatively, a template’s field
may contain a type (e.g., VALUE or
STRING) rather than a specific value. This indicates that any value of the corre-
sponding type is acceptable. The code snippets in Figures 3 and 4 demonstrate
the out and rd operations, respectively.

The rd or in operations block until a matching tuple is available. Agents may
also perform probing (non-blocking) tuple removals and copies using a different
set of primitives. Remote tuple space primitives manipulate tuple spaces residing
on remote sensors. Finally, Agilla offers a reaction mechanism, where a piece of
code is executed when a specified type of tuple is placed in the local tuple space.
These operations are described in further detail in [4].

Agilla agents may move or clone onto other hosts in the WSN using either
weak or strong migration operations. Weak migrations include only the agent’s
code, so any computations must restart from the beginning on the new host.
Strong migrations include computational state as well as code, so computations
can resume after the agent is migrated. Because Agilla agents run on top of
a virtual machine, agents can migrate between devices of different hardware
architectures, provided that the radios are compatible.

3.2 Limone

Limone provides a similar agent-based programming model using tuple spaces
for inter-agent communication. Its architecture is shown in Figure 2. Limone
supports the same primitive tuple space operations as Agilla, as well as an anal-
ogous reaction mechanism. However, each Limone agent has its own dedicated

106 G. Hackmann et al.

tuple space, whereas (due to memory limitations) all Agilla agents on a single
host share one tuple space. Limone also provides a pluggable device discovery
mechanism, where each agent-specified profile is automatically propagated to
other interested agents as new agents enter or leave the network.

Limone’s tuple contents do not suf-
ETuple t = new ETuple();
t.addField(new EField(“ID”, 15));
// Field <ID: 15>
t.addField(new EField(“Flag”,

“mark”));
// Field <Flag: “mark”>
getTS().out(t);
// out(<ID: 15, Flag: “mark”>

Fig. 5. Limone out Code Snippet

ETemplate t = new ETemplate();
t.addConstraint(new EConstraint(“ID”,

Integer.class, new DefaultConstraint-
Function()));

// Match field ID containing any Integer
t.addConstraint(new EConstraint(“Flag”,

String.class, new Equivalency-
ConstraintFunction(“mark”)));

// Match field flag containing “mark”
ETuple tuple = getTS().rd(t);
// rd a tuple matching this template

Fig. 6. Limone rd Code Snippet

fer from many of the restrictions im-
posed by their Agilla counterparts.
Fields in Limone tuples are indexed
by a user-specified name and can con-
tain any Java data type of any size.
Similarly, Limone templates are more
flexible than Agilla templates. In ad-
dition to matching by name and type,
Limone templates use constraint
functions to provide a fine-grained
way to specify matching values. For
example, the constraint <“ID”, In-
teger, GreaterThanConstraint(10)>
matches fields named “ID” that con-
tain an Integer greater than 10. Most
constraints use either DefaultCon-
straintFunction (match any value of
the correct type), or EquivalencyCon-
straintFunction (match only the spec-
ified value). Figures 5 and 6 provide
code which demonstrate the syntax of
Limone’s out and rd operations.

4 Architecture of Agimone

We have constructed the Agimone architecture (shown in Figure 7) which in-
tegrates the Agilla and Limone middleware platforms. Each WSN is associated
with a base station such as a laptop or a Stargate. The WSNs are populated with
Agilla agents which perform computations and collect sensor data. Inter-agent
communication is facilitated by Agilla tuple spaces. Each WSN node hosts one
Agilla tuple space, and up to three Agilla agents.

The IP network and WSNs are spanned by WSN gateways attached to these
base stations: sensors can communicate with a nearby gateway wirelessly, while
the base stations communicate with their attached gateways using a wired inter-
face (e.g., UART or USB). The base stations communicate over the IP network
using Limone. Communication in Limone is performed using tuple spaces; each
Limone agent is provided with its own Limone tuple space.

WSNs discover each other using beacons where multicast routing is sup-
ported, or a centralized service directory elsewhere. We have implemented a
simple Limone service registry that is suitable for a small number of agents.

Agimone: Middleware Support for Seamless Integration 107

IP Network

WSN 1

Limone
Registry

Base
Station

WSN
Gateway

Sensor

WSN 2

Fig. 7. Agimone Network Architecture

WSN Gateway

Agilla
Agent

Limone
TS

Agilla
TS

AgimoneAgent

Limone
TS

AgimoneAgent

Agilla
TS

IP

Agilla
TS

Limone
Registry

WSN Gateway

Agilla
Agent

Agilla
TS

Agilla
Agent

Agilla
TS Agilla

Agent

Agilla
TS

WSN 1 WSN 2

Fig. 8. Agimone System Components

However, it is not designed to scale for deployment on larger networks like the
Internet. Since Limone’s discovery mechanism is pluggable, applications that
require greater scalability can use a more sophisticated protocol, like WSDL [8].

Agimone is populated with the following components, as shown in Figure 8:

– The AgimoneAgents are specific Limone agents which allow Agilla tuples and
agents to traverse the IP network. These agents serve as the basis for the
Agimone integration layer. Each base station hosts one AgimoneAgent.

– The Agilla and Limone tuple spaces, as described above.
– The Limone registry allows remote WSN discovery. Each application shares

a single Limone registry.

In the rest of this section, we will describe Agimone’s services in further detail.

4.1 WSN Discovery

Since new WSNs are formed and destroyed as the applications evolve, it is of-
ten necessary for agents in the WSNs to be aware of these changes at run-
time. This is accomplished using a WSN advertisement scheme. Each base sta-
tion’s AgimoneAgent encapsulates information about the corresponding WSN in
a WSN advertisement message. This advertisement describes the WSN’s prop-
erties to Agilla agents. Since different applications may be interested in different
properties of the WSNs, this advertisement is application-specific. For example,
agents that comprise a cargo tracking application may be interested in know-
ing the location of each network. Thus, the WSN advertisements contain a 3-
character string describing their locations, such as “dok” (dock) or “shp” (ship).

When a new WSN connects to the IP network, its corresponding
AgimoneAgent beacons a well-known Limone registry with messages containing
its WSN advertisement. The Limone registry forwards these advertisements to

108 G. Hackmann et al.

other Limone agents. Similarly, the registry notifies Limone agents when hosts
leave the network. AgimoneAgents use these notifications to store up-to-date
copies of all other WSN advertisements in their base station’s Agilla tuple space.

1: pusht STRING
// type STRING

2: pushc 1 // length of template
3: pushloc UART X UART Y

// base station’s location
4: rrdp // rrdp(base station,

// <STRING>)

Fig. 9. WSN Discovery Code Snippet

1: pusht STRING
// type STRING

2: pushc 1 // length of template
3: pushloc UART X UART Y

// base station’s location
4: rrdp // rrdp(base station,

// <STRING>)
5: rjumpc OK
6: halt // if tuple not found, halt
7: OK pushloc UART X, UART Y

// base station’s location
8: smove // migrate to base station

Fig. 10. Migration Code Snippet

Agilla agents can access the base station’s tuple space by performing re-
mote tuple space operations with the special destination address (UART X,
UART Y). Thus, they can select an appropriate WSN advertisement using a
rrdp operation. The example code in Figure 9 places any available WSN adver-
tisement containing a string on top of the Agilla agent’s operand stack.

4.2 Migration Across WSNs

Using these advertisements, Agilla agents can select other WSNs and migrate
to them with the assistance of the AgimoneAgent. This procedure is detailed in
Figure 11. WSN advertisements are distributed in Steps 1 and 2, and placed
in the base stations’ Agilla tuple space in Step 3. The Agilla agent selects one
of these WSN advertisements in Step 4 and places it on top of its operand
stack.

Once the Agilla agent has an acceptable advertisement on its operand stack,
it performs a strong migration to the WSN gateway, as shown in Step 5. Sample
code to perform this operation is listed in Figure 10. This migration request is
forwarded to the AgimoneAgent executing on the base station in Step 6. The
AgimoneAgent extracts the destination WSN advertisement from the top of the
agent’s operand stack. It then encapsulates the Agilla agent into a Limone tuple
of the form <Agent: (encapsulated agent)>. In Step 7, it places this tuple into
the Limone tuple space of the destination network’s AgimoneAgent.

On initialization, AgimoneAgent installs a reaction on its tuple space that
notifies it of tuples in the form <Agent: Agilla Agent>. Thus, in Step 8, the
AgimoneAgent on the destination base station is notified of the tuple’s arrival. It
extracts the agent from the tuple and injects it into the WSN gateway in Step 9.
In Step 10, the agent migrates to the new WSN, where it resumes computation.

Agimone: Middleware Support for Seamless Integration 109

Limone
Registry

Agilla Agent

WSN Advertisement

AgimoneAgent

Limone TS Agilla TS

(5) migrate

(2) new advertisement

(3) out

Limone TS Agiila TS

(1) advertise

(7) out

(6) forward

(8) react

(9) forward

Agilla TS

(4) rd

WSN 1

IP

Agilla TS

(10) migrate

WSN 2

Fig. 11. Agilla Agent Migration Across Different WSNs

This process involves several transactions across WSNs and the IP network.
However, this is transparent to the Agilla agent developer, who only invokes a
single migration operation to the base station. Thus, developers can leverage the
Limone network’s infrastructure while still using the familiar Agilla APIs.

4.3 Cross-Middleware Interactions Via Tuple Spaces

So far, we have only considered the IP network as a way for distant WSNs to
interact. However, it can also be used to support interactions between devices
in a WSN and devices on the IP network. Because of the limited computational
powers of wireless sensors, Agilla agents may wish to use devices on the IP
network as a computational resource. Likewise, a Limone agent may wish to
exploit the sensing resources of a remote WSN. Both goals can be achieved
by giving Limone agents access to the Agilla tuple space that resides on each
base station, providing both types of agents with a common data space for
exchanging messages. However, directly exposing the Agilla tuple space API to
Limone agents has some undesirable side effects. For example, though Limone
agents can reside on any host in the IP network, they would only be able to
interact with a WSN if they reside on a base station within its radio range.

Instead, the AgimoneAgent exposes each base station’s Agilla tuple space
to the Limone network by wrapping it in the Limone tuple space API. Other
Limone agents communicate with Agilla agents by performing remote tuple-
space operations on this Limone tuple space. The AgimoneAgent translates these
operations to their Agilla equivalents and forwards them to the Agilla API.
Hence, any tuples placed by Limone agents into this tuple space are available to
Agilla agents in the corresponding WSN, and vice-versa. These Limone agents
need not have a WSN gateway attached to their host to interact with the WSN,
since an AgimoneAgent will communicate with the WSN on their behalf. Limone
and Agilla agents interact with this shared tuple space using their respective

110 G. Hackmann et al.

APIs. So, developers who are only familiar with one of these systems can still
leverage resources made available by the other, without first learning a new API.

However, as discussed earlier in Section 3, there are restrictions on Agilla
tuples and templates that do not exist in Limone. For example, a Limone agent
may try to place the tuple <ID: 3.14, Flag: “mark”> in the AgimoneAgent’s tuple
space. Since Agilla does not have a floating-point data type, there is no way to
convert this Limone tuple to an equivalent Agilla tuple. To resolve this problem,
the AgimoneAgent uses Limone’s rejection mechanism to filter incoming tuple
space operations. This mechanism allows agents to reject any remote operations
issued on their tuple space. The AgimoneAgent places the following restrictions
on all incoming tuples and templates:

– Fields cannot be named arbitrarily. Field names must impose a numerical
order on the fields, as required by Agilla. That is, exactly one field must be
named “1”, exactly one field must be named “2”, etc.

– Fields must contain Agilla data types.
– The only constraint functions are DefaultConstraintFunction (i.e., match by

type) or EquivalencyConstraintFunction (i.e., match by exact value).

The AgimoneAgent will reject all non-conforming operations, since they have
no Agilla equivalents. Conforming operations are converted to their Agilla coun-
terparts and forwarded to the Agilla tuple space. The results are converted from
Agilla tuples to Limone tuples (using the conventions specified above) and sent
back to the request’s originator.

4.4 Implementation Details

Agilla and Limone have been implemented and deployed on a wide variety of
hardware. Agilla has two parts: a NesC-based portion that is installed on sensors,
and a Java-based AgentInjector that is installed on base stations. Since storage
is at a premium on many sensors, Agilla is necessarily compact: it consumes
49.66KB of flash ROM and 3.07KB of RAM. Agilla supports several different
sensor architectures, including Mica2, MicaZ, and Tyndall25. For this paper, we
used a CVS snapshot of Agilla 3.0, which can be downloaded from [9].

The Limone and Agimone packages are developed in Java according to the
J2ME Personal Profile 1.0 [10] specification. This allows deployment on devices
like PDAs and Stargates which cannot host full Java Standard Edition runtimes,
as well as on desktop and laptop computers. Limone was designed for deployment
on storage-constrained devices like PDAs: its bytecode distribution consumes
only 132KB of storage space. Agimone is even more compact: it consumes 13KB
of storage space. Agimone operates on any platform supported by Limone, which
includes Windows Mobile, Windows XP, Linux, Solaris, and Mac OS X.

5 Case Study: Cargo Tracking

Using the architecture described in the previous section, we can implement a wide
range of complex WSN applications. Cargo tracking is one such application that

Agimone: Middleware Support for Seamless Integration 111

is well-suited for implementation using Agimone. As discussed in Section 2, cargo
containers can be equipped with sensors that form WSNs in localized clusters.
Many of these containers are located in remote warehouses and vehicles. So,
users must be able to interact with these clusters without needing to be within
the WSN’s communication range. This can be achieved by connecting the WSNs’
base stations using a common IP network, then deploying Agimone on them so
that queries may traverse either network as needed.

In this section, we present a prototype application that uses mobile agents
to track cargo. Our group had developed a similar application (demonstrated
at SenSys ’05 [11]) using a custom Limone agent to marshal messages between
the sensor and IP networks. This custom agent had to be repeatedly modified
and redeployed as our application’s feature set evolved, greatly complicating
development efforts. These difficulties motivated the creation of Agimone and a
complete redesign of the application around it, resulting in much cleaner code
overall and a simpler deployment process. Although Agimone was motivated by
the cargo tracking application, we emphasize that Agimone is a general purpose
middleware with a uniform programming model that can be used for a broad
class of applications that need to integrate multiple WSNs and the IP network.

In the interest of space, we provide here a brief overview of two agents that
are part of this application. More in-depth information about the application,
including sample code, may be found in [12].

5.1 Watchdog Agents

Sensors attached to shipping containers can be equipped with various inexpensive
sensor boards which can be used to detect attempted intrusions into the contain-
ers. As a demonstration of this potential, we have implemented two prototype
agents that monitor the sensor’s accelerometer and light readings, respectively.
These agents loop, repeatedly reading the sensor until an unusual reading is de-
tected. When this happens, an event is recorded in the local tuple space, and an
alert tuple is placed in the base station’s tuple space.

The AgimoneAgent on the base station automatically exposes these alert tu-
ples to the Limone network. Remote Limone clients on the IP network can reg-
ister reactions for these tuples. Limone automatically notifies these clients when
any new alerts are generated. We can then do whatever processing we desire
with these alerts (e.g., log it to disk and notify security personnel).

As a testament to Agilla’s expressiveness, the watchdog agent that monitors
the light sensor contains only 17 lines of code. The Limone client requires only
11 lines of code to automatically receive alerts and extract their contents. The
Agilla agent and the Limone client were developed in only a few hours.

5.2 Intrusion Search Agent

A user, such as a shipping company or a port authority, may later want to
search all the containers for any tampering recorded by the watchdog agents.
Consider a scenario where containers are being moved between a ship and a

112 G. Hackmann et al.

loading dock, each of which has a corresponding WSN and base station. These
base stations are connected by an IP link, e.g., Ethernet or 802.11b. Though
users can search both WSNs simultaneously, a comprehensive search may be
unnecessarily expensive. Ideally, the scope of such a search should be determined
at runtime. For example, the user may know that containers on the ship are
far more susceptible to tampering than the dock. So, the search for tampered
containers should begin on the ship. If one of these containers has been tampered
with, then the search should automatically expand to the dock, in order to
determine the scope of the security breach.

We have developed a sample Agilla agent which consults WSN advertisements
at runtime to locate WSNs and apply this searching policy. This involved adding
only 23 lines of code to the previous Agilla agent. Owing to Agimone’s flexibil-
ity, the Limone client used to monitor the watchdog agents’ alerts required no
modifications to support this new agent’s alerts. Further, no additional support
code had to be deployed to the base stations to support inter-WSN migrations.

6 Performance Evaluation

We evaluated our system by deploying it on two WSNs connected by an IP
network. The WSNs are composed of Mica2 motes and are separated by us-
ing different radio channels. Each WSN has a single gateway attached to an
IBM R40 laptop via a 115.2Kbps serial link. The laptops are connected via a
100Mbps wired Ethernet link. Since they are on the same subnet, discovery is
performed using multicast beacons rather than a Limone registry. The laptops
are configured with a 1.5GHz Intel Pentium M processor, 512MB of RAM, Win-
dows XP and Java Standard Edition 5.0. Latencies are measured using Java’s
System.nanoTime()method, which uses the system’s most accurate timer. This
section presents micro-benchmarks examining the primitives that cross network
boundaries. These benchmarks can be divided into three categories: tuple space
operations, agent migration, and overall performance.

We have not compared the performance of Agimone to any other middle-
ware systems. This is because to date no comparable systems exist: Agimone is
currently the only middleware which supports the interaction of mobile agents
across WSNs joined by an IP network. In this section, we focus on the cost of
the inter-WSN operations supported by Agimone. The interested reader may
consult [4] for a detailed discussion of Agilla’s intra-WSN performance.

6.1 Tuple Space Operations

In the first set of benchmarks, we evaluate the cost of the tuple space opera-
tions rinp, rrdp, and rout across middleware boundaries. These operations may
be performed by the AgimoneAgent on the tuple space belonging to the WSN
gateway (PC-to-Mote), or by an Agilla agent on the base station’s tuple space
(Mote-to-PC). In the interest of brevity, we only provide here a brief overview of
the benchmarks. The interested reader may find more technical details in [12].

Agimone: Middleware Support for Seamless Integration 113

Mote-To-PC. The first set of benchmarks
determine the latency of an Agilla agent on
the WSN gateway accessing AgimoneAgent’s
Agilla tuple space. We created three bench-
mark agents, each of which performs one

Operation latency (ms)
(Mote-to-PC)
rinp 10.64 ± 0.15
rrdp 10.35 ± 0.06
rout 10.37 ± 0.07
Operation latency (ms)
(PC-to-Mote)
rinp 10.98 ± 0.17
rrdp 11.26 ± 0.19
rout 10.85 ± 0.07

Fig. 12. The Latency of Remote
Tuple Space Operations

of the remote tuple space operations (rinp,
rrdp, and rout) 100 times, over which the
mean was calculated. Each benchmark was
repeated 100 times. The operations have an
average latency of 10 to 11 ms, as shown in
shown in Figure 12.

PC-To-Mote. The second set of benchmarks
repeats the same operation in the opposite
direction. In this case, since the latency can
be directly measured, each experiment calculates the latency of one operation
execution. Figure 12 shows the average results from 100 runs of each benchmark.
The mean latency of PC-to-Mote tuple space operations is 10 to 11 ms.

1) Mote-to-PC

Limone IP
Network

3) PC-to-PC

5) PC-to-Mote
Source Agilla

WSN
Destination
Agilla WSN

Agilla

Limone
4) Limone-to-Agilla

Agilla

Limone
2) Agilla-to-Limone

Fig. 13. The Five Stages of an Inter-WSN Agent Migration Operation

6.2 Agent Migration Operations

As discussed in Section 3.1, agent migrations enable agents located in one WSN
to migrate across an IP network into another WSN. From an Agilla agent’s per-
spective, an inter-WSN agent migration occurs by invoking a single operation.
However, as discussed in Section 4, there many steps involved which are trans-
parent to the agent. In this set of benchmarks, we identify five distinct stages
involved in migrating a 36-byte agent across WSNs, as shown in shown in Fig-
ure 13, and measure the cost of each stage. Again, we refer the interested reader
to [12] for more in-depth technical details.

The results of these benchmarks are shown in Figure 14. All benchmark results
are presented as an average of 1000 runs. Note that stage 2 has a significant
difference between mean and median latency. This difference is caused by sparse
points with values orders of magnitude above the mean, which we suspect are
caused by the process being interrupted by the OS or Java’s garbage collector.

Stage 1: Mote-to-PC. Here, the agent moves from the source mote to the
base station. We measured this procedure by deploying an agent which searches
the AgimoneAgent’s tuple space for a WSN advertisement and then attempts to
migrate to the base station. The mean latency of this stage is 36.12 ± 1.19ms.

114 G. Hackmann et al.

Stage 2: Agilla-to-Limone. In this tage, the agent passes from the Agilla
middleware on the base station to the Limone middleware. The cost of this
operation should be negligible, since it only involves a few local method calls.
This is borne out by our tests; the mean latency is 1.03 ± 0.16ms.
Stage 3: PC-to-PC. In this stage, the

Mean Median
Stage Latency Latency

1 36.12 ± 1.19ms 33.73ms
2 1.03 ± 0.16ms 303.95μs
3 19.45 ± 0.26ms 18.77ms
4 1.13 ± 0.16ms 834.74μs

5 28.16 ± 5.92ms 22.28ms

Fig. 14. The Latency of Each
Agent Migration Stage (Average of
1000 Runs)

AgimoneAgent encapsulates the migrating
agent into a Limone tuple and places it in the
destination AgimoneAgent’s tuple space. We
timed this stage by repeatedly migrating an
agent between two base stations, then halving
the round-trip time. This stage had a mean
latency of 19.45 ± 0.26ms.
Stage 4: Limone-to-Agilla. In this stage,
the AgimoneAgent extracts the encapsulated
agent from the Limone tuple and passes it
to Agilla’s AgentInjector. Like stage 2, this
only involves a few local method calls, so the
latency should be negligible. We recorded the time between placing the tuple in
the tuple space to passing the agent to the AgentInjector. The mean latency
is 1.13 ± 0.16ms; as expected, this is negligible relative to other stages.
Stage 5: PC-to-Mote. In the final stage, the agent is injected into the des-
tination WSN. Similarly to stage 1, we measured this latency by migrating an
agent which immediately reads an advertisement tuple from the base station,
and measuring the time between injection and receiving the tuple space request.
The mean latency of this stage is 28.16 ± 5.92ms.

6.3 Overall Performance

The last set of benchmarks evaluate the latency of common sequences of oper-
ations. The In-and-Out benchmark measures the cost of migrating in and out
of the same WSN. The End-to-End benchmark evaluates the cost of migrating
from one WSN to a different WSN and back. These two benchmarks use the
same 36-byte agent and are repeated 1000 times.

While Agimone simplifies programming and increases network flexibility, its
use of virtual machines results in some overhead. We quantify this overhead by
comparing the first two benchmarks above with native-code implementations. To
isolate the cost of message-passing from execution, the native implementations
exchange 36-byte data messages in place of 36-byte mobile agents.

In-and-Out. This benchmark injects an agent which migrates repeatedly be-
tween two WSNs, and measures the cost of moving the agent in and out of
one WSN. When the agent is injected into the WSN, it immediately performs a
rrdp to find the other WSN’s advertisement, and then attempts to migrate to it.
Thus, this benchmark measures the aggregate of the Mote-to-PC, PC-to-Mote,
Limone-to-Agilla, and Agilla-to-Limone migration operations, and the Mote-to-
PC tuple space operation. The results of this benchmark are shown in Figure 15.

Agimone: Middleware Support for Seamless Integration 115

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

Round

L
a
te
n
c
y
(m
s
)

Agimone

Native Implementation

Fig. 15. The In-and-Out Agent Migra-
tion Latency

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000

Round

L
a
te
n
c
y
(m
s
)

Agimone

Native Implementation

Fig. 16. The End-to-End Migration La-
tency

The mean In-and-Out latency is 62.18 ± 6.09ms, with a 55.76ms median. This
is approximately the aggregate of the constituent stages (1, 2, 3, and 4).

The native implementation of In-and-Out is a Java application that sends a
36-byte query to the attached gateway sensor in two TinyOS packets; the sensor
immediately sends 36 bytes of data back. The benchmark measures the time
from sending the request to receiving the response. The native implementation
has a mean latency of 30.09 ± 0.51ms, and a median latency of 26.29ms.

End-to-End. The End-to-End latency is measured by injecting the same agent
and recording its round-trip time over the IP network. The results are shown
in Figure 16. The mean round trip time is 179.19 ± 9.96ms, with a median of
167.96ms. This closely matches the sum of the various stages involved.

The native implementation of End-to-End adds to the In-And-Out benchmark
by sending a 36-byte packet over the IP network to a remote base station after
receiving a response from the WSN. The remote base station sends a 36-byte
reply. The benchmark measures the time from querying the sensor node to re-
ceiving a response from the remote base station. The native implementation has
an mean latency of 86.36 ± 2.15ms, and a median latency of 84.38ms.

The benchmarks presented in this section provide a general overview of Ag-
imone’s performance and overhead. All inter-network tuple space operations,
regardless of direction, take about 10.5ms. A mobile agent takes about 85.9ms
to migrate from one WSN to another. Of this, approximately 65ms is spent
moving to and from the WSN and its base station, and 20ms is spent travers-
ing the IP network. The latency of migrating into a WSN and back is about
60ms. Most of this time (>57ms) is spent on the serial link between the base
station and WSN gateway. The actual transition from Agilla to Limone is
less than 1ms in either direction. The overhead of Agimone compared to na-
tive code varies depending on the task. In the two operations presented, In-
And-Out and End-to-End, there was a 32.09ms and 92.83ms increase in exe-
cution time relative to native code, respectively. Native code, however, is not
nearly as flexible as mobile agents, and presumably requires more development
time.

116 G. Hackmann et al.

7 Related Work

There are many middleware systems that increase WSN flexibility by enabling
in-network reprogramming. They include XNP [13], Deluge [14], Maté [6], Sen-
sorWare [15], Impala [16], and Smart Messages [17]. There are also coordination
middleware like Lime [18], and MARS [19] that are designed for IP networks.
These middleware systems are either targeted for WSNs, or IP networks, but not
the integration of both. Recent systems that integrate IP and sensor networks
are more closely related to Agimone.

The Hourglass [20] and Stream-based Overlay Networks (SBONs) [21] systems
form an overlay network over the Internet out of servers connected to various
WSNs. The system routes data streams generated within WSNs to applications
on the Internet. The system also provides resource registration and discovery ser-
vices to servers. Servers dynamically adapt to network conditions by installing
stream operators like data filters and aggregators on the source, e.g., to reduce
network congestion. Hourglass-SBON focuses on delivering data streams gener-
ated within WSNs to consumers on the Internet. Agimone, on the other hand,
is a general-purpose middleware system that supports agent migration and co-
ordination across WSNs and IP networks, as well as data sharing.

Tenet [22] provides a two-tiered architecture partitioned into resource-poor
sensors and relatively powerful computers connected via an IP network. The
higher-tier computers directly control sensors, which service them using well-
established protocols. This moves much of the application development onto
more-powerful computers, simplifying debugging. Unlike Agimone, Tenet’s tasks
cannot relocate autonomously or carry state across nodes. Therefore, Agimone
provides a more flexible infrastructure for deploying adaptive applications. Also,
Tenet uses message passing as its basic communication paradigm, which easily
fails in the face of transient link failures. Agilla uses tuples for all inter-agent
communication, which survive temporal communication failures.

SERUN [23] uses a three-level network architecture divided into inexpen-
sive data-gathering sensors, data-processing microservers, and PC-class systems
where end-users can issue queries. When a query is issued, a task is sent to
a microserver that queries one or more sensors and processes the data accord-
ing to the task’s instructions. SERUN differs from Agimone in that it moves
much of the application-specific code away from the low-power sensors and
onto the microservers, and its tasks cannot autonomously migrate across mi-
croservers.

IrisNet [24] diverges from traditional WSNs by proposing an Internet-scale
sensor network consisting of desktop PCs with low-cost sensors, e.g., web cams.
IrisNet provides a query service for obtaining sensor data from anywhere on the
Internet. Functionally, it is similar to TinyDB [25] in that it treats the network
as a database. However, since IrisNet operates on relatively powerful machines
rather than embedded sensors, it is best suited for applications where sensing
capabilities are secondary to computational resources. In this sense, IrisNet is
complementary to Agimone rather than an alternative.

Agimone: Middleware Support for Seamless Integration 117

8 Conclusion

In this paper, we have presented Agimone, a middleware system for integrating
WSNs over the Internet and other IP networks. We have implemented an efficient
layer that integrates Agilla and Limone, two existing mobile agent middleware
platforms. By designing a cargo tracking application that uses Agimone, we
have demonstrated how developers can easily take advantage of the functionality
we provide. Our empirical performance data demonstrates the efficiency of our
middleware on existing sensor and base station hardware. Though there is some
runtime overhead associated with using mobile agents as compared to native
code, the increase in developer productivity outweighs this performance penalty
for all but the most time-critical of applications.

Acknowledgment

This research is supported by the Office of Naval Research under MURI research
contract N00014-02-1-0715 and by the the NSF under NOSS contract CNS-
0520220. Any opinions, findings, and conclusions expressed in this paper are
those of the authors and do not necessarily represent the views of the research
sponsors. We would also like to thank Boeing Corporation for their support on
an earlier version of the cargo tracking application.

References

1. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Architectural Support for Programming
Languages and Operating Systems. (2000) 93–104

2. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: Proc. of the ACM SenSys. (2003)

3. (http://platformx.sourceforge.net/)
4. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of

adaptive wireless sensor network applications. In: Proc. of the 24th International
Conference on Distributed Computing Systems (ICDCS’05), IEEE (2005) 653–662

5. Fok, C.L., Roman, G.C., Hackmann, G.: A Lightweight Coordination Middleware
for Mobile Computing. In DeNicola, R., Ferrari, G., Meredith, G., eds.: Proceedings
of the 6th Internation Conference on Coordination Models and Languages (Coordi-
nation 2004). Number 2949 in Lecture Notes in Computer Science, Springer-Verlag
(2004) 135–151

6. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: ASPLOS-
X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, New York, NY, USA, ACM Press
(2002) 85–95

7. (http://mobilab.wustl.edu/projects/agilla)
8. W3C-XML-Activity-On-XML-Protocols: W3c recommendation: Web services de-

scription language 1.1. http://www.w3.org/TR/wsdl (2003)
9. (http://mobilab.wustl.edu/projects/agilla/download/index.html)

10. (http://java.sun.com/products/personalprofile/index.jsp)

118 G. Hackmann et al.

11. Hackmann, G., Fok, C.L., Roman, G.C., Lu, C., Zuver, C., English, K., Meier,
J.: Demo abstract: Agile cargo tracking using mobile agents. In: Proceedings of
the 3rd Annual Conference on Embedded Networked Sensor Systems (SenSys’05),
ACM (2005) 303

12. Hackmann, G., Fok, C.L., Roman, G.C., Lu, C.: Agimone: Middleware support
for seamless integration of sensor and ip networks. Technical Report WUCSE-
05-56, Washington University in St. Louis Department of Computer Science and
Engineering (2005)

13. (http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf)
14. Hui, J., Culler, D.: The dynamic behavior of a data dissemination protocol for

network programming at scale. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems, ACM Press (2004) 81–94

15. Boulis, A., Han, C.C., Srivastava, M.: Design and implementation of a framework
for efficient and programmable sensor networks. In: Proc. of MobiSys, USENIX
(2003) 187–200

16. Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic,
parallel sensor systems. In: ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. (2003)

17. Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart messages:
A distributed computing platform for networks of embedded systems. Special Issue
on Mobile and Pervasive Computing, The Computer Journal 47 (2004) 475–494

18. Picco, G., Murphy, A., Roman, G.C.: Lime: Linda meets mobility. In: Proc. of the
21st Int’l. Conf. on Software Engineering. (1999)

19. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4(4) (2000) 26–35

20. Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., Welsh, M.:
Hourglass: An Infrastructure for Connecting Sensor Networks and Applications.
Technical Report TR-21-04, Harvard (2004)

21. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., , Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of the
22nd International Conference on Data Engineering (ICDE’06, to appear). (2006)

22. Govindan, R., Kohler, E., Estrin, D., Bian, F., Chintalapudi, K., Gnawali, O.,
Rangwala, S., Gummadi, R., Stathopoulos, T.: Tenet: An architecture for tiered
embedded networks. Technical Report CENS-TR-56, UCLA CENS (2005)

23. Liu, J., Cheong, E., Zhao, F.: Semantics-based optimization across uncoordinated
tasks in networked embedded systems. Technical Report MSR-TR-2005-46, Mi-
crosoft Research, One Microsoft Way, Redmond, WA 98075 (2005)

24. Gibbons, P., Carp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a
worldwide sensor web. IEEE Pervasive Computing (2003) 22–33

25. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: Proceedings of the 2003 ACM SIGMOD
Int. Conf. on Management of Data. (2003) 491 – 502

Gappa: Gossip Based Multi-channel Reprogramming
for Sensor Networks�

Limin Wang and Sandeep S. Kulkarni

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing MI 48824 USA

{wanglim1, sandeep}@cse.msu.edu

Abstract. Reprogramming the sensor networks in place is an important and
challenging problem. One way suggested for reprogramming is with the help of
an UAV (Unmanned Ariel Vehicle). To reprogram a sensor network with the help
of an UAV, one can either communicate the entire new program to one (or a few)
sensor in the field, or let the UAV communicate parts of the code to a subset of
sensor nodes on multiple channels at once. In the latter approach, the nodes need
to communicate with each other to receive the remaining parts of the program.

In this paper, we propose a protocol for such gossip between nodes. To better
utilize the multi-channel resources and reduce contention, our protocol provides a
multi-channel sender selection algorithm. This algorithm attempts to ensure that
in any neighborhood, at any time, there is at most one sensor transmitting on
a given frequency. Moreover, our sender selection algorithm is greedy in that it
tries to select the sender that is expected to have the most impact for each chan-
nel. Our protocol also conserves energy by putting the nodes that are unlikely to
contribute or receive data shortly to “sleep” state. Through simulation, we show
that our protocol is faster and more energy efficient than the existing reprogram-
ming approaches that assume that the new program is initially located only on a
small set of nodes.

1 Introduction

The problem of multihop reprogramming is necessitated by the facts that sensor net-
works consist of hundreds or thousands of sensor nodes and they are often deployed
in remote or hostile environments (e.g., battle fields, forests). It is demanding and
sometimes impossible to collect all the sensor nodes from the field for reprogramming.
Therefore, it is necessary to reprogram sensor networks in place.

One way suggested for reprogramming is with the help of an UAV (Unmanned Ariel
Vehicle). Specifically, in this approach, an UAV flies over the network and communi-
cates the new code to the sensors. Reprogramming with the help of an UAV can be
achieved in two ways. For one, the UAV could communicate the entire new program
to one (respectively, subset or all) sensor in the field. (This approach is also similar to

� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF equipment grant EIA-0130724, and
a grant from Michigan State University.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 119–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 L. Wang and S.S. Kulkarni

the case where UAV drops a sensor with the new program on the field). This sensor (re-
spectively, set of sensors) then communicates the new program to the remaining sensors
using approaches such as [1, 2, 3, 4, 5].

Another approach for reprogramming with the help of UAV is based on the obser-
vation that while sensors (e.g., Mica2/Mica2Dot, XSM, Telos) are limited to sending
and receiving on one frequency at a time, the UAV is often more powerful and, hence,
can communicate at multiple frequencies at once. Thus, the UAV can divide the pro-
gram into multiple segments and transmit each segment on a different frequency. The
sensors themselves choose one of these frequencies and receive the corresponding seg-
ment. Clearly, one advantage of this approach is that the contact time required for UAV
is reduced. Moreover, by exploiting multi-channel resources, sensor nodes are able to
split the network traffic among different channels, and hence, reduce contention. Fi-
nally, there is data redundancy, since every segment is associated with many sensor
nodes. Compared to the type of communication that originates from one or a few seed
nodes, this gossip based communication has the potential to enable higher concurrency
and better utilization of channel capacity.

This paper focuses on the second approach. With this approach, the sensors then
need to communicate the remaining segments with each other. We denote this problem
as the gossip based multihop reprogramming of sensor networks. In particular, in this
problem, each sensor is associated with one of the segments from the new program.
(We also consider the case where only a subset of sensors have a segment, as long as
each segment is with at least one sensor). We propose Gappa, a gossip based multihop
reprogramming protocol, which utilizes multiple channels to rapidly and reliably re-
programs all the sensors in the network. We implement Gappa on TinyOS platform [6]
and evaluate it through simulations on TOSSIM [7].

Contributions of the paper

1. We propose a multi-channel sender selection algorithm, which tries to guarantee
that on each channel, only one sender is selected to transmit in a neighborhood at a
time. Moreover, the algorithm attempts to select the sender whose transmission is
expected to have the most impact on each channel. To better utilize multi-channel
resources, if a node loses in the sender selection for one channel, it will compete
to transmit code on a different channel that is available. In this way, Gappa propa-
gates code rapidly.

2. Gappa conserves energy by putting a sensor node to sleep if all the channels that it
attempts to transmit code on are busy, and it is not interested in receiving the code
segments that its neighbors are transmitting.

3. To enable gossip based communication, Gappa allows sensor nodes to receive seg-
ments that are out of order. There is less dependency on special nodes since every
node that has a segment is a potential sender. This, combined with multi-channel
usage and pipelining technique, leads to high concurrency in data exchange.

4. We implement Gappa in TinyOS platform, and evaluate its performance using
TOSSIM. Through simulation, we compare with the state-of-art programming pro-
tocols, MNP [1] and Deluge [2], and show that Gappa reduces the reprogramming
time and energy consumption significantly.

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 121

Organization of the paper. In Section 2, we present the gossip based multi-channel
reprogramming protocol Gappa. In Section 3, we evaluate the performance of Gappa
under different network settings. We also present the performance comparison with
MNP and Deluge. We review related work in Section 4, and conclude in Section 5.

2 Protocol Description

We make no assumption about the underlying network topology and availability of
global services, such as localization or time synchronization. We consider networks
with stationary nodes. The sensor nodes are equipped with a single radio interface, thus
can communicate on one channel at a time. But they can switch to different channels at
run time.

The new program image that is to be deployed is divided into n segments (n is
normally a small number from 1 to 20). Each segment has a fixed number of packets.
We assume 1 that the number of available non-overlapping channels is at least n + 1.
We select n + 1 non-overlapping channels, which are indexed from 0 to n. Without
loss of generality, we define channel 0 as the control channel and channels 1 to n as
the data channels. The control channel is used for transmitting the control messages
(e.g., advertisements, requests), while the data channels are used for the actual data
transmissions. Each data channel corresponds to one segment, i.e., segment k (1 ≤
k ≤ n) is always transmitted on channel k. The control channel is also the default
channel, i.e., sensor nodes stay on channel 0 unless they are transmitting or receiving
data packets of a certain segment.

Before we describe the algorithm in detail, we illustrate it using an example in
Figure 1. The numbers marked on the sensor nodes represent the segments they have
received. The edges represent communication links. We note several things from ob-
serving this simple network.

A B C

D E F

G H I

1,3 3 1

2,3 2 1,2

2 3 3

Fig. 1. Example sensor network

First, the nodes that have overlapping communication ranges cannot transmit the
same segment simultaneously as it will cause significant collision on the shared data
channel. For example, nodes A and B should not transmit segment 3 at the same time.

1 Note that this condition holds for most sensor platforms that are popularly used. For exam-
ple, a Mica2/Mica2Dot mote operating at 433MHz band can select separate channels with a
minimum spacing of 150KHz [8]. Hence, in the 420-446MHz frequency range, the number
of usable non-overlapping channels is 166. The basic principle in Gappa is to assign each
segment a separate channel. Even in the case that the number available channels is not enough,
we can assign multiple segments to one channel. However, this issue is outside the scope of
this paper, as it is not required in current sensor networks.

122 L. Wang and S.S. Kulkarni

Second, on each channel, the choice of the sender that transmits next is not uni-
form. If both nodes A and B want to transmit segment 3, B is a better choice than A,
since more nodes in the neighborhood are expected to benefit from the transmission of
node B.

Third, since sensor nodes can only communicate on one channel at a time, a node
that has multiple segments must select one segment as the preferred segment, and will
transmit this segment if it is selected as the sender. The choice of the preferred segment
is decided by the status of its neighbor nodes. For example, node D might choose seg-
ment 2 as the preferred segment, because more nodes in its neighborhood request for
segment 2 rather than segment 3. However, if D finds that E has decided to transmit
segment 2, D cannot transmit segment 2 at the moment as it will cause collision with E
on channel 2. In this case, transmitting segment 3 is a feasible alternative for node D.

Our algorithm consists of two parts: the control logic on the control channel and the
operations on the data channels. We present these two parts in Section 2.1 and Section
2.2, respectively.

2.1 Operations on the Control Channel

Initially, all the sensor nodes are communicating on the control channel. Nodes perform
two major tasks on the control channel: decide which nodes should switch to a data
channel to perform data communication; and identify the nodes that are unlikely to
contribute or receive data shortly and put them to sleep. The switching policy tries to
guarantee that for each segment, at most one node in a neighborhood is selected to
transmit the segment in the corresponding data channel. Moreover, it tries to select the
sender that is expected to have the most impact. To achieve this goal, we extend the
sender selection idea from MNP [1].

Multi-channel sender selection algorithm. In our algorithm, nodes perform sender
selection using advertisements and requests. Each node maintains a sequence of
<SegID, ReqCtr> pairs that indicate the segments it has received and the correspond-
ing numbers of distinct requests (from different requesters) for those segments the node
has received so far. ReqCtrs for all the segments are set to 0 when a node starts adver-
tising. When a node receives a request that is destined to it from a “new” requester, it
increments the ReqCtrs for the requested segments by one. Additionally, a node main-
tains a preferred segment ID, which is the segment that is requested by most number of
nodes, i.e., has the highest ReqCtr. The preferred segment ID is set to 0 if the node has
not received any request, and is recalculated whenever the ReqCtrs change. In the case
that there are more than one segments have the highest ReqCtr, the preferred segment
is randomly selected from these segments.

A node advertises the segments it has received, its preferred segment, as well as the
ReqCtrs for all the received segments. Hence, an advertisement message includes the
sequence of <SegID, ReqCtr> pairs, the preferred segment ID, and other information
(program ID and size, source ID). When a node, say j, receives an advertisement mes-
sage from a node, say k, if j needs any of the segments that are advertised, then it sends
a request to k. The request message sent by j contains not only the IDs of the segments j
expects to receive from k, but also k’s preferred segment ID and the corresponding Re-
qCtr of k for that preferred segment (computed from the sequence of <SegID, ReqCtr>

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 123

pairs that k sent in the advertisement message). While the request is intended (destined)
to k, it is sent as a broadcast message with k as one of the fields. Thus, when another
node, say l, receives the request, l is aware of the fact that k is a potential sender. This
allows us to count for the hidden terminal effect where l could not have received the
advertisement message from k.

We note that a node sends a request to all senders that send the advertisement mes-
sages containing the code segments the node is interested in. This ensures that a node is
aware of all the requesters who are likely to receive the code if it is chosen to transmit
the code. Moreover, the sender selection is performed only among nodes that have the
same preferred segment. (For example, if a node, say k, has preferred segment 3, and
its neighbor l has preferred segment 1, they can transmit simultaneously on different
channels (channel 3 and 1) without interrupting each other.) If k loses to l that has more
requesters for the preferred segment, k takes the two actions in Figure 2.

1. Mask the preferred segment, and check to see if it has any segments that are not masked. If so,
start advertising the remaining segments (and try to transmit on a different channel that is currently
available). Otherwise, turn to idle stage.

2. Reset the ReqCtrs of all its segments to 0. Reset its preferred segment ID to 0. (This is due to the
fact that some of the old requesters of this node may be receiving code from the node that wins the
sender selection on a different channel.)

Fig. 2. Actions taken by a node that loses in the sender selection

A node on the control channel is in one of the two stages: advertise stage and idle
stage. Initially, if a node has received a segment from an UAV, then it is in advertise
stage; otherwise, it is in idle stage.

Tasks in advertise stage. A node S in advertise stage broadcasts an advertisement
message every random interval (we use random interval to avoid message collision).
It reacts to the requests, advertisements, and “SwitchChannel” messages as described
next.

1. Actions taken by an advertising node on receiving a request. Every time S receives
a request message, it checks to see if this message is destined to it. If the message
is destined to it, and is from a “new” requester that S has not seen before, S incre-
ments the ReqCtrs of the requested segments by one, and recalculates its preferred
segment ID. If the request message is destined to another node Q, Q has the same
preferred segment ID as S and Q has more requesters, then S loses in the sender
selection, and will take the actions in Figure 2.

2. Actions taken by an advertising node on receiving an advertisement. When S re-
ceives an advertisement message from a node Q, if S needs any of the segments
Q advertises, S broadcasts a request message destined to Q after a short random
interval (to avoid collision with other request messages sent to Q). As mentioned
earlier, it puts the ID and ReqCtr of Q’s preferred segment in the request message.
In addition, S also checks to see if it loses to Q in the sender selection algorithm. If
so, S takes the actions in Figure 2. Note that this sender selection procedure cannot
cause deadlock, as the node with the highest ReqCtr of the preferred segment - with
appropriate tie breaker on node ID - will succeed.

124 L. Wang and S.S. Kulkarni

3. Actions taken by an advertising node on receiving a “SwitchChannel” message. If
S receives a “SwitchChannel” message from a node Q, which indicates that Q is
going to transmit its preferred segment in the corresponding data channel. If S is
interested in receiving the segment from Q, then S switches to the data channel for
that segment. Otherwise, if the segment that Q is going to transmit is the same as
S’s preferred segment, which means that S has lost the sender selection for this
segment, then S takes the actions in Figure 2.

The advertise stage ends when a node has sent a given number of advertisements con-
tinuously (without resetting ReqCtrs or switching channels). At this point, if it has re-
ceived one or more requests, it broadcasts “SwitchChannel” messages and switches to
the data channel that is assigned to its preferred segment. Otherwise, it turns to idle stage.

Tasks in idle stage. A node in idle stage can choose to keep its radio on to listen to
the channel, or turn its radio off to save energy. Thus, a node in idle stage is in one of
the two states: listen state (with radio on) and sleep state (with radio off). The length
of time t a node stays in idle stage, and whether it keeps its radio on (listen or sleep)
when it is idle, are decided by the status of the node and its observation of neighbors.
Specifically, a node maintains two boolean variables: TendToReceive and TendToSend,
which indicates the node’s intention to receive or transmit a segment. TendToReceive
is set to false initially and when a node has successfully received a complete segment.
When the node hears an advertisement, request, or “SwitchChannel” message, it checks
to see if it needs any of the segments that are advertised (or requested) in the message.
If so, the node sets its TendToReceive to true. TendToSend is set to false when a node
starts advertising. When the node hears an advertisement or request message, if it finds
that it has some segments that other nodes do not have (requested or not advertised), it
sets its TendToSend to true.

When a node enters idle stage, if it has received the entire program, or its TendToRe-
ceive is false, then it goes to sleep state. Otherwise, it is in listen state. A node in sleep
state does not sleep through the entire idle stage. Rather, it takes short naps (say, 4s),
wakes up and checks the channel for a short amount of time (say, 0.5s) between naps. If
messages received during this interval causes TendToReceive to become true, the node
turns to listen state, and keeps its radio on for the rest of time (in idle stage).

The length of idle stage t is exponentially increased, starting with a minimum tl
to a maximum tu. This allows us to dynamically adjust the rate of advertising: nodes
advertise aggressively when reprogramming is actively in progress and advertise slowly
to save energy when most nodes have received the code. t is reset to tl in two situations.
First, if a node switches to a data channel (to transmit or receive data), when it returns
to the control channel, it will reset t to tl. Second, if a node receives a request, or its
TendToSend becomes true (i.e., it identifies potential requesters), it sets t to tl.

Although a node in idle stage does not advertise or participate in sender selection, it
still sends requests or switches channel when needed. When a node S is in listen state,
it reacts to the advertisements and “SwitchChannel” messages as described next.

1. Actions taken by a node in listen state on receiving an advertisement. If S receives
an advertisement message that advertises segments it is interested in, S broadcasts
a request message destined to that advertising node.

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 125

2. Actions taken by a node in listen state on receiving a “SwitchChannel” message.
If S receives a “SwitchChannel” message that contains the ID of the segment S is
interested in receiving, S switches to the data channel for that segment, and as a
result, the idle stage ends.

2.2 Operations on Data Channels

When a node S decides to become a sender, it broadcasts a “SwitchChannel” message
for a few times, then switches to the data channel that is assigned to its preferred seg-
ment. When a neighbor node hears a “SwitchChannel” message from S, if it needs the
segment, it will switch to the corresponding data channel, and turn to download state.

We note that although the sender selection algorithm attempts to keep only one active
sender in a given neighborhood on each channel, it is possible to have multiple active
senders due to time-varying link properties. Hence, when S enters the data channel, it
listens to the radio for a short amount of time (say, 1s), which we call pre-forward state,
before it starts forwarding data. If S hears any message when it is in pre-forward state,
it realizes that another node is currently transmitting data on that data channel. Hence,
it will mask the segment it is going to transmit (to ensure that it will not reenter this
channel immediately), return to the control channel, and start advertising the remaining
segments. In this case, those nodes that have followed S to this data channel (switched
to this data channel after receiving S’s “SwitchChannel” messages) are left on this
channel. If the nodes are able to receive packets from the current sender, they will stay
on this channel and receive data from the current sender. Otherwise, they will return to
the control channel after a time out.

Gappa uses the a similar loss recovery mechanism as MNP. Each packet has a
unique ID. Each node maintains a bitmap, which we call MissingVector, for each of
the segments it is receiving. Each bit in a MissingVector corresponds to a packet. All
bits are initially set to 1. When a node receives a packet in a segment for the first time,
it stores that packet in EEPROM (external storage for motes), and sets the correspond-
ing bit in the MissingVector for that segment to 0. In this way, we guarantee that each
packet in a segment is written to EEPROM only once. Note that Gappa allows nodes to
receive segments that are out of order. Thus, a node might have received several incom-
plete segments. It is necessary for a node to maintain bitmaps (MissingVectors) for all
the segments it has not completely received. For simplicity, we assume that the Miss-
ingVectors are in memory. We note that the extension for storing them on EEPROM
and loading only the MissingVector for the segment that is being received in memory is
straightforward.

Each node also maintains a ForwardVector, which is a bitmap of the segment that it
is going to transmit, and is an indicator of the packets the node needs to send. When the
pre-forward stage times out, the sender node S turns to forward state, and broadcasts
a “StartDownload” message several times. S includes its ForwardVector, which is ini-
tially set to 0 (i.e., all the bits are set to 0), in the “StartDownload” message. When a
node hears a “StartDownload” message, it waits for a short random interval (to avoid
collision with transmissions from other requesters), checks to see if the ForwardVec-
tor contained in the “StartDownload” message has already included all the packets it
needs. If so, it keeps silent. Otherwise, it sends a “RequestPackets” message to S. The

126 L. Wang and S.S. Kulkarni

“RequestPackets” message contains its loss information (MissingVector) for this seg-
ment. When S receives a “RequestPackets” message, it unions its ForwardVector with
the MissingVector contained in the message. This updated ForwardVector is included in
the “StartDownload” message that S sends next time. In this way, S’s neighbor nodes
are aware of the packets S is going to send, and hence, will not send requests repeat-
edly. We restrict the length of the segment to be no longer than 128 packets, so that the
maximal size of MissingVector and ForwardVector is only 16 bytes, and thus fits into a
radio packet.

After S has transmitted the “StartDownload” message for a few times, it starts
transmitting the packets indicated in its ForwardVector. The download process
ends when the receiver receives an “EndDownload” message from the sender. At this
point, if the node has successfully received the whole segment, it includes the seg-
ment in the sequence it will use in future advertisements. When the download pro-
cess ends, both the sender and the receivers return to the control channel, and restart
advertising.

It is possible that the receiver never gets the “EndDownload” message. The reason
can be the sender dies or returns to the control channel during pre-forward stage, or
the “EndDownload” messages collide with other messages. To avoid being stuck in
download state, a node in download state always sets a timer when it is waiting for the
next packet. If the timer expires, it returns to the control channel.

As we mentioned earlier, a node masks a segment when it loses in the sender selec-
tion for that segment, or when it detects a busy data channel in pre-forward state. In
both cases, the node cannot advertise or transmit this segment until the other node has
finished transmitting the segment. Since this node does not know the exact time when
the other node finishes transmitting, it keeps the segment masked for a certain amount
of time. The mask bits are cleared when a node turns to idle stage or starts forwarding
packets on a data channel.

2.3 The State Machine

In Figure 3, we show an overall picture of Gappa. Gappa operates as a state machine.
Also, pseudo code of tasks in advertise stage on control channel can be found in [9].

3 Evaluation

We implemented Gappa on TinyOS platform, and evaluated it using TOSSIM [7].
TOSSIM is a discrete event simulator for TinyOS wireless sensor networks. In
TOSSIM, the network is modelled as a directed graph. Each vertex in the graph is a
sensor node. Each edge has a bit-error rate, representing the probability with which a
bit can be corrupted if it is sent along this link.

Radio transmission in TOSSIM is simulated as follows. Each node maintains a vari-
able radio active, which is set to 0 at the initial state. Every time a node transmits
a bit, it increments the radio active values of all its neighbors. In a lossy model, the
transmitted bit can be flipped if a bit error occurs. When a node finishes transmitting,
it decrements the radio active values of all its neighbors. A node hears a bit if its ra-
dio active value is 1 or greater. Although TOSSIM only models radio transmission on

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 127

Advertise

Receive Req (to
me)/ Increase

ReqCtrs

Sleep Listen

Download

Forward

Pre-Forward

Idle Stage

Advertise Stage

Control Channel A Data Channel

(Adv N times &
No Req) or

(all the segments
are screened)/

TendToReceive=false/
TendToReceive=true/

(wakeup periodically)
TendToReceive=true/

Time out/

Receive Adv
& Need segs/

Send Req

Receive Adv &
Need segs/
Send Req

Receive Adv or Req or
"SwitchChannel" & lose

in sender selection/
screen PreferSegID,

reset ReqCtrs

Time out/

Receive
"SwitchChannel"

& Need seg/

Receive
"SwitchChannel"

& Need seg/

Adv N times &
PreferSegID.ReqCtr >0/

Broadcasts
"SwitchChannel"

Send
segment

packet by
packet

Finish
forwarding

segment/ reset
ReqCtrs

Hear transmission/
screen PreferSegID,

reset ReqCtrs

Receive "EndDownload"
or wait for next packet
time out/ reset ReqCtrs

Receive data packet/
store needed packet,
wait for next packet Receive

"StartDownload"
& need more
pakcets/ Send

"RequestPacket"

Time out/ Send
"StartDownload"

Receive "RequestPacket"/
update ForwardVector

Fig. 3. Gappa: the state machine

a shared channel, we can make a few changes so that it also simulates radio transmis-
sion on multiple channels. Towards this end, each sensor node maintains an additional
frequency variable, which is the channel number the node is currently communicat-
ing on. When a node transmits or stops transmitting, it only modifies (increments or
decrements) the radio active values of those neighbors that are on the same frequency.
Moreover, when a node switches to a different channel (i.e., changes its frequency vari-
able), its radio active variable is reset to 0. Note that the switching channel action
can be taken only when the radio transmission of the node on the current channel is
completed.

We calculate the energy consumption by counting the operations performed during
reprogramming. (Alternatively, we can also use PowerTossim [10] to evaluate power
consumption. However, since each simulation lasts for tens of hours, the trace file gen-
erated during simulation, which is required by PowerTossim in order to compute the
energy usage, becomes too large (of the order of several gigabytes) to process.) In Ta-
ble 1 (from [11]), we list the costs of various operations on a Mica mote with a pair
of AA batteries. We use Equation 1 to compute the energy consumption E (in joules),
which is the product of charge Q (in coulombs, 1 nAh is the same as 0.0036 coulombs)
and voltage V (in volts).

E = Q · V
= 0.0036 · (20 · nsend + 8 · nreceive + 1250 · tidle

+1.111 · nread + 83.333 · nwrite) · 3
= 0.0108 · (20 · nsend + 8 · nreceive + 1250 · tidle

+2.222 · nsenddata + 83.333 · 2 · nstoredata) (1)

128 L. Wang and S.S. Kulkarni

Table 1. Charge required by various Mica operations

Operation nAh
Transmitting a packet 20.000
Receiving a packet 8.000
Idle listening for 1 millisecond 1.250
EEPROM Read 16 Bytes 1.111
EEPROM Write 16 Bytes 83.333

In the above equation, nsend and nreceive are the number of packets transmitted
and received respectively during reprogramming, tidle is a node’s active radio time (in
seconds), nread and nwrite are the number of reads and writes respectively executed
by EEPROM. EEPROM is read and written in 16-byte blocks (lines). Hence, as each
packet has 22 bytes data payload, each data packet transmitted involves 2 EEPROM
reads, and each data packet stored corresponds to 2 EEPROM writes, i.e., nread =
2 · nsenddata, nwrite = 2 · nstoredata, where nsenddata is the number of data packets
transmitted, nstoredata is the number of data packets that are stored in EEPROM.

Equation 1 shows that energy consumption is decided by idle listening time (tidle),
message transmissions (nsend, nsenddata) and receptions (nreceive), and the number
of data packets stored (nstoredata). Among these, nstoredata is decided by the size of
program (divided in packets) to be transmitted, because our algorithm guarantees that
each packet is written to EEPROM only once. Therefore, the key to reducing energy
consumption is to reduce idle listening time and message transmissions and receptions.
Among these, idle listening time (or active radio time) is the most important factor that
affects the energy consumption.

In the current implementation, each segment has 128 data packets. tl and tu are
set to 16 seconds and 512 seconds respectively. The simulations are performed in a grid
topology. Due to the fact that the execution time of each simulation is of order of tens of
hours, we do not provide confidence intervals. In Sections 3.1 and 3.2, we show how the
algorithm performs under various network settings, specifically program sizes, network
densities, network sizes. In these sections, we assume that initially all the sensors have
received one segment (which is randomly decided) from an UAV. In Section 3.3, we
consider the situation where only a subset of the sensors initially have a segment.

3.1 Varying Program Sizes and Network Densities

Experiment setup 1. (Dense network) . In the first set of experiments, we set the dis-
tance between every two neighbor nodes to 10 feet (a dense network). The simulations
were performed in a 20x20 grid topology. We run Gappa, MNP and Deluge under the
same network settings. For MNP and Deluge, we assume that initially only the base
station, the node at the bottom-left corner, has the new program. For Gappa, every
node has one segment (randomly chosen from 1 to n, suppose the program has n seg-
ments) initially. In Figure 4, we compare the completion time, average active radio time
per node, and the average energy consumption per node of these three protocols, under
different program sizes. We find that with the increase of program size, the completion
time, average active radio time, and average energy consumption increase for all these

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 129

0 5 10 15 20
0

500

1000

1500

2000

2500

Program Size (KB)

C
om

pl
et

io
n

T
im

e
(s

)

Deluge
MNP
Gappa

0 5 10 15 20
0

500

1000

1500

2000

2500

Program Size (KB)

A
ct

iv
e

R
ad

io
 T

im
e

(s
)

Deluge
MNP
Gappa

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Program Size (KB)

E
ne

rg
y

(J
)

Deluge
MNP
Gappa

(a) (b) (c)

Fig. 4. Inter-node distance: 10 feet. (a) completion time (b) average active radio time per node (c)
average energy consumption per node.

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

Program Size (KB)

N
um

be
r

of
 M

es
sa

ge
s

T
ra

ns
m

itt
ed

 P
er

 N
od

e

Deluge
MNP
Gappa

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

Program Size (KB)

N
um

be
r

of
 M

es
sa

ge
s

R
ec

ei
ve

d
P

er
 N

od
e Deluge

MNP
Gappa

(a) (b)

Fig. 5. Inter-node distance: 10 feet. (a) number of messages transmitted per node (b) number of
messages received per node.

protocols. Among the three protocols, Gappa has the lowest completion time and en-
ergy consumption. To disseminate a program of the same size, Gappa saves 60-65%
completion time and 22-33% energy compared to MNP, and saves 81-84% completion
time and 86-88% energy compared to Deluge. In Figure 5, we show the average num-
ber of transmissions and receptions per node in there three protocols. We notice that
the number of transmissions of Gappa is higher than the other two schemes. This is
expected, as gossip based communication allows every node in the network to talk to
each other, rather than require most nodes to listen to a few elected senders. Moreover,
in Gappa, multiple senders are transmitting code in different data channels at the same
time, while a receiver can only receive code in one data channel at a time. As a result,
redundancy increases. Although the overall traffic increases, the traffic is diverted to
different channels.

Experiment setup 2. (Sparse network). We repeated the same set of experiments
for Gappa, MNP and Deluge on a sparse network, where the distance between two
neighbor nodes is 15 feet. We show the completion time, the average active radio time
per node, and the energy consumption per node of these three protocols in Figure 6.
The results are similar. To reprogram the network with a program of the same size,
Gappa saves 62-70% completion time and 17-26% energy compared to MNP, and
saves 69-75% completion time and 73-81% energy compared to Deluge. In Figure 7,
we show the average number of transmissions and receptions per node. Gappa has
higher transmissions than the other two protocols.

We also compared Gappa with MNP and Deluge in the cases where the base station
is placed in the center of the network and multiple base stations are used. We found that

130 L. Wang and S.S. Kulkarni

0 5 10 15 20
0

500

1000

1500

2000

2500

Program Size (KB)

C
om

pl
et

io
n

T
im

e
(s

)

Deluge
MNP
Gappa

0 5 10 15 20
0

500

1000

1500

2000

2500

Program Size (KB)

A
ct

iv
e

R
ad

io
 T

im
e

(s
)

Deluge
MNP
Gappa

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Program Size (KB)

E
ne

rg
y

(J
)

Deluge
MNP
Gappa

(a) (b) (c)

Fig. 6. Inter-node distance: 15 feet. (a) completion time (b) average active radio time per node (c)
average energy consumption per node.

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

Program Size (KB)

N
um

be
r

of
 M

es
sa

ge
s

T
ra

ns
m

itt
ed

 P
er

 N
od

e

Deluge
MNP
Gappa

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Program Size (KB)

N
um

be
r

of
 M

es
sa

ge
s

R
ec

ei
ve

d
P

er
 N

od
e Deluge

MNP
Gappa

(a) (b)

Fig. 7. Inter-node distance: 15 feet. (a) number of messages transmitted per node (b) number of
messages received per node.

5 10 15 20

2

4

6

8

10

12

14

16

18

20

300

350

400

450

500

5 10 15 20

2

4

6

8

10

12

14

16

18

20

200

400

600

800

1000

(a) (b)

Fig. 8. Active radio time distribution of (a) Gappa and (b) MNP. Inter-node distance: 10 feet.
Program size: 14KB.

Gappa still performs better than these two protocols in these situations. For reason of
space, we refer a reader to [9] for the details of these experiment results.

Additional observations from Experiment setup 1-2. In addition to the average val-
ues, we also study the distributions of active radio time and radio communication.
We consider the case where the program size is 5 segments (14.08KB, 640 packets).
In Figure 8, we compare the active radio time distribution of Gappa and MNP (For
Deluge, all the nodes’s active radio time is the same as completion time). We note
that the distribution of nodes’ active radio time in Gappa is more even (ranges from
300-500s) than the distribution of nodes’ active radio time in MNP (ranges from 200-
1000s).

In Figure 9(a), we show the distribution of transmissions. Some nodes transmit more
than others. These nodes are distinct senders, i.e., they are selected as senders many

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 131

5 10 15 20

2

4

6

8

10

12

14

16

18

20

600

800

1000

1200

1400

5 10 15 20

2

4

6

8

10

12

14

16

18

20

2200

2400

2600

2800

3000

3200

3400

3600

(a) (b)

Fig. 9. Gappa: message transmissions and receptions. Inter-node distance: 10 feet. (a) transmis-
sions (b) receptions.

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Program Size (KB)

C
om

pl
et

io
n

T
im

e
(s

)

Inter−node distance 10ft
Inter−node distance 15ft

0 5 10 15 20
0

100

200

300

400

500

600

Program Size (KB)

A
ct

iv
e

R
ad

io
 T

im
e

(s
)

Inter−node distance 10ft
Inter−node distance 15ft

0 5 10 15 20
0

2000

4000

6000

8000

10000

Program Size (KB)

E
ne

rg
y

(J
)

Inter−node distance 10ft
Inter−node distance 15ft

(a) (b) (c)

Fig. 10. Gappa: at inter-node distance 10 feet and 15 feet. (a) completion time (b) average active
radio time per node (c) average energy consumption per node.

times. Note that these distinct senders are randomly distributed. In Figure 9(b), we
show the reception distribution. We find that the distribution is even.

In Figure 10, we compare the performance of Gappa at different node densities. We
note that Gappa performs well in both dense networks and sparse networks, although
the performance in a sparse network is slightly better.

3.2 Varying Network Sizes

Experiment setup 3. In this section, we fix the inter-node distance to 10 feet and
the program size to 5 segments (14.08KB, 640 packets), and conduct simulation on
different network sizes (10x10, 15x15, 20x20 grid). In Figure 11, we show that the
completion time, average active radio time per node, average energy consumption per
node increase slightly when the network size increases. For example, the completion
time for reprogramming a 15x15 network with a 14KB program is 512 seconds, while
the completion time for reprogramming a 20x20 network with a program of the same
size is only 531 seconds; although the number of nodes almost doubles, the completion
time only increases 3.6%. This shows that Gappa scales well to large networks.

3.3 Varying Number of Seeds

Experiment setup 4. In this section, we study the situation where only a subset of
nodes (seeds) have received a segment (randomly picked one) from an UAV initially.
Each segment is received by at least one node. We conduct the simulation in a 20x20
network. The inter-node distance is set to 10 feet. The program size is 5 segments
(14.08KB, 640 packets). We randomly select 5, 25, 50, 100, and 200 nodes as the seeds.

132 L. Wang and S.S. Kulkarni

10x10 15x15 20x20
350

400

450

500

550

600

Network Dimension (nodes)
T

im
e

(s
)

completion time
active radio time

10x10 15x15 20x20
6000

6100

6200

6300

6400

6500

6600

6700

Network Dimension (nodes)

E
ne

rg
y

(J
)

(a) (b)

Fig. 11. Gappa at different network sizes. Inter-node distance: 10 feet. Program size: 14KB. (a)
completion time and average active radio time per node (b) average energy consumption per node.

0 100 200 300 400
0

500

1000

1500
MNP

Number of seeds

C
om

pl
et

io
n

T
im

e
(s

)

0 100 200 300 400
0

500

1000

1500

MNP

Number of seeds

A
ct

iv
e

R
ad

io
 T

im
e

(s
)

0 100 200 300 400
0

2000

4000

6000

8000

10000

12000

14000

MNP

Number of seeds

E
ne

rg
y

(J
)

(a) (b) (c)

Fig. 12. Gappa: varying number of seeds. Inter-node distance: 10 feet. Program size: 14KB.
(a) completion time (b) average active radio time per node (c) average energy consumption per
node.

The results are shown in Figure 12. For comparison, we also draw the corresponding
results of MNP. We note that even if the nodes that have received one segment from the
UAV are only 1.25% (each segment with exactly one node), Gappa outperforms MNP
in completion time. Additionally, from Figure 4 (a), it also outperforms Deluge.

4 Related Work

The existing work on delivering the entire program to all the sensors in the network in-
cludes TinyOS single-hop network reprogramming (XNP) [12] and multihop network
reprogramming approaches, such as MOAP (Multihop Over-the-Air Programming) [3],
Deluge [2], MNP [1], Infuse [4], and Sprinkler [5]. All these approaches assume that
one (or a few) sensor has the entire new program initially, and communicate the new
program to the remaining sensors in the network. By contrast, Gappa is designed for
the scenario where some sensor nodes have received one segment on a selected chan-
nel from an UAV initially, and communicate with each other to receive the remaining
segments.

The only work on multi-channel reprogramming we are aware of is [13], where the
authors present preliminary experiment results (based on 25 nodes). In [13], the authors
propose an algorithm, Multi-Channel Deluge, which divides nodes into groups based
on node ID or geographically, and assigns a channel to each group. Similar to other
existing reprogramming approaches, it also assumes that one or a few source nodes have
the complete new program, and disseminate the new program to the entire network. In
the algorithm proposed in [13], there are specially marked nodes in group 1 (the default

Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks 133

group), which form a connected dominating set, so that all the nodes in the network can
directly communicate to at least one node belonging to group 1. By contrast, in Gappa,
all the nodes are equal. Hence, there is no dependency on special nodes.

5 Conclusion and Future Work

In this paper, we presented Gappa, a gossip based multihop reprogramming protocol
for sensor networks, that is designed for the scenario where some sensor nodes receive
one part of the new program from an UAV on a selected channel at the beginning, and
communicate with each other so that all the nodes in the network receive the entire pro-
gram after reprogramming. By exploiting multi-channel resources and pipelining tech-
nique, Gappa enables high concurrency on different channels and different locations,
hence, propagates data rapidly. To reduce collisions on each channel, Gappa uses a
multi-channel sender selection algorithm (based on the sender selection algorithm in
MNP), which tries to guarantee that at any neighborhood, at most one sender transmits
on one channel at a time. Among the competing senders on each channel, the multi-
channel sender selection algorithm attempts to select the one whose transmission of the
program on that channel is likely to have the most impact. In the case that a node loses
the sender selection on one channel, it has the option to compete to transmit on another
channel. If all the channels a node can transmit code on are busy, the node stops adver-
tising for a certain amount of time. During that time, it can choose, based on its status,
to wait to receive code with its radio on, or to turn off radio to save energy. In this way,
Gappa reduces the active radio time of sensor nodes, hence, energy consumption, during
reprogramming.

We evaluated Gappa through simulation on TOSSIM, and compared it with the
other two state-of-art reprogramming protocols, MNP and Deluge, which both assume
that initially only the base station(s) has the entire program. The simulation results show
that under the same network settings, to propagate a program of the same size, Gappa
saves up to 70% of completion time and up to 42% energy consumption compared to
MNP, and saves up to 84% completion time and up to 88% energy consumption com-
pared to Deluge. We also show that Gappa adapts well to different network densities
and network sizes. Moreover, we note that Gappa distributes energy load more evenly.
This is expected to help in maintaining a longer network lifetime.

We also considered the case where only a subset of nodes receive a segment of code
initially. In the simulation, we study the worst cases where only 1.25% to 50% of nodes
have received a part of the code. The simulations results show that even in these situa-
tions, Gappa still outperforms MNP and Deluge in completion time.

We note that Gappa works best in the case where the initial distribution of code
segments is random. Gappa tries to reduce contention and enable high concurrency
by transmitting different segments in their associated channels simultaneously. One
possible extension of this work is to associate one segment to multiple channels. In
this case, our multi-channel sender selection algorithm needs to be modified, so that a
node chooses one channel from a list of available channels (randomly or follow a cer-
tain rule), and indicates its preferred channel it intends to transmit on in its advertise-
ment messages. That way, two neighbor nodes that have the same segment can transmit
simultaneously.

134 L. Wang and S.S. Kulkarni

References

1. S. S. Kulkarni and L. Wang. MNP: Multihop network reprogramming service for sensor
networks. In Proceedings of the 25th International Conference on Distributed Computing
Systems (ICDCS), pages 7–16, June 2005.

2. J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network
programming at scale. In Proceedings of the second International Conference on Embedded
Networked Sensor Systems (SenSys 2004), Baltimore, Maryland, 2004.

3. T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism for wireless
sensor networks. Technical report, UCLA, 2003.

4. S. S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemination protocol for
sensor networks. International Journal on Distributed Sensor Networks (IJDSN), March
2006.

5. V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and energy efficient data
dissemination service for wireless embedded devices. In Proceedings of the 26th IEEE Real-
Time Systems Symposium, December 2005.

6. TinyOS: A component-based OS for the networked sensor regime. http://
www.tinyos.net.

7. P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurate and scalable simulation of entire
tinyos applications. In Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), Los Angeles, CA, November 2003.

8. CC1000 Radio Stack Manual, 2003. http://www.tinyos.net/tinyos-1.x/
doc/mica2radio/CC1000.html.

9. L. Wang and S. S. Kulkarni. Gappa: Gossip based multi-channel reprogramming for sensor
networks. Technical Report MSU-CSE-06-8, Department of Computer Science and Engi-
neering, Michigan State University, Feburary 2006.

10. V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. Welsh. Simulating the power con-
sumption of large-scale sensor network applications. In Proceedings of ACM International
Conference on Embedded Networked Sensor Systems (SenSys), November 2004.

11. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor net-
works for habitat monitoring. In Proceedings of ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA’02), Atlanta, GA, September 2002.

12. Crossbow Technology, Inc. Mote In-Network Programming User Reference Version
20030315, 2003. http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/Xnp.pdf.

13. W. Xiao and D. Starobinski. Poster abstract: Exploiting multi-channel diversity to speed up
over-the-air programming of wireless sensor networks. In Proceedings of the Third ACM
Conference on Embedded Networked Sensor Systems (SenSys) (Poster Session), November
2005.

The Virtual Pheromone Communication Primitive

Leo Szumel and John D. Owens

University of California at Davis,
Department of Electrical and Computer Engineering,

One Shields Ave, Davis, CA 95616, USA
{lpszumel, jowens}@ucdavis.edu

Abstract. We propose a generic communication primitive designed for sensor
networks. Our primitive hides details of network communication while retaining
sufficient programmer control over the communication behavior of an applica-
tion; it is designed to ease the burden of writing application-specific communi-
cation protocols for efficient, long-lived, fault-tolerant, and scalable applications.
While classical network communication methods expect high-reliability links,
our primitive works well in highly unreliable environments without needing to
detect and prune unreliable links. Our primitive resembles the chemical markers
used by many biological systems to solve distributed problems (pheromones).
We develop and analyze the performance of an implementation of this primitive
called Virtual Pheromone (VP). We demonstrate that VP can attain performance
comparable to classical methods for applications such as sleep scheduling, rout-
ing, flooding, and cluster formation.

1 Introduction

Most wireless sensor network (WSN) and ad-hoc networking applications demand effi-
ciency, long life, fault-tolerance, and scalability. We refer to these as ELFS applications.
The goal of this paper is to demonstrate that Virtual Pheromone (VP) is an effective tool
for building ELFS applications.

It is commonly accepted that cross-layer design is necessary in order to achieve
the levels of efficiency desired in most WSN and energy-constrained ad-hoc network
applications [1, 2]. Eschewing the classical network layered abstraction model (OSI)
enables advancements in energy efficiency. This energy efficiency comes at the cost of
programmer efficiency, because integration and debugging of these applications can be
very complex. It is desirable to have mechanisms that balance the utility of abstraction
against the flexibility of cross-layer design. The sensor network field has entered an
era of consolidation wherein point solutions are being generalized to create low-level
abstractions that are useful across many applications; TinyOS 2.0 and UCLA’s Tenet
are examples [3, 4]. In short, some energy efficiency must be traded for generality and
ease of programming if sensor networks are to become ubiquitous.

1.1 Motivation

Sensor networks bring computer and network technology in closer entanglement with
the natural world than ever before. Assumptions made in classical computing no longer

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 135–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 L. Szumel and J.D. Owens

hold: communications are unreliable, nodes are unreliable, a deterministic mapping of
the system state may be unattainable, and energy is a finite resource. The combination
of a lossy and random environment means that the behavior of a sensor network cannot
be perfectly determined; rather, we must be satisfied with specific behavioral qualities
or bounds on expected performance.

Because ELFS are bound so tightly with the physical world, it stands to reason that
natural communication mechanisms may provide insight into the design of artificial
communication mechanisms appropriate for that environment. Many species use pher-
omones (scent signals) to communicate information and organize behavior in complex
and challenging environments. For instance, ants successfully forage for food and build
nests in spite of continually changing physical parameters—paths are blocked, hazards
are presented, food sources come and go.

Natural systems are dynamic in the relationship between actors (or agents) and the
environment in which they reside. In a data-collection wireless sensor network, the
sources of dynamism are radio interaction and node failure. When a node is asleep,
it cannot participate in multi-hop communication, and when packets are sent, they
may collide with other transmitters’ packets. In more complex scenarios, e.g. mobile
or sensor-actuator networks, dynamism is increased along more parameters. We argue
that pheromone-inspired communications can be useful in the simple case and are very
desirable in the complex case.

1.2 Contributions

Because communication cost is expected to dominate sensor network energy costs, we
have designed a communication primitive that is designed to approach the efficiency
of applications that are specifically tailored to their tasks. Our goal is to trade a mini-
mal amount of energy efficiency for increased programmer efficiency and code reuse.
Moreover, the nature of our communication primitive leads to efficient, scalable appli-
cation design, because every transmission is recognized as a broadcast. Efficiency is
chiefly provided by a single-layer abstraction: simulated diffusion of virtual pheromone
signals. This abstraction benefits from the presence of unpredictable links, rather than
requiring that they are pruned out. Finally, by using a common primitive for all (or
most) communication, a powerful optimization point is created such that enhancements
to the primitive can benefit a large set of applications.

2 Overview

In the biological sense, a pheromone is a chemical marker. It can be deposited by an
organism and detected by that and/or other organisms, e.g. for the direction of a male
moth to a female [5]. A pheromone dissipates via an evaporative process; as a result
the strength of the pheromone decays with increasing distance from the source in the
spatial and temporal axes. Spatial decay maintains locality of communication; temporal
decay reduces system complexity by ensuring that old information is purged from the
system.

The Virtual Pheromone Communication Primitive 137

2.1 Interesting Properties

Why is a spatio-temporally decaying information process interesting in the context of
sensor networks? Let us examine the properties of this information process that are in
common with many sensor network applications. Spatially-limited sharing of infor-
mation: sensor networks can only scale if internode information sharing is limited by
some process. Encoding of distance to source: hop counts, for instance, are commonly
used as a cost metric in routing algorithms. Encoding of time since deposition: the
relevance of information is crucial in allowing nodes to collaborate with each other;
there is a significant difference between a sensor reading from one minute ago and a
reading from one month ago. Superposition of like pheromones: akin to aggregation
by sum; allows reinforcement. Implicit gradient leading to source: gradients enable
efficient and scalable routing algorithms because the routing information is stored in a
distributed fashion.

The net result of these properties is that all information exchange is via constrained
broadcast through a shared medium. This maps very well to the behavior of a radio
communication system.

2.2 The VP Communication Primitive

VP also exhibits the five aforementioned properties, each of which serves a purpose
in the design of an ELFS application. Efficiency is driven by low-cost transmission
of information; VP requires no ACK signals and uses an efficient flooding technique
(Section 3.1). Fault-tolerance requires a level of redundancy and robustness to errors;
VP’s inherent redundancy provides a tradeoff of reliability against cost, and because no
explicit point-to-point communication is used, information transfer is highly tolerant
of node failure (as long as the network remains unpartitioned). Application scalability
requires highly localized communication and efficient coordination amongst neighbor-
ing nodes; VP pheromones propagate proportional to the strength of the initial deposit,
which creates a user-selectable bound on distance. The encoding of distance and time
in the pheromone strength, combined with superposition of like pheromones, allows
neighboring nodes to coordinate without requiring expensive point-to-point protocols
that are sensitive to faults.

2.3 Related work

The topic of communication methods in wireless networks is broad; we reference repre-
sentative works from two important categories: localized communication/control prim-
itives and applications using pheromone-like concepts.

In directed diffusion [6], information sinks (consumers) publish interests which are
propagated through parts of the network; information sources (producers) publish
named data objects which are routed along the interest gradient. Geolocation is as-
sumed so that interests can be distributed locally. Directed diffusion is an application
facilitating data transfer between sinks and sources and works best when a flow of in-
formation will pass from a source to one or more sinks. In contrast, VP is a lower-level
primitive intended for many communication tasks (including diffusion-like routing; see
Section 4.2).

138 L. Szumel and J.D. Owens

RUGGED [7] is a routing protocol that utilizes data gradients, or “fingerprints,”
rather than the interest gradients created by directed diffusion. Fingerprints are dissem-
inated by an environmental processes—not by the sensor network—and this creates a
possible efficiency benefit. Simulated annealing techniques are used to overcome local
minima or maxima in the sensor field, including regions in which the sensed level is
zero. Fingerprint routing is targeted specifically at data-collection applications in which
natural gradients exist in the phenomena to be measured.

Payton et al. explore using “virtual pheromones” [8] for robotic control. The pher-
omones are sent via infrared or other line-of-sight communication method; gradient
descent necessarily indicates an unobstructed path that the robots may use. Charac-
terization of the infrared source and its spatial decay is used as a distance estimator.
Parunak et al. use a pheromone-inspired memory model [9] to assist in the coordination
of distributed decision-making systems. Brooks et al. use biologically-, chemically-,
and physically-inspired techniques (including one based on pheromones) in sensor net-
work adaptation techniques [10]. They find these techniques to be very robust to errors
while attaining satisfactory power consumption.

2.4 Qualitative Expectations

It is instructive to consider the expected behavior of VP, as compared to the classi-
cal primitive of point-to-point transmission, before delving into technical analysis. We
expect VP to work well in dense networks since the signal can propagate many hops.
We expect VP to perform less well when used, naively, to implement classical proto-
cols that utilize handshaking, acknowledgements, or other point-to-point information
exchanges. VP should be highly tolerant of node failure and spurious communica-
tion because it benefits from the redundancy of broadcast and can utilize unreliable
links.

Furthermore, due to the large time constants involved in pheromone decay, we expect
VP to be most useful in latency-insensitive applications. While fields can propagate
quickly, the rate of accomplishing a specific action-reaction pair using pheromones is
not likely to exceed a classical communication approach. For instance, any application
that leverages the superposition principle of pheromone signaling will take some time
to reach a steady state response.

We begin by discussing the parameters of a pheromone communication primitive,
and the details our specific implementation, in Section 3. The metrics relevant to ELFS
are presented in Section 4 and then applied to four application scenarios and analyzed
in Section 4.2. Section 5 describes the future direction of this research, and Section 6
concludes the paper.

3 Design

We desire to implement a mechanism displaying the properties listed in Section 2.1: en-
coding of space and time, spatially limited flooding, superposition, and gradient gener-
ation. Energy efficiency constrains our implementation options. We analyze the design
problem as the following set of sub-problems:

The Virtual Pheromone Communication Primitive 139

Programmer API. How should a program deposit and detect pheromones? What in-
formation should be provided, and in what form? Our goal is to minimize the amount
of code required to handle communications, yet provide enough flexibility to make the
primitive useful.

We believe deposition should encode, at a minimum, the following fields: TYPE,
STRENGTH, and SOURCE. PAYLOAD (arbitrary data) should be an optional parameter.
Reading a pheromone should provide at least the first two fields: TYPE and STRENGTH.
SOURCE may be required for some applications. The arbitrary payload field could be
used as a way to encode complex data, such as a non-integer data type, or an uniquifier.

Spatial Dissipation Model. The desired behavior is to have the strength of the field
decay with increasing distance from the pheromone source. This encodes physical dis-
tance from the sender and limits the range over which data will propagate. Candidate
dependent variables for this decay include hop count, RSSI, or geolocation.

Temporal Dissipation Model. The desired behavior is to have the strength of the field
decay with increasing time since the deposition of the pheromone. Exponential decay
is ideal because it favors recent information while allowing old information to persist at
a low level. Half-life may be global, indepdenent for each pheromone, or chosen from
a small set (e.g., {fast-decay, slow-decay}), depending on application needs.

Pheromone Encoding & Transmission Strategy. The transmission strategy of the pher-
omone information can have a large impact on the energy efficiency of the operation.
If maximum propagation speed is desired, a packet must be sent for each deposition. If
the constraint of propagation speed is relaxed, packet overhead may be amortized over
several pheromone depositions.

3.1 VP: A Design Implementation

VP encodes TYPE, STRENGTH, SOURCE, and PAYLOAD in a table and provides two
functions to store (and implicitely transmit) and retrieve pheromone signals: DEPOSIT

and SMELL. Utility functions to support common uses of pheromones will reduce pro-
gram size and be useful across applications. To facilitate the applications in Section
4.2, we have implemented a function to forward a packet along a pheromone gradient
(FWDGRADIENT), and a function to return a list of distinct sources for a pheromone
type (SMELLDISTINCT).

DEPOSIT(TYPE, STRENGTH, PAYLOAD): Deposit a pheromone identified by TYPE

with strength equal to STRENGTH; PAYLOAD is optional. The subsystem decides if
the information should be propagated to neighboring nodes according to the rules
in Section 3.1.

SMELL(TYPE): Return the net strength of the pheromone(s) matching TYPE.
SMELLDISTINCT(TYPE): Return a list of each distinct pheromone detectable at this

node. This bypasses superposition and includes the payload of each pheromone (if
present).

FWDGRADIENT(PACKET, TYPE, DIRECTION): Forward a packet according to the
gradient of pheromone TYPE; DIRECTION may be uphill, downhill, or level.

140 L. Szumel and J.D. Owens

Table 1. A simple data structure for storing pheromones. The strength level associated with type
a from source i is denoted lai. For example, SMELL(a) = lai + la j and SMELL(b) = lbk. Payload is
labeled equivalently to strength.

type source strength payload

ta si lai pai

ta s j la j pa j

tb sk lbk pbk

Storage and Retrieval of Pheromone State. The internal data structure is a 4 × N
table (Table 1). To support superposition, each unique type/source pair may have its
own entry in the table, but when the pheromone is read all rows with a common type
are summed together. Payload is suppressed when using SMELL but may be read using
SMELLDISTINCT.

Deposition and Propagation of Pheromones. When a pheromone is deposited with
strength s, the table is first checked for a hit on (TYPE,SOURCE). There are three possi-
ble cases:

1. If there is no hit, the data is stored and then scheduled for transmission as a phero-
mone update with strength (s−1).

2. If the hit has a strength less than s, the “no hit” action (1) is taken.
3. If the hit has a strength ≥ s, the deposition is ignored.

This algorithm sets up a cone-shaped field prior to to initiation of the decay process
(Section 3.1). The initial field has a slope of one pheromone unit per hop; as a result,
distance is derived from radio hops.

Broadcast Suppression Technique. Pheromone updates attempt to limit redundant
transmissions. A depositing node that wants to send an update moves through the phases
listed in Table 2. While observing, the node snoops for and accumulates the count of
concurrent depositions by neighboring nodes. In the transmitting phase, the snoop count
is compared to a threshold, η . If this threshold is not exceeded, the node transmits
the pheromone; in either case, it calculates the expected pheromone distribution time
and waits for the propagation to complete. This delay equals the pheromone strength
at this node, si, times the expected observation delay at each hop (including packet
transmit time); this algorithm forms a schedule for initiation of the distributed decay
process. The decaying phase lasts until the pheromone reaches a minimum threshold, ε
(Section 3.1).

Time-Decay of Pheromones. All nodes concurrently run a decay process on their
pheromone tables. The decay process is a discretized approximation of continuous ex-
ponential decay, updated every τ seconds: s(t + τ) = αs(t). The process terminates
when s(t) < ε , where α is constant, τ is the update interval, ε is the termination
threshold, and s(0) is the initial strength at this node as defined in Section 3.1.

The Virtual Pheromone Communication Primitive 141

Table 2. A pheromone deposition is a distributed process including three phases at every node
i: observation (for suppression), transmission (or suppression) and a pause, and then decay. ttx is
the expected transmit time, si is pheromone strength at node i, and τ is a constant.

phase duration

observing tobs = [0,τ]
transmitting (or suppressing) (tobs + ttx)si

decaying until pheromone is depleted

Table 3. memory requirements to store a pheromone (bytes). The next decay time is not trans-
mitted. System variables are used to propagate and decay the signal, and include user variables,
which are exposed by the API. The total footprint of each pheromone is between 7 and 14 bytes.

space parameter bytes

system source ID 2–4
· spatial metric 1–2
· next decay time 1–2
· user type 2–4
· · strength 1–2

VP maintains an event list large enough to keep one “next decay time” for each
pheromone. For large scale systems with many pheromones, it would be more appro-
priate to have one global timer that decays all pheromones; this may require a smaller τ
(Section 3.1).

Constants. We use the following constants in our implementation of VP: half-life=10 s,
τ = 100 ms, ε = 0.1, ttx = 2 ms, and η = 2. ttx is derived from a 250 kbps radio and
40-byte packet (1.28 ms to transmit, plus processing time). η is chosen to optimize
efficiency (we tried values 1,2,3,4)—it must be tuned to the RF model (discussion in
Section 5).

Memory Requirements. We divide the pheromone information into two categories:
user and system (Table 3). Parameter precision may be adjusted to application require-
ments. Each pheromone requires 7–14 bytes of information (before compression) to
transmit; a packet payload of 32 bytes can contain at least 2-4 pheromones.

4 Metrics and Evaluation of VP

Because VP is targeted at ELFS applications, we choose one metric for each ELFS
quality:

Efficiency: the communication cost, in packets sent to accomplish a task. All else be-
ing equal, a task that requires less communication is more efficient.

142 L. Szumel and J.D. Owens

Long-livedness: the lifetime of the network, in seconds-until-dysfunction. This is dif-
ferentiated from efficiency because application requirements, such as coverage, de-
pend on both node death distribution and the fault-tolerance of the algorithm. It is
reasonable to expect, however, that an efficient algorithm will also be long-lived.

Fault-tolerance: the lifetime, as long-livedness is observed with these varying system
parameters: network density, random node failure probability, and partial network
occlusion.

Scalability: the long-livedness is observed when the network is scaled in node place-
ment density, in nodes per unit area.

4.1 Experimental Methodology

Showcasing all possible applications of our primitive is beyond the scope of this paper;
rather, we aim to discuss several applications and tasks that can be accomplished using
our primitive and to provide evidence of satisfactory performance.

Our experiments are performed using a custom simulator called AHLPS. We also
verify functionality with physical deployment on 25 Telos motes using a less complete
implementation of VP. Whereas implementation on motes proves the functionality of
the primitive, only simulation allows us to explore VP in the environment it was de-
signed for: large scale networks.

We previously developed the Agent High-Level Pythonic Simulator (AHLPS) to al-
low simulation of agent behavior in large sensor networks [11]. A pheromone primitive
was added to AHLPS to support the research in this paper. AHLPS uses the TOSSIM
empirical radio link model [12] to simulate link quality1 but does not simulate a PHY
layer or complex MAC layer. As a result, radio contention is not modeled; this is ac-
ceptable in our simulations because the mean communication rate is low (generally less
than a packet per second per node). AHLPS allows us to investigate, at a high level, the
behavior of an agent-based program. Further verification is then performed in TOSSIM
and/or on physical nodes using our agent framework [13].

4.2 Case Studies

We will now use results on the behavior of representative tasks and applications to verify
that VP supports the requirements of ELFS: efficiency, long-livedness, fault-tolerance,
and scalability. Any algorithm implemented using VP is referred to as “Pheromone.”

One way to measure efficiency is to take the ratio of a cost (generally energy) and a
benefit (generally network lifetime). Unfortunately, results of this measure are specific
to each application. We desire to separate out an indicator of efficiency that will imply
efficiency performance for many applications. Because most sensor networks commu-
nicate some shared information, we analyze the efficiency of distributing information
using three methods: flooding, epidemic routing, and VP.

Fault-tolerance is also very application-specific because of the specificity of the term
“fault.” We attempt to pick two common fault scenarios that many networks expect
to incur: a long-period disruption to a large section of the network, and intermittent

1 While the TOSSIM model is based on empirical data ranging from 0 to 40 meters, we have
scaled this data so that 1 distance unit under AHLPS is equivalent to 40 meters under TOSSIM.

The Virtual Pheromone Communication Primitive 143

dropouts of specific nodes. Because it is impossible to generalize all applications’ sus-
ceptibility to these specific faults, we choose a basic measure: the ability to route infor-
mation from one part of the network to another. This embodies two concepts: inter-node
collaboration, and network connectivity; most sensor network applications require both.

Efficiency, fault-tolerance, and scalability are requisites for long-livedness, and an-
alyzed separately. Our aim is to show that VP enables longevity extension in a way
applicable to many applications. We chose to examine cover-constrained sleep schedul-
ing because it can be used in many applications to extend lifetime. While not a proof of
generality, such an example provides evidence for our argument.

Scalability is extremely important in many sensor network designs. Unfortunately, few
truly scalable networks have been deployed in the field. We are developing a multi-hop
clustering algorithm that we believe will be crucial in the scalable operation of very large
networks, allowing collaboration and organization of large (but constrained) subsets of
nodes. Multi-hop clustering has been mostly a footnote in the literature, although it does
resemble the “Multiple Sink Network Design Problem” [14] posed by Oyman and Ersoy.
Our goal is to show that our multi-hop clustering task scales perfectly using VP.

Efficiency. Flooding is the most basic form of dissemination. Epidemic algorithms,
such as Trickle [15], perform efficiency optimizations using suppression. We compare
the use of VP to disseminate a unit of information to a network of 1000 nodes using
naive Flood and Trickle. Comparison is on the basis of packets sent, per node, per
unit of information, with the independent variable of network density (Figure 1). The
simulation is run for 20 seconds but statistics are collected at the earliest time for which
cover (fraction of nodes having received the information unit) is 95% or higher.

Flood has a constant cost because all nodes participate in every flood event. Trickle
benefits from increasing network density because more nodes can be suppressed; how-
ever, there is an unavoidable baseline cost in order to run the algorithm’s periodic
probes. Increasing the maximum probing interval would decrease this cost but also
decrease the responsiveness of the system. Because each run is begun from scratch, we
also plot “Trickle–adjusted,” in which every node is given one “free” packet to perform
the initial round of probes.

There are two reasons that Pheromone performs better than Trickle in this test. First,
there is the aforementioned base cost. Second, Trickle’s probe-response protocol means
that, in the limit of extreme density, distributing a unit of information would require
at least three transmissions: broadcast a new version, broadcast a suppressing data re-
quest, broadcast a data response. Pheromone would require only a minimum of two
transmissions: broadcast of pheromone, and one suppressing re-broadcast.

The flooding coverage chart indicates that none of the algorithms perform satis-
factorily below a density of 10. It is important to note that Trickle guarantees 100%
cover in a connected network while Flood and Pheromone, with their probabalistic ap-
proach, attain 95-100% coverage. In addition, the lack of contention in the AHLPS
radio model gives advantage to Flood and Pheromone’s latency performance. Phero-
mone and Trickle serve different purposes, but it is clear that Pheromone is an efficient
dissemination mechanism.

Memory and computational resources are not modeled in AHLPS. We note that all
three algorithms are computationally simple, with Pheromone being the most complex

144 L. Szumel and J.D. Owens

Mean Packets Sent with Varying Network Density

0 10 20 30 40 50 60 70 80
Node Placement Density

100

101

Pa
ck

et
s

Tr
an

sm
it
te

d
 P

er
 N

od
e

Trickle
Trickle-adjusted
Flood
Pheromone

Flooding Coverage Performance

0 10 20 30 40 50 60 70 80
Node Placement Density

100

101

Ti
m

e
to

 C
ov

er
 9

5
%

 (
S
ec

on
d
s)

Trickle
Flood
Pheromone

(a) (b)

Fig. 1. Performance of Trickle, Flood, and Pheromone in information dissemination. Both Trickle
and Pheromone benefit from increased network density. Pheromone is bounded above by both
Trickle and Flood in terms of efficiency, while matching Flood’s rapid speed.

because our current implementation uses a floating point multiplication (Section 3.1).
The memory requirement for Pheromone is slightly greater due to the SOURCE param-
eter. (STRENGTH in Pheromone is balanced by HOPCOUNT in Flood and VERSION in
Trickle.)

Long-Livedness. A well-referenced and effective sleep scheduling algorithm is PEAS
[16]. We implemented PEAS under AHLPS as well as our own scheduler that uses VP.
We use a metric from the PEAS paper: time that 90% 3-cover is maintained. k-cover is
defined as the fraction of network area observed by at least k nodes. We use the same
operating constants as Ye et al.: idle power 12 mW, sleep power 30 μW, transmit energy
600 μJ per packet, and receive energy 120 μJ per packet.

Pheromone has a single tunable parameter: THRESH. A single pheromone is sent
as a beacon by all awakened nodes; if the perceived level at a given node is greater
than THRESH, the node will go to sleep with probability proportional to the difference.
PEAS has two parameters, λ , the mean rate at which nodes will wake up and probe for
neighbors, and Rp, the probing range. We set λ = 1Hz and Rp = 1.0 (the maximum
radio range).

Sensing range is set to 2.0, or 2 times the maximum radio range. Since most good links
are at a distance ≤ 0.2, the sensing range is significantly larger than the probing range.
3-cover failure for three or more seconds is considered a failure. We set THRESH = 1.0
to match PEAS’ behavior (a node sleeps if any probe responses are heard). The funda-
mental difference between Pheromone and PEAS is that the former is probing (broadcast
announcements) while the latter is polling (broadcast request, unicast response).

Figure 2 shows that While PEAS is very effective (a), it requires a high overhead
in transmissions (b) because each broadcast probe is followed by multiple unicast re-
sponses. PEAS offers an additional benefit that Pheromone does not: the pursuit of λ
probing rate. (Effectively, “λ ” is fixed in Pheromone.) Pheromone offers performance
comparable to PEAS at a much lower transmission overhead, indicating it would perform
very well in applications with a higher transmit-to-idle cost ratio. Perhaps the biggest
benefit of Pheromone is that it is easily integrated into a cross-layer algorithm design.

The Virtual Pheromone Communication Primitive 145

Time to Failure for 3-Cover (90% Threshold)

0 10 20 30 40 50 60
Network Density (Nodes/Square Unit)

0

50

100

150

200

250

300

350

T
im

e
(s

)

PEAS
Pheromone
Baseline

Packet Transmissions

0 10 20 30 40 50 60
Network Density (Nodes/Square Unit)

0

20

40

60

80

100

120

140

160

Pa
ck

et
s

T
ra

n
sm

it
te

d

PEAS
Pheromone

(a) (b)

Fig. 2. (a) PEAS is highly effective at extending network lifetime. Pheromone is nearly as ef-
fective for lower densities but loses ground as density is scaled. (b) PEAS has a radio overhead
nearly 10 times greater than Pheromone.

Fault-Tolerance. We wish to examine fault models sufficiently simple to avoid loss of
generality in the results. We examine two models: partial network occlusion and random
network dropouts. During an occlusion, a large portion of the network becomes unreach-
able (e.g. due to a signal jammer) between t = [50,150] s. During a dropout, nodes may
become unreachable for a brief period (e.g., fast fading); the dropout rate is λ and the
dropout interval is exponentially distributed with mean 1 s. Network size is 1000 nodes.

These fault models are applied to a partial implementation of DSR [17]. DSR is an
on-demand point-to-point routing algorithm designed for ad-hoc networks. Because the
DSR specification is complex, we implemented in AHLPS only the features involved
in robust delivery from a single source to a single sink. While the DSR specification
allows for asymmetric data/ACK paths, it does not specify a mechanism, so our imple-
mentation uses only symmetric paths.

We compare DSR to gradient ascent routing on a pheromone field. Packets are trans-
mitted once per second and in the case of Pheromone, a pheromone is deposited at
the sink once every 10 seconds. There are no tunable parameters for Pheromone. A
significant difference is that Pheromone will follow multiple simultaneous paths when
routing on a gradient (all uphill paths are followed), whereas DSR will discover parallel
paths and then use just one at a time. Analysis of packet overhead (not presented here)
indicates that Pheromone has a lower packet overhead for the data presented here.

Because AHLPS uses an empirical radio model, nodes have many neighbors at the
fringe of connectivity and with correspondingly high loss rates. DSR does not per-
form well under this regime because it discovers, and attempts to use, faulty paths; it
must explore many of these before finding a quality path. To alleviate this problem, we
implemented an omniscient, zero-overhead, link-quality estimator (LQE) that permits
only high-quality links. High quality is defined as an expected round-trip loss rate of at
most 1%. Pheromone is permitted to run under both the empirical and LQE modes for
comparison, but performs better without LQE because of the increased redundancy.

We see in Figure 3 that DSR outperforms Pheromone with the LQE feature (a) but
is inferior without it. Random dropouts (b) affect DSR more than Pheromone because

146 L. Szumel and J.D. Owens

Time Series Comparison (Smoothed) w/ Density = 40.0

0 50 100 150 200
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
el

iv
er

y
R
at

e
(P

ac
ke

ts
 p

er
 S

ec
o
n
d
)

ideal
DSR-LQE
Pheromone
DSR

Packet Delivery Success Rate During Dropouts w/ Density = 40.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
)(etaRtuoporD

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
o
n
 o

f
Pa

ck
et

s
S
u
cc

es
sf

u
lly

 R
ec

ei
ve

d DSR-LQE
Pheromone
Pheromone-LQE
DSR

(a) (b)

Fig. 3. DSR versus Pheromone gradient routing (a) during an occlusion event and (b) with vary-
ing dropout rate (λ). λ = 0 corresponds to no dropouts. Density is 40.0 nodes per unit area in
both cases and LQE indicates an omniscient, zero-overhead, link-quality estimator. Pheromone
does not require LQE, an important efficiency benefit, and is far more tolerant to random node
dropouts. DSR, on the other hand, performs much better when LQE is available.

Pheromone Algorithm Run-Time Scaling with Density

5.0 10.0 15.0 20.0
Node Placement Density

0

10

20

30

40

50

60

70

80

90

T
im

e
to

 C
o
m

p
le

ti
o
n
 (

S
ec

o
n
d
s)

 w
/

T
h
re

sh
o
ld

 =
 .

9
8

adaptive
generic

(a) (b)

Fig. 4. (a) Clustering performance of two pheromone algorithms as a network of 4000 nodes is
scaled in density. Time to complete cluster formation is independent of density. (b) A snapshot
of cluster formation at t = 19.0 s using the Adaptive algorithm; lightness indicates pheromone
strength (green dots added to emphasize cell edges).

DSR must explore new routes more often as λ is increased. Performance without LQE
is important because in the real world LQE is not free, especially in mobile or time-
fading environments.

Scalability. Our aim in this section is to demonstrate that a scalable application can
be constructed from our primitive. We chose multi-hop clustering and implemented
two versions using only VP for communication: generic and adaptive. Generic is based
loosely on LEACH [18], in which a cluster head probability, pch, controls cluster head

The Virtual Pheromone Communication Primitive 147

Algorithm 1. The behavior of a cluster member. All nodes initially take this behavior
and can change to cluster head (Algorithm 2) if no cluster head pheromones are present.

1: scents ⇐ SmellDistinct(′clustering pheromone′)
2: if scents is empty then
3: WAIT for snoop interval
4: behavior ⇐ ClusterHead
5: else
6: if two strongest scents are of equal strength then
7: my membership ⇐ EdgeMember
8: else
9: my membership ⇐ CellMember

10: end if
11: end if

Algorithm 2. The behavior of a cluster head. Note that behavior can change to cluster
member (Algorithm 1) if this cluster head loses an instant-runoff based on random
pheromone IDs (Line 5). The runoff avoids mutual simultaneous annihilation of cluster
heads.

1: my strength ⇐ 10 {10 hops}
2: my ID ⇐ random integer
3: scents ⇐ SmellDistinct(′clustering pheromone′)
4: if detect one or more cluster heads in scents then
5: if my scent random ID < strongest scent’s random ID then
6: behavior = ClusterMember
7: end if
8: else
9: Deposit(type=’clustering-pheromone’, strength=my strength, payload=my ID)

10: end if

formation. Adaptive effectively adapts pch distributedly at each node. Both algorithms
use a pheromone deposit to form clusters—the cluster head deposits a pheromone and
nodes choose cluster membership based on observed pheromone strengths.

We consider the algorithm complete when the mean cluster size has stabilized within
98% of its final value. The scalability of both algorithms is apparent in Figure 4; density
does not affect the time to completion. Both algorithms are scalable because of pher-
omones’ suppression mechanism—in a network twice as dense, twice as many nodes
will be suppressed during pheromone deposition.

Adaptive and Generic both stabilize at about t = 40 s and have similar mean transmis-
sion rates. Adaptive has a higher peak transmission rate, which may be a disadvantage
in some applications. Given the similar performance of the two algorithms, we feel that
Adaptive is superior because tuning of pch is not required. The Adaptive algorithm is
presented in code listings 1.

148 L. Szumel and J.D. Owens

5 Future Work

In future work it would be beneficial to examine the constants used in pheromone dis-
tribution and decay. Optimal η , the suppression constant, is likely to depend on the
specific MAC and PHY. Higher η means a greater packet overhead and potential for
collisions. Setting η too low will result in a lack of redundancy. In our experiments,
one global pheromone decay half-life was sufficient. We would like to explore the ben-
efit of allowing different half-life settings. Finally, local repair of the pheromone field
(e.g. when a node is added or wakes up from sleep), as in that proposed by Han et
al. [19], would drastically improve response time at a small overhead cost.

The VP API is designed around superposition but applications which utilize PAY-
LOAD need to read unique pheromones. Currently we uniquify the fields using PAY-
LOAD, but this can also be done by encoding a unique number into TYPE. The algo-
rithms in our case studies could be further simplified by offering common operations,
e.g.: “give me the n strongest pheromones matching this type”, or “give me the payload
of the strongest pheromone of this type.” The design and selection of these operations
is the topic of future work.

6 Conclusion

We have shown that VP addresses the needs of ELFS applications: efficiency, long-
life, fault-tolerance, and scalability. We compare our Pheromone algorithms to existing,
well-known point solutions for the following problems: dissemination, sleep schedul-
ing, and routing. In addition, a novel scalable clustering application is examined. In
every case, algorithms using VP attain comparable performance because they leverage
the abundance of lossy links in the RF environment rather than trying to avoid them.
Simultaneously, VP algorithms are simple to program and rely on a spartan API, which
creates a powerful common optimization point.

The key contribution of VP is that it builds a simple conceptual interface to the radio
that is consistent across a broad range of system parameters (e.g. density, node dropout
rate). Applications built using VP can be fault-tolerant without having to re-implement
custom error control mechanisms or having to rely on link quality estimators.

Our experience using VP is that applications must think about every communication
as a broadcast, and this encourages the programmer to utilize that fact. The programs we
developed are small (10–30 lines of Python code) and thus easier to understand. The use
of parameter “tuning” can make optimization difficult; in our opinion it is imperative to
design adaptive algorithms such as the clustering presented in Section 4.2.

References

1. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E., Culler, D.:
The emergence of networking abstractions and techniques in TinyOS. In: Proceedings of
the First USENIX/ACM Symposium on Networked Systems Design and Implementation.
(2004) 1–14

2. Goldsmith, A., Wicker, S.B.: Design challenges for energy-constrained ad hoc wireless net-
works. IEEE wireless communications 9(4) (2002) 8–27

The Virtual Pheromone Communication Primitive 149

3. Levis, P., Gay, D., Handziski, V., Hauer, J.H., Greenstein, B., Turon, M., Hui, J., Klues,
K., Sharp, C., Szewczyk, R., Polastre, J., Buonadonna, P., L.Nachman, G.Tolle, D.Culler,
A.Wolisz: T2: A second generation OS for embedded sensor networks. Technical Report
TKN-05-007, Telecommunication Networks Group, Technische Universität Berlin (2005)

4. Govindan, R., Kohler, E., Estrin, D., Bian, F., Chintalapudi, K., Gnawali, O., Rangwala,
S., Gummadi, R., Stathopoulos, T.: Tenet: An architecture for tiered embedded networks.
Technical Report 56, Center for Embedded Networked Sensing (2005)

5. Kuwana, Y., Shimoyama, I., Sayama, Y., Miura, H.: Synthesis of pheromone-oriented emer-
gent behavior of a silkworm moth. In: Proceedings of the International Conference on Intel-
ligent Robots and Systems. Volume 3. (1996) 1722–1729

6. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable coor-
dination in sensor networks. In: Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking, Seattle, Washington, USA, ACM (1999) 263–270

7. Faruque, J., Helmy, A.: RUGGED: routing on fingerprint gradients in sensor networks. In:
The IEEE/ACS International Conference on Pervasive Services. (2004) 179–188

8. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. In: Au-
tonomous Robots. (2001) 319–324

9. Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone learning for self-
organizing agents. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems
and Humans 35(3) (2005)

10. Brooks, R., Pirretti, M., Zhu, M., Iyengar, S.: Distributed adaptation methods for wireless
sensor networks. In: IEEE Global Telecommunications Conference. Volume 5. (2003) 2967–
2971

11. Szumel, L.: The agent high-level pythonic simulator. (2006) Work in progress.
12. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation of

entire TinyOS applications. In: Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems. (2003) 126–137

13. Szumel, L., LeBrun, J., Owens, J.D.: Towards a mobile agent framework for sensor networks.
In: Second IEEE Workshop on Embedded Networked Sensors. (2005) 79–87

14. Oyman, E.I., Ersoy, C.: Multiple sink network design problem in large scale wireless sensor
networks. In: Proceedings of the International Conference on Communications, Paris, France
(2004)

15. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In: Proceedings of First Sympo-
sium on Networked Systems Design and Implementation, San Francisco, CA (2004)

16. Ye, F., Zhong, G., Lu, S., Zhang, L.: PEAS: A robust energy conserving protocol for long-
lived sensor networks. In: 3rd International Conference on Distributed Computing Systems.
(2003)

17. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In Imielin-
ski, Korth, eds.: Mobile Computing. Volume 353. Kluwer Academic Publishers (1996)

18. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication pro-
tocols for wireless microsensor networks. In: International Conference on System Sciences,
Maui, HI (2000) 3005–3014

19. Han, K.H., Ko, Y.B., Kim, J.H.: A novel gradient approach for efficient data dissemination
in wireless sensor networks. In: Proceedings of the International Conference on Vehicular
Technology (VTC). (2004)

Logical Neighborhoods:
A Programming Abstraction
for Wireless Sensor Networks

Luca Mottola and Gian Pietro Picco

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
{mottola, picco}@elet.polimi.it

Abstract. Wireless sensor networks (WSNs) typically exploit a single base sta-
tion for collecting data and coordinating activities. However, decentralized archi-
tectures are rapidly emerging, as witnessed by wireless sensor and actuator net-
works (WSANs), and in general by solutions involving multiple data sinks, het-
erogeneous nodes, and in-network coordination. These settings demand new pro-
gramming abstractions to tame complexity without sacrificing efficiency. In this
work we introduce the notion of logical neighborhood, which replaces the physi-
cal neighborhood provided by wireless broadcast with a higher-level, application-
defined notion of proximity. The span of a logical neighborhood is specified
declaratively based on the characteristics of nodes, along with requirements about
communication costs. This paper presents the SPIDEY programming language for
defining logical neighborhoods, and a routing strategy that efficiently supports the
communication enabled by its programming constructs.

1 Introduction

Wireless sensor networks (WSNs) typically exploit a single base station for collecting
data and coordinating activities. Habitat monitoring [1], a common example applica-
tion, is paradigmatic in this respect, featuring a single base station collecting data from
a high number of homogeneous nodes. Nevertheless, decentralized architectures are
rapidly emerging where multiple base stations are employed, different applications run
on the same hardware, or heterogeneous nodes are deployed. These approaches find
their extreme realization in wireless sensor and actor networks (WSANs) [2], where
nodes not only gather data from the environment, but are also capable of affecting it by
performing a variety of actions. Applications range from localization to control systems
in tunnels or buildings, interactive museums, and home automation [3].

In contrast with mainstream WSNs, characterized by a single application gathering
and reporting data, these decentralized settings are composed of many collaborating
tasks, each affecting only a portion of the system. For instance, a WSAN for building
control and monitoring can be decomposed in at least three main tasks, i.e., structural
monitoring, in-door environment monitoring, and response to extreme events such as
fire or earthquakes [4]. To realize the latter functionality, the nodes controlling wa-
ter sprinklers must monitor nearby temperature sensors and smoke detectors and take
appropriate measures when and where needed. Therefore, the application logic now

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 150–168, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Logical Neighborhoods: A Programming Abstraction 151

resides in the network: including a central base station in the control loop degrades
system performance and reliability without any sensible advantage [2]. Dealing with
this change of perspective demands new programming abstractions to tame complexity
without sacrificing efficiency. Indeed, the developer is concerned not only with the ap-
plication logic, but also with identifying the system portions to be involved and how to
reach them. As no dedicated programming constructs exist for the latter task, the result
is additional programming effort, increased complexity, and less reliable code.

This work tackles the aforementioned issues through the notion of logical neighbor-
hood, an abstraction replacing the conventional notion of physical neighborhood—i.e.,
the set of nodes in the communication range of a given device—with a logical notion of
proximity determined by applicative information. Logical neighborhoods are specified
declaratively using the SPIDEY language, conceived to be a simple extension of exist-
ing WSN programming languages (e.g., nesC [5] in the case of TinyOS [6]). Using our
enhanced communication API, a message can be broadcast to a logical neighborhood,
instead of nodes within communication range. This way, application programmers still
reason in terms of neighborhood relations and broadcast messages, but can now specify
declaratively which nodes to consider as neighbors and, therefore, the span of com-
munication. As such, our abstraction may foster a fresh look at existing mechanisms,
algorithms, and programming models by replacing their conventional notion of physical
neighborhood with our programmer-defined, logical one.

Clearly, our programming abstraction is ultimately of practical interest only in the
presence of an appropriate and efficient routing mechanism supporting it. In princi-
ple, existing solutions can be exploited (e.g., [7]), but they exhibit various performance
drawbacks, as they are based on different assumptions and scenarios. Therefore, in this
paper we also present a novel routing protocol that is expressly devised to support our
abstraction and leverages the kind of localized interactions [8, 9] characterizing the
aforementioned decentralized scenarios. The evaluation included in this paper shows
that indeed this routing protocol efficiently supports logical neighborhoods, therefore
demonstrating the feasibility of our overall approach.

The rest of the paper is organized as follows. Section 2 describes the logical neigh-
borhood abstraction and the SPIDEY language. Section 3 illustrates the novel routing
strategy supporting our communication abstraction, while Section 4 evaluates its per-
formance. Section 5 compares our approach against related work. Finally, Section 6
ends the paper with brief concluding remarks.

2 Programming Constructs for Logical Neighborhoods

The proposed abstraction revolves around only two concepts: nodes and neighborhoods.
A (logical) node is the application-level representation of a physical node, and defines

which portion of its data and characteristics is made available by the programmer to the
definition of any logical neighborhood. The definition of a logical node is encoded in a
node template, which specifies the node’s exported attributes. This is used to instantiate
the (logical) node, by specifying the actual source of data. To make these concepts more
concrete, Figure 1 (top) shows a SPIDEY code fragment that defines a template for a
generic device and instantiates it by binding each template attribute to an expression of

152 L. Mottola and G.P. Picco

node template Device
static Function
static Type
static Location
dynamic Reading
dynamic BatteryPower

create node ts from Device
Function as "sensor"
Type as "temperature"
Location as "room1"
Reading as getTempReading()
BatteryPower as getBatteryPower()

neighborhood template HighTempSens(threshold)
with Function = "sensor" and

Type = "temperature" and
Reading > threshold

create neighborhood hts100
from HighTempSens(threshold : 100)
max hops 2
credits 30

Fig. 1. Sample node (top) and neighborhood (bottom) definition and instantiation

the target language, e.g., a constant or function. Template attributes can be static or
dynamic. The former represent information assumed to be time-invariant (e.g., the type
of measurement a sensor provides), while the latter represents information changing with
time, (e.g., the current sensor reading). The decision about whether an attribute is static
or dynamic depends on the deployment scenario. Making the distinction explicit may
enable optimizations at the routing layer, as discussed in Section 3.

A (logical) neighborhood is the set of nodes satisfying a constraint on the nodes’
attributes. As with nodes, the definition of neighborhoods is encoded in a template,
which contains a predicate that essentially serves as the membership function deter-
mining whether a node belongs to the logical neighborhood. For instance, the neigh-
borhood template HighTempSens at the bottom of Figure 1 is based on the Device
template in the same figure, and selects nodes that host temperature sensors and are
currently reading a value higher than a given threshold. As exemplified in the SPIDEY

code fragment, a neighborhood template can be parameterized, with the actual param-
eter values provided by expressions of the target language upon neighborhood instan-
tiation. Moreover, the instantiation of a neighborhood template specifies additional re-
quirements about where and how the neighborhood is to be constructed and maintained.

Fig. 2. A visualization of logical neighborhoods

Logical Neighborhoods: A Programming Abstraction 153

For instance, Figure 1 specifies that the predicate defined in the HighTempSens tem-
plate is evaluated only on nodes that are at a maximum of 2 hops away and by spend-
ing a maximum of 30 “credits”. The latter is an application-defined measure of cost,
further detailed next, which enables the programmer to retain some control over the
resources being consumed during the distributed processing necessary to deliver mes-
sages to members of a logical neighborhood. A pictorial representation of the example,
visualizing the logical neighborhood concept, is provided in Figure 2. There, the black
node is the one defining the logical neighborhood, and its physical neighborhood (i.e.,
nodes lying in its direct communication range) is denoted by the dashed circle. The dark
grey nodes are those satisfying the predicate in the neighborhood template in Figure 1
(bottom) when the threshold is set to 100oC. However, the nodes included in the actual
neighborhood instance hts100 are only those lying within 2 hops from the sending
node, as specified through the hops clause during instantiation.

In essence, as graphically illustrated

Fig. 3. Templates and their instantiation

in Figure 3, templates define what data
is relevant to the application, while the
instantiation process constrains how this
data should be made available by the un-
derlying system. Separating the two per-
spectives has several beneficial effects.
The same template can be “customized”
through different instantiations. For in-
stance, the very same template at the
bottom of Figure 1 could be used to
specify a logical neighborhood with a different threshold or a different physical span.
Moreover, this distinction naturally maps on an implementation that maintains a neigh-
borhood by disseminating its template to be evaluated against the values exported by a
node instance, and uses instead the additional constraints specified at instantiation time
to direct the dissemination process.

SPIDEY provides additional simple and yet expressive constructs. Logical opera-
tors such as and, or, and not are provided to define complex predicates on node
templates. Moreover, as logical neighborhoods essentially identify sets of nodes, it be-
comes natural to express a neighborhood as a composition with already existing ones,
using conventional set operators such as union, intersection, subtraction, and inclusion.
Finally, the SPIDEY language contains also features enabling the creation of virtual
nodes, built by binding node attributes to aggregation functions operating on a logical
neighborhood. Virtual nodes spare programmers from the burden of directly handling
the communication needed to gather and aggregate data from the neighborhood mem-
bers, and can be used recursively to create higher-level abstractions. More details can be
found in [10]. The complete grammar of the SPIDEY language is shown in Appendix A.

Our language also provides the ability to control the cost involved in communicating
towards a neighborhood, through the credits clause. Communication cost is defined
in terms of the basic operation of sending a broadcast message to physical neighbors
(the node’s sending cost), and is measured in credits. The mapping between cost and
credits is specified by the programmer on a per-node basis through a use cost con-

154 L. Mottola and G.P. Picco

struct, which delegates the computation of this mapping to an expression of the target
language, e.g., a function. Therefore, the programmer can define a vast array of map-
pings, from a straightforward one where the sending cost is fixed, to sophisticated ones
where it varies dynamically to adapt to context changes (e.g., low battery power). More-
over, different nodes can have different functions, e.g., yielding higher costs for tiny,
battery-powered sensors, and lower costs for resource rich, externally-powered nodes.
The overall number of credits necessary to communicate with the members of a logical
neighborhood is evaluated as the sum of the costs incurred in by each node involved
in routing, with each individual cost evaluated according to the function specified in
the use cost declaration. Therefore, the ability to set the maximum amount of cred-
its spent in communication in a logical neighborhood enables programmers to exploit
different trade-offs between accuracy and costs. Neighborhoods endowed with many
credits ensure a broader coverage but incur higher costs, while those with few credits
may not reach all the specified nodes but limit resource consumption.

Logical neighborhoods must ultimately be used in conjunction with communication
facilities, to enable interaction with the neighborhood members. On the other hand, the
notion of logical neighborhood is essentially a scoping mechanism, and therefore is in-
dependent from the specific communication paradigm chosen. For instance, one could
couple it with the tuple space paradigm to enable tuple sharing and access only within
the realm of a logical neighborhood. In our current communication API we took the
minimalist—and yet most general—approach of coupling logical neighborhoods with
the standard broadcast-based message passing facility found in WSNs. As a result, our
API includes simple send and receive operations mimicking those provided by the
underlying operating system. For instance, our TinyOS implementation redefines the
operations in the GenericComm module by extending the send operation with an
additional parameter representing the logical neighborhood where a message must to
be delivered, i.e., the scope of that particular message. Essentially, we are replacing the
broadcast facility commonly made available by the operating system with one where
message recipients are not determined by the physical communication range, rather
by membership in a programmer-defined logical neighborhood. In addition, a reply
primitive is also included to simplify communication from neighborhood members back
to the message sender. To enable this degree of generality and flexibility, it is funda-
mental for our abstraction and API to be supported by efficient routing strategies. A
description of our solution to the routing problem is described in the next section.

3 Routing for Logical Neighborhoods

The logical neighborhood abstraction is essentially independent of the underlying rout-
ing layer. Nevertheless, its characteristics cannot be easily accommodated by existing
data-centric routing approaches. Indeed, these are usually conceived to solve the prob-
lem of data collection from a homogeneous nodes, thus focusing on how to collect
efficiently the data from many sensors to a single node—the sink. In our approach the
perspective is reversed: routing must efficiently transmit an application message from a
single node (the sender) to those matching the neighborhood specification. Moreover,
logical neighborhoods are a scoping mechanism, and therefore can be used in conjunc-

Logical Neighborhoods: A Programming Abstraction 155

tion with several mechanisms other than data collection, e.g., to direct code updates
only towards nodes with obsolete versions. As such, some of the techniques exploited
by these protocols (e.g., route reinforcement based on data rates as in [7]) not only can-
not be directly applied, but are actually complementary to ours. Moreover, our goal is to
devise a protocol that captures the localized interactions that should characterize com-
munication in decentralized, multi-sink WSNs and WSANs. This rules out solutions
exploiting system-wide tree overlays as in TinyDB [11]. Finally, credit management is
a distinctive feature of our approach that would anyway require appropriate integration.

Motivated by these considerations, this section describes a routing strategy designed
to support efficiently and effectively the logical neighborhood abstraction. Our routing
approach is structure-less (i.e., no overlay is explicitly maintained) and is based on the
notion of local search [12]. Nodes advertise their profile, i.e., the list of attribute-value
pairs specified by their template, and in doing so build a distributed state space containing
information about the cost of reaching a node with given data. This information dissemi-
nation is localized and governed by the density of devices with similar profiles. Messages
sent to a neighborhood contain its template, which determines a projection of the state
space, i.e., the part to be considered for matching. In a nutshell, the message “navigates”
towards members of a neighborhood by following paths along which the cost associ-
ated with a given neighborhood template is decreasing. The proposed routing approach
is therefore composed of two parts: the state space generation and the search algorithm.

3.1 Building the State Space

In our scheme, whenever a new node is added to the system it broadcasts a PRO-
FILEADV message containing the node identifier, a (logical) timestamp, the node’s
profile containing attributes and their values, and a cost field initialized to zero. The
first two message fields are used to discriminate stale information, as the PROFILEADV

message is periodically re-broadcast (possibly with different content) by the node. An
example PROFILEADV is reported in Figure 4.

In addition, each node in the system stores Source Timestamp Node Profile Cost
Attribute Value

Function sensor
N54 72 Type temperature 2

Location room123

Fig. 4. An example of PROFILEADV

a State Space Descriptor (SSD) containing a
summary of the received PROFILEADV mes-
sages. An example is shown in Figure 5. The
Attribute and Value fields store information
previously received through a PROFILEADV

message. For each entry, Cost contains the
minimum cost to reach a node with the corresponding information, and Source contains
the identifier of such node. The Links field allows to store information more compactly,
by retaining associations among entries instead of duplicating them in the SSD. In Fig-
ure 5 each entry is linked to the others as they all come from the same PROFILEADV

advertised by node N8. DecPath and IncPaths contain routing information to direct the
search process, as described in Section 3.2. Finally, each entry in an SSD is associated
with a lease (not shown), whose expiration causes the removal of the entry not refreshed
by a new PROFILEADV.

Upon receiving a PROFILEADV message, a node first updates the cost field in the
message by adding its own sending cost, obtained by evaluating the expression in the

156 L. Mottola and G.P. Picco

Id Attribute Value Cost Links DecPath IncPaths Source

1 Function sensor 5 2,3 N37 N98, N99 N8
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 5 1,2 N37 N98, N99 N8

Fig. 5. An example of State Space Descriptor (SSD)

use cost statement described in Section 2. Then, it compares each attribute-value
pair in the message against the content of the local SSD. A modification (entry inser-
tion or update) of the SSD is performed if an attribute-value pair: i) does not exist in
the local SSD, or ii) it exists with a cost greater than the one in the message (after the
local update above). The update (or insertion) of an SSD entry involves establishing the
proper values in the Links field to keep track of the rest of the PROFILEADV message,
updating the DecPath field with the identifier of the physical neighbor that sent the
PROFILEADV, and setting the Source field to the identifier of the node whose informa-
tion has been inserted in the PROFILEADV. For instance, assume the node storing the
SSD in Figure 5 has a sending cost of 1, and receives the PROFILEADV in Figure 4. Its
local SSD is then updated as described in Figure 6 (changes shown in bold). Note how
the Links fields are updated so that only the minimum cost to reach an entry is kept, and
yet the information about which entry came with which profile is not lost.

After a PROFILEADV has been processed locally, it is rebroadcast only if at least one
SSD entry was inserted or updated, to propagate the state change. An example is shown
in Figure 7(a). The PROFILEADV is rebroadcast as received, except for the updated Cost
and Source fields. Interestingly, the propagation of PROFILEADV messages enables a
node to determine if it lies, for some attribute-value pair, on a path where costs are
increasing. This occurs when a PROFILEADV is overheard, through passive listening,
with a cost greater than the corresponding pivot entry in the SSD. In this case, the
identifier of the broadcasting node is inserted in the IncPaths field of the pivot entry.

Thus far, we assumed that PROFILEADV messages contain the whole node profile.
Nevertheless, if some dynamic attribute changes frequently, there is a trade-off between
the network load necessary to refresh the advertisements and the accuracy of the infor-
mation being propagated. A straightforward alternative approach is to disseminate only
part of the profile (e.g., static attributes) and perform additional matching at the receiver.
These trade-offs are ultimately solved based on the characteristics of the deployment
scenario, e.g., by considering information about the size of the logical neighborhood or
the network density.

Finally, note how, as shown in Figure 7(a), profile advertisements do not flood the
entire network, as a PROFILEADV is rebroadcast only upon an SSD update. Flooding
occurs only for the first advertisement, or more generally when only one node contains

Id Attribute Value Cost Links DecPath IncPaths Source

1 Function sensor 3 3,4 N77 N98, N99 N54
2 Type acoustic 5 1,3 N37 N98, N99 N8
3 Location room123 3 1,4 N77 N98, N99 N54
4 Type temperature 3 1,3 N77 - N54

Fig. 6. The SSD of Figure 5 at a node with a sending cost of 1, after receiving the PROFILEADV

message in Figure 4

Logical Neighborhoods: A Programming Abstraction 157

a given attribute-value pair—a rather unusual case in the scenarios we target. Instead,
for a given set of attribute-value pairs, the state space generation builds a set of non-
overlapping regions, each containing a node with the considered information. Within a
region, each node knows how to route a message addressed to a neighborhood template
that includes attributes matching those of a node, along the routes stored in DecPath.
Each region can be regarded as a “concavity” defined by costs in SSDs, with the target
node at the bottom (cost to reach it is zero) and nodes with increasing costs around it.
This is illustrated in Figure 7(b), where we show the SSDs after all the nodes performed
at least one profile advertisement. Next we describe how this distributed state space is
exploited for routing.

3.2 Finding the Members of a Logical Neighborhood

Local search procedures proceed step by step with subsequent moves exploring the
state space [12]. At each step, a set of further local moves is available to proceed in
the search process. Among them, some moves are accepted and generate further moves,
while the remaining ones are simply discarded. In general, accepting moves depends on
the heuristics one decides to employ given the particular problem tackled. In our case,
a move is simply the sending of an application message containing the neighborhood
template. Upon receiving a message, the move is accepted and further send operations
are performed if the maximum number of hops, if any, has not been reached (as per the
hops construct), and either i) the move proceeds along a decreasing path, or ii) enough
unreserved credits are available on an exploring path. The notions of decreasing path,
exploring path and credit reservation are at the core of our routing solution and are
described next.

Decreasing paths. A path is decreasing if it gets the message closer to nodes whose
profile matches the neighborhood template. To do so, message proceeds towards min-
ima of the state space by traversing nodes that report an always smaller cost to reach a
potential neighborhood member.

To determine decreasing paths, a node must identify the state space projection de-
termined by a neighborhood template. To this end, the node finds in the local SSD
the entry matching the neighborhood template with the greatest cost, if any. This en-
try is called pivot. If a pivot exists and is associated, via the SSD Links field, to a
set of other entries matching the neighborhood template, the cost associated to the
pivot represents the number of credits needed to reach the closest matching node via
the path indicated by the DecPath field. For instance, imagine the application issues a
send(m,n) operation through our enhanced communication API, to send the applica-
tion message m to the neighborhood n, and assume n is defined to address all acoustic
sensors. This neighborhood has its pivot in entry 2 of the SSD in Figure 6, and its pred-
icate (Function = sensor and Type = acoustic) is matched via the link pointing
from entry 2 to entry 1. Consequently, the node evaluates the cost to reach the closest
acoustic sensor as 5 and forwards the message towards N37. Due to the state space
generation process, messages following a decreasing path are certainly forwarded to-
wards nodes matching the neighborhood template. Indeed, these paths simply follow
the reverse paths previously setup by PROFILEADV messages originating from nodes
whose profile contains information matching the neighborhood template. Additionally,

158 L. Mottola and G.P. Picco

(a) Building the state space (time goes from left to right). Arrow labels denote send-
ing of PROFILEADV messages, showing only the attribute-value (e.g., A a), and
Cost fields. SSDs are shown with only attribute-value, Cost and DecPath fields. Af-
ter N1 disseminated its profile, N5’s PROFILEADV need not be propagated system-
wide, but only where updates in SSDs are needed to make its presence known.

(b) After all the nodes performed at least
one profile advertisement, the SSDs con-
tain the costs to reach the closest node
with a given attribute-value pair.

(c) A message navigating the state space:
dashed lines represent exploring di-
rections, solid lines denote decreasing
paths. Arrow labels represent application
messages showing only the unreserved
credits and the intended recipient.

Fig. 7. Building and navigating the state space

note how the reply feature provided by our communication API can be implemented
trivially by keeping track of the reverse path along which a message is received.

Exploring paths. If a message were to follow decreasing paths only, it would easily get
trapped into local minima of the state space. To avoid this, we allow messages to be prop-
agated also along exploring paths, i.e., directions where the cost to reach the closest node
with a particular attribute-value pair is non-decreasing. Exploring paths include direc-
tions where the cost does not change (e.g., at the border between two regions) or where
it increases. The latter are stored in the IncPaths SSD field, as discussed in Section 3.1.

Logical Neighborhoods: A Programming Abstraction 159

Activating multiple exploring paths at each hop is ineffective, as it is likely to gen-
erate many routes that are shortly after rejoined. Therefore, exploration proceeds along
a single increasing path, if available. Exploration on multiple paths, achieved through
physical broadcast, is activated only when the message reaches a neighborhood member
(i.e., a minima of the state space), or after the message has travelled for E hops, with E
being a tunable protocol parameter. This design choice stems from the observation that
increasing paths are key in enabling the message to “escape” local minima by directing
it towards the boundary where a region confines with a different one, and a different
decreasing path may become available.

Credit reservation. The instantiation of a neighborhood template may specify the cred-
its to be spent for communicating with neighborhood members, as discussed in Sec-
tion 2. To support this feature, the number of credits is appended by the sender to every
application message sent to a given neighborhood. A node may decide to split these
credits in two: one part reserved to be spent along decreasing paths and the other along
exploring ones. The splitting occurs at the first node that identifies a decreasing path
for the message being routed, and is effected by removing the reserved credits from
the amount in the message, therefore effectively reserving the credits along the entire
decreasing path. For instance, Figure 7(c) shows a message sent by N5 with 6 credits,
targeting a neighborhood defined by a single predicate C = c. Neighborhood members
are shown in white. As the pivot in N5’s SSD reports a cost of 2 to reach the node N3
matching the predicate, the message is forwarded to N3 with 4 unreserved credits.

To deal with credit reservation, a node checks whether its identifier is inserted in the
message by the sender node as the next hop along a decreasing path towards a matching
node. If so, the node simply forwards the message to the next hop on the decreasing path
(found in its SSD) without modifying the credit field, since the necessary credits have al-
ready been reserved by the first node on the decreasing path. Otherwise, if exploring paths
are to be followed, the node “charges” the message for the number of credits associated
to the node sending cost, as per the use cost declaration. The remaining (unreserved)
credits are assigned to the exploring paths the local node decides to proceed on. Normally,
all these credits are assigned to the single message forwarded along the increasing path.
However, if multiple paths are explored in parallel through broadcast, according to the
heuristics described above, the unreserved credits are divided by the number of neighbors
before broadcasting the message. In Figure 7(c), N3 receives a message with 4 remaining
credits. Since it is a neighborhood member, the message must be broadcast along all the
available exploring paths. Therefore, N3 charges the message for its own sending cost (2)
and divides the remaining credits by the number of its physical neighbors. This results in
activating two exploring directions, each with a 1-credit budget.

4 Evaluation

This section reports about an evaluation of our routing protocol for logical neighbor-
hoods. To this end, we implemented it on top of TinyOS [6] and evaluated it using
the TOSSIM [13] simulator. Our goals were to verify that the protocol behaved as ex-
pected for what concerns the generation of the state space and the cost-aware routing
of messages, and to characterize its performance. Clearly, this is key to assess the fea-

160 L. Mottola and G.P. Picco

Fig. 8. State space generation. The first PROFILEADV message spreads throughout the system
as no node disseminated its profile yet. Profiles advertised by other nodes propagate only un-
til a smaller cost is encountered, partitioning space in regions centered on neighborhood mem-
bers. Note how the white node does not receive the message in the first propagation—due to
collisions—but eventually receives it in later retransmissions.

sibility of our approach and abstraction. The deployment scenario we simulated is a
grid where each node can communicate with its four neighbors. This choice not only
simplifies the interpretation of results by removing the bias induced by more unstruc-
tured scenarios, but also models well some of the settings we target, e.g., indoor WSN
deployments [14].

Analyzing the Routing Behavior. Before characterizing the performance of our rout-
ing protocol, we analyze whether its behavior matches our design criteria. First, we
verify separately the two basic mechanisms underlying our routing, i.e., the state space
generation and its “navigation” by applicative messages addressed to a logical neigh-
borhood. As for the former, the key property we want to verify is that the propagation
of PROFILEADV messages is localized and partitions the system in non-overlapping
regions, each with routing information towards a neighborhood member.

To simplify the analysis of results we developed a simple visualization tool that,
given a simulation log and a neighborhood template, displays the propagation of PRO-
FILEADV as well as applicative messages. Figure 8 shows a sample output of our tool
where the logical neighborhood we consider selects three members (represented as cir-
cled nodes) based on their profiles, and the node sending cost is equal for all devices.
The three snapshots correspond to the points in time when a given PROFILEADV, gen-
erated by one of the neighborhood members, has ceased to propagate. As it can be
observed, the first PROFILEADV is propagated in the whole system, as no other profile
information exists yet. However, when the second member propagates its profile, this is
spread only until it reaches a node where the cost is less than the one in PROFILEADV.
This process partitions the state space in two non-overlapping regions. Eventually, the
system reaches a stable situation where the number of regions is equal to the number of
neighborhood members, as shown in Figure 8—right.

For what concerns routing of applicative messages, Figure 9 shows the output of
our visualization tool when a message is sent to the same neighborhood of Figure 8.
The credits associated to the neighborhood are set as an over-approximation of the
credits needed to reach the same three nodes along the shortest path. (More details
about setting credits are reported later.) Note how the one in the picture is a worst-case

Logical Neighborhoods: A Programming Abstraction 161

scenario where the sender belongs to the same neighborhood the message is addressed
to. In this situation, the message starts from a minimum of the state space, i.e., without
any decreasing path. Therefore, the initial moves must be exploring ones, until a region
different from the one where the message originated is reached. Despite this unfavorable
initial situation, the message reaches all the intended recipients by alternating moves
along decreasing paths with exploration steps.

The effectiveness of our mechanisms in reduc-

Fig. 9. An applicative message nav-
igates the state space. Solid lines are
decreasing paths, dashed lines are
exploring paths.

Fig. 10. A message navigating a
state space where sending costs fol-
low the distribution at the bottom

ing communication costs is unveiled when hetero-
geneous devices with different sending costs are de-
ployed. Figure 10 shows a situation with a single
neighborhood member and a message sender placed
at the opposite corners of the grid, and where send-
ing costs are assigned according to an integer ap-
proximation of a bi-dimensional Gaussian distribu-
tion. The figure shows the message dutifully steer-
ing away from the network center, where sending
costs are higher, and striking a balance between the
length of its route and the sending cost of the no-
des on it. Thanks to the way our state space is gen-
erated through profile advertisements and SSD up-
dates, this path is guaranteed to be, within a region,
the one with the minimum cumulative sending cost.

Performance Characterization and Comparative
Evaluation. Next, we wanted to study the perfor-
mance of our protocol. Therefore, we defined a set
of synthetic scenarios with a variable number of no-
des placed 35 ft apart and with a communication
range1 of 50 ft. Each run lasted 1000 s—a value for
which we verified all the measures exhibit a variance
less than 1%. In dynamic scenarios, this approach
provides more precise results than only averaging
over multiple runs [15].

Each node is configured with a single (static) at-
tribute whose value is randomly chosen from a prede-
fined set A at system start-up. This profile is dissem-
inated by PROFILEADV messages once every 15 s. A
single sender node is placed in the center of the grid,
generating applicative messages at the rate of 1 ms-
g/s towards a single neighborhood defined with an
equality predicate over the node profiles. In this set-
ting, the number of receivers is determined by |A|,
and in our case yields a number of neighborhood members of about 10% of the nodes
in the system. The node sending cost is constant and identical throughout the system.

1 We used the TinyOS’ LossyBuilder to generate topology files with transmission error
probabilities taken from real testbeds.

162 L. Mottola and G.P. Picco

Credits are assigned by computing the average cost to reach each node in the system
along the shortest path and weighing this value by the probability of the node being a
receiver. Then, we increased this minimal value by about one third, to give each message
some extra credits to spend on exploratory paths. This approach clearly overestimates
the actual cost to reach a receiver, e.g., because it does not consider that two receivers
may share part of the path from the sender. The definition of a model supporting fine-
tuning of credit assignment to neighborhoods deserves further investigation based on
the large body of literature on ad-hoc network density and random graph theory, and is
our immediate research goal.

In the absence of directly applicable solutions to compare against, we chose a gossip
approach as a baseline, because it is general enough to address the characteristics of our
scenarios (e.g., lack of knowledge about the nature of applicative data) and yet generates
less traffic than a straightforward flooding protocol. We set the protocol parameters so
that gossip rebroadcasts a packet received for the first time with a probability P = 0.75,
and our solution triggers new exploring directions once every E = 4 hops. This latter
choice is a reasonable trade-off between generating too many redundant exploratory
paths (E too small) and never activating exploratory paths within a region (E > d, with
d the region diameter).

We based our evaluation on three metrics, namely i) the message delivery ratio,
defined as the ratio between the messages received by neighborhood members and those
that have actually been sent; ii) the network overhead, defined as the overall number of
messages exchanged at the MAC layer, thus including PROFILEADV messages; and
(iii) the average number of nodes involved in routing. This figure is further divided
into the nodes processing a message at the MAC layer, and those processing one at
the application layer. Message delivery is a measure of how effectively a protocol steers
messages towards the intended recipients. On the other hand, in the absence of a precise
model to evaluate a node’s power consumption, ii) and iii) provide a sense of how a
protocol exploits communication and computational resources, respectively.

Figure 11 illustrates our simulation results along the aforementioned metrics and
w.r.t. the network size. Each chart is the average result of 5 different runs. As it is clear
from the figures, our protocol outperforms gossip in all metrics. Message delivery is
consistently higher than in gossip, and is even significantly less sensitive to an increase
of the network size. As for network overhead, we provide additional insights by show-
ing the results for our protocol with and without PROFILEADV advertisements, and by
comparing against the ideal lower bound provided by routing along the minimum span-
ning tree rooted at the sender and connecting all neighborhood members (computed
with a global knowledge of network topology). The chart evidences that we generate
almost half of the overhead of gossip and yet deliver significantly more messages. The
gap between the two is even more evident in the curve without the PROFILEADV mes-
sages, which essentially highlights how efficient is the pure routing mechanism, once
the routing information is in place. This is particularly significant because the dissem-
ination of PROFILEADV during state space generation is a fixed cost that is paid once
and for all. In other words, adding another sender—regardless of the neighborhood it
addresses—does not increment the overhead due to state space generation. In addition,
the chart shows how the performance of our protocol in this case is closer to the ideal

Logical Neighborhoods: A Programming Abstraction 163

N
od

es
In

vo
lv

ed
N

et
w

or
k

O
ve

rh
ea

d
M

es
sa

ge
D

el
iv

er
y

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
ra

tio

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

O
ve

rh
ea

d
(t

ho
us

an
ds

 o
f m

es
sa

ge
s)

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4
Spidey Routing E=4 (excluding ProfAdv)
Minimum Spanning Tree

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

%
 n

od
es

 in
vo

lv
ed

 in
 a

 m
es

sa
ge

 s
en

d

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4 (physical layer)
Spidey Routing E=4 (application layer)
Minimum Spanning Tree (physical layer)
Minimum Spanning Tree (application layer)

(a) Static Network

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
ra

tio

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

O
ve

rh
ea

d
(t

ho
us

an
d

of
 m

es
sa

ge
s)

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4
Spidey Routing E=4 (excluding ProfAdv)
Minimum Spanning Tree

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400

%
 n

od
es

 in
vo

lv
ed

 in
 a

 m
es

sa
ge

 s
en

d

Network Size

Gossip Propagation P=0.75
Spidey Routing E=4 (physical layer)
Spidey Routing E=4 (application layer)
Minimum Spanning Tree (physical layer)
Minimum Spanning Tree (application layer)

(b) Dynamic Network (failures)

Fig. 11. Evaluation against gossip and ideal multicast, in static and dynamic scenarios

lower bound than to gossip. Finally, for what concerns the nodes involved in process-
ing, Figure 11 shows that our performance at MAC layer is in between gossip and the
minimum spanning tree, while at the application layer our routing requires only about
half of the nodes exploited by gossip to process application messages and exhibits a
performance closer to the minimum spanning tree. Therefore, our protocol is likely to
provide a considerably longer network lifetime, although a precise characterization of
the energy consumption is beyond the scope of this paper. This result is due to our
guided exploration process, which privileges unicast messages (that, unlike broadcast,
do not reach the application layers at all nodes in range), thus saving processing. In
contrast, gossip explores the system in a completely “blind” way.

As shown in the right column of Figure 11, the evaluation was carried out also in a
more dynamic scenario where 10% of the nodes are randomly turned off for 30 s and

164 L. Mottola and G.P. Picco

then reactivated without allowing any settling time in between. Clearly, we excluded
from this random selection the intended message recipients, as this would irremediably
impact the message delivery ratio. A similar setting has already been used in existing
works on routing for WSNs (e.g. [7]) to simulate node failures or the addition of new
nodes. As Figure 11 shows, our protocol still provides higher delivery than gossip at
lower communication and computational costs, despite node failures. In particular, al-
though nodes joining or leaving the system generate additional profile advertisements
to change the shape of the state space, the network overhead remains far from the one
of gossip. This result is due to the ability of the state space to change its shape very
rapidly in response to network topology changes. For instance, a single PROFILEADV

message dissemination among nodes in close proximity to the changing one is usually
all it is needed to restore a stable situation.

Finally, the results illustrated in this section should be regarded as worst-case. In-
deed, not only the credit assignment can likely be fine-tuned to waste less resources,
but also our choice of neighborhood predicates (single disjuncts) is restrictive. Indeed,
it forces each message to follow at most a single decreasing path at a time: neighbor-
hood templates containing multiple elementary disjuncts instead can be routed more
accurately by exploiting multiple decreasing paths, therefore further increasing deliv-
ery. Moreover, setting uniform costs throughout the system does not leverage the ability
of our protocol to route in a cost-aware fashion. Nevertheless, we chose these settings
to be fair to gossip, which does not provide these advanced capabilities.

5 Related Work

Only few works propose distributed abstractions for WSNs that support some notion of
scoping. Moreover, unlike the strongly decentralized scenarios we target in this work,
many assume a single data sink.

The work closer to ours is the neighborhood abstraction described in Hood [16],
where each node has access to a local data structure where attributes of interest pro-
vided by (physical) neighbors are cached. However, only homogeneous nodes are as-
sumed. Moreover, data collection is built into the constructs and therefore, as stated
in Section 3, communication is expected to flow only according to a many-to-one
paradigm. Finally, the current implementation considers only 1-hop neighbors and is
mainly based on broadcasting all attributes and performing filtering on the receiver’s
side. Clearly, our framework is much more flexible as it provides a general application-
defined neighborhood abstraction, which is decoupled from the application function-
ality and therefore can be used for purposes other than data collection (e.g., network
reprogramming), as well as in conjunction with it to support efficiently heterogeneous
scenarios.

The work on Abstract Regions [17], instead, proposes a model where <key,value>
pairs are shared among the nodes belonging to a given region. The span of a region is
based mainly on physical characteristics of the network (e.g., physical or hop-count dis-
tance between sensors), and its definition requires a dedicated implementation. There-
fore, each region is somehow separated from others, and regions cannot be combined.
This results in a much lower degree of orthogonality and flexibility with respect to

Logical Neighborhoods: A Programming Abstraction 165

our approach. Moreover, the concept of tuning interface provides access to a region’s
implementation, enabling the tweaking of low-level parameters (e.g., the number of
retransmissions). Instead, our approach provides a higher-level, user-defined notion
of cost that can be used to control resource consumption. In TinyDB [11], materi-
alization points create views on a subset of the system. In this sense, common to
our work is the effort in providing the application programmer with higher-level net-
work abstractions. However, the approach is totally different, as TinyDB forces the
programmer to a specific style of interaction (i.e., a data-centric model with SQL-
like language) and targets scenarios where a single base station is responsible for co-
ordinating all the application functionality. SpatialViews [18] is a programming lan-
guage for mobile ad-hoc networks where virtual networks can be defined depending
on the physical location of a node and the services it provides. Computation is dis-
tributed across nodes in a virtual network by migrating code from node to node. Com-
mon to our work is the notion of scoping virtual networks provides. However, Spa-
tialViews targets devices much more capable than ours, focuses on migrating com-
putation instead of supporting an enhanced communication facility as we do, and yet
provides less general abstractions. Finally, in [19], the authors propose a language
and algorithms supporting generic role assignment in WSNs with an approach that,
in a sense, is dual to ours. In fact, their approach imposes certain characteristics on
nodes in the system so that some specified requirements are met, while in our ap-
proach the notion of logical neighborhood selects nodes in the system based on their
characteristics.

As for our routing protocol, we were influenced by Directed Diffusion [7] in using a
soft-state approach based on periodic refresh for storing routes. However, our solution
is radically different as it targets much more general scenarios. We do not assume data
collection as the main communication functionality, and therefore we cannot rely on
any knowledge about message content, required in Directed Diffusion for interpolation
along failing paths. Similarly, we take into account an explicit notion of communication
cost without relying on an application-defined notion of data rate. Moreover, an impor-
tant difference is that our profile advertisements do not propagate to the whole network,
unlike interests in Directed Diffusion. Finally, routing in Directed Diffusion is entirely
determined by gradients, while we make the system more resilient to changes by allow-
ing exploratory steps, whose use is nevertheless under the control of the programmer
through the credit mechanism.

6 Conclusions and Future Work

This paper presented the SPIDEY language and a routing protocol supporting logical
neighborhoods, a novel programming abstractions for WSNs. Logical neighborhoods
capture sets of nodes with functionally related characteristics. SPIDEY constructs en-
able the programmer to specify neighborhoods declaratively, and yet control the trade-
off between accuracy and resource consumption using an application-defined notion of
cost. This latter information is used by our dedicated routing protocol, which supports
efficiently our abstraction.

166 L. Mottola and G.P. Picco

The benefits of our proposal impact two orthogonal aspects. First, developers can
concentrate on the actual application goals while relying on logical neighborhoods as a
way to logically partition the system and interact with it. We conjecture that applications
built on top of our abstraction result in cleaner, simpler, and more reusable implemen-
tations. A qualitative and quantitative evaluation of the advantages our approach brings
to the development task is currently being carried on. Second, our routing protocol
achieves a longer system lifetime and a better resource utilization, by focusing only on
the nodes that actually need to be involved.

In this paper, we coupled logical neighborhoods with the broadcast-based primitives
typically provided by the operating system. As we pointed out, this choice simplifies
the programmer’s task, and opens up opportunities for adapting existing techniques
by replacing physical with logical neighborhoods. Our future research goals involve
the coupling of logical neighborhoods with different services (e.g., to support code
deployment only in given portions of the system) as well as alternative communica-
tion paradigms. In particular, we plan to integrate logical neighborhoods with our tuple
space middleware TINYLIME [20] supporting scenarios with multiple mobile sinks, to
empower sinks with the ability to restrain data sharing to the desired set of nodes. In-
terestingly, this scenario is easily encompassed by our routing protocol, as routes are
determined by the profiles of (static) sensors rather than the requests of (mobile) sinks.
Finally, our immediate research goal is to devise an analytical model of our routing
protocol, to provide the programmer with the ability to properly dimension the allo-
cated credits based on the characteristics of the network, e.g., in terms of density and
connectivity.

Acknowledgements. The work described in this paper is partially supported by the
Italian Ministry of Education, University, and Research (MIUR) under the VICOM
project, by the National Research Council (CNR) under the IS-MANET project, and by
the European Union under the IST-004536 RUNES project.

References

1. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: Proc. of the 1st ACM Int. Workshop on Wireless sensor
networks and applications. (2002) 88–97

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges.
Ad Hoc Networks Journal 2(4) (2004) 351–367

3. Petriu, E., Georganas, N., Petriu, D., Makrakis, D., Groza, V.: Sensor-based information
appliances. IEEE Instrumentation and Measurement Mag. 3 (2000) 31–35

4. Dermibas, M.: Wireless sensor networks for monitoring of large public buildings
(2005) Tech. Report, University of Buffalo. Available at www.cse.buffalo.edu/
tech-reports/2005-26.pdf.

5. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language: A
holistic approach to networked embedded systems. In: Proc. of the ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI’03). (2003) 1–11

6. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: ASPLOS-IX: Proc. of the 9nt Int. Conf. on Architectural
Support for Programming Languages and Operating Systems. (2000) 93–104

Logical Neighborhoods: A Programming Abstraction 167

7. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion
for wireless sensor networking. IEEE/ACM Trans. Networking 11(1) (2003) 2–16

8. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable co-
ordination in sensor networks. In: Proc. of the 5th Int. Conf. on Mobile computing and
networking (MobiCom). (1999)

9. Qi, H., P.T. Kuruganti: The development of localized algorithms in wireless sensor networks.
Sensors Journal 2(7) (2002)

10. Mottola, L., Picco, G.: Programming Wireless Sensor Networks with Logical Neighbor-
hoods. In: Proc. of the the 1st Int. Conf. on Integrated Internet Ad hoc and Sensor
Networks (InterSense 2006), Nice (France) (2006) (Short paper). To appear. Available at
www.elet.polimi.it/upload/picco.

11. S.R. Madden, M.J. Franklin, J.M. Hellerstein, Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1) (2005) 122–173

12. L.A. Wosley: Integer Programming. Wiley (1998)
13. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of entire

tinyos applications. In: Proc. of the 1st Int. Conf. on Embedded Networked Sensor Systems
(SenSys). (2003) 126–137

14. Stoleru, R., J.A. Stankovic: Probability grid: A location estimation scheme for wireless
sensor networks. In: Proc. of the 1st Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON). (2004)

15. Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: Proc. of ACM MobiCom. (2003)
205–216

16. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: Proc. of the 2nd Int. Conf. on Mobile systems, applications, and services
(MobiSys). (2004)

17. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions. In:
Proc. of the 1st USENIX-ACM Symp. on Networked Systems Design and Implementation
(NSDI04). (2004)

18. Ni, Y., Kremer, U., Stere, A., Iftode, L.: Programming ad-hoc networks of mobile and
resource-constrained devices. In: Proc. of the ACM SIGPLAN Conf. on Programming lan-
guage design and implementation. (2005) 249–260

19. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks.
In: Proc. of the 3rd ACM Conf. on Embedded Networked Sensor Systems (SenSys). (2005)

20. Curino, C., Giani, M., Giorgetta, M., Giusti, A., A.L. Murphy, G.P. Picco: TINYLIME: Bridg-
ing Mobile and Sensor Networks through Middleware. In: Proc. of the 3rd IEEE Int. Conf.
on Pervasive Computing and Communications (PerCom). (2005) 61–72

168 L. Mottola and G.P. Picco

A SPIDEY Grammar

<node_template> ::= node template <node_templ_id>
({static | dynamic} <field_name>)+

<node_instance> ::= create node <node_id> from <node_templ_id>
(<field_name> as {<target_lang_expr> |

<function_name>(<nhood_id>) every <time_period>})+

<nhood_template> ::= neighborhood template <nhood_templ_id>
[(<par_name>(,<par_name>)∗)]

[with <node_predicates>]
[[{min | max}] cardinality <integer_value>]
[{union | intersect | minus | on}

<nhood_templ_id> [<par_bindings>]]∗

<nhood_instance> ::= create neighborhood <nhood_id>[<par_bindings>]
from <nhood_templ_id>

[[{min | max}] hops <integer_value>]
[credits <numeric_value>]

<par_bindings> :: = (<par_name>:<target_lang_expr>
(,<par_name>:<target_lang_expr>)∗)

<cost_function> ::= use cost <target_lang_expr>

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 169 – 184, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Y-Threads: Supporting Concurrency
in Wireless Sensor Networks

Christopher Nitta, Raju Pandey, and Yann Ramin

Department of Computer Science
University of California, Davis

Davis, CA 95616
{nitta, pandey, ramin}@cs.ucdavis.edu

Abstract. Resource constrained systems often are programmed using an event-
based model. Many applications do not lend themselves well to an event-based
approach, but preemptive multithreading pre-allocates resources that cannot be
used even while not in use by the owning thread. In this paper, we propose a
hybrid approach called Y-Threads. Y-Threads provide separate small stacks for
blocking portions of applications, while allowing for shared stacks for non-
blocking computations. We have implemented Y-Threads on Mica and Telos
wireless sensor network platforms. The results show that Y-Threads provide a
preemptive multithreaded programming model with resource utilization closer
to an event-based approach. In addition, relatively large memory buffers can be
allocated for temporary use with less overhead than conventional dynamic
memory allocation methods.

Keywords: Stack sharing, Multi-threading, Concurrency.

1 Introduction

Wireless Sensor Network (WSN) systems are inherently concurrent. Support for
concurrency is needed in all layers of the WSN software stack. At the operating
system level, hardware interrupts, low level I/O and sensor events are asynchronous.
At the middleware level, specific services (such as time synchronization [1][2] and
code distribution[3][4][5]) are highly concurrent in nature, and exist independently
from other activities. For instance, most code distribution protocols have several
concurrent activities: one may actively maintain a code distribution tree by
periodically collecting neighbor information, while the other may cache and distribute
code along the distribution tree. At the application level, programs may define both
node-level (e.g., collect data) and group level activities (e.g., aggregate data), each
occurring concurrently.

Concurrency exists not only at many different levels, but also in many different
forms: rapid responses to specific events are easily represented using events and event
handlers; concurrency among middleware services are better expressed using long
running threads (LRT); concurrency and group concurrent activities are better defined
using a combination of threads and atomic computations; and higher level system
software abstractions (such as virtual machines and middleware) can be implemented

170 C. Nitta, R. Pandey, and Y. Ramin

easier using a threading mechanism. We have examined these concurrency models
and believe there is a disconnect between the two main models.

WSN Operating Systems work with limited resources, RAM being the primary
limitation. The limited RAM drives many embedded system designers to use an
event-based programming model as in TinyOS[6] and SOS[7]. Though [8] shows that
event-based and thread-based approaches can be interchanged, many applications do
not lend themselves well to an event-based approach, especially those where true
CPU concurrency is needed[9][10]. Often embedded system tasks run a cycle of work
and waiting. Blocking is done at the highest level, computation is executed to
completion and waiting occurs again. Preemptive multithreading pre-allocates RAM
that cannot be used even while not in use by the owning thread. What is needed is a
concurrency model that balances the programming needs through a preemptive
threading model and at the same time meets the resource constraints of sensing
devices.

We introduce a hybrid approach called Y-Threads. Y-Threads are preemptive
multithreads with small thread stacks. The majority of work in Y-Threads is done by
non-blocking routines that execute on a separate common stack. By separating the
execution stacks of control and computational behavior, Y-Threads can support
preemptive threading model with better memory utilization than preemptive
multithreading alone.

We have implemented Y-Threads on several WSN platforms. Experimental results
show that a Y-Thread version of a time synchronization application only increased
energy consumption by 0.12% over the original purely multithreaded version. In
addition the worst-case RAM requirement for the Y-Thread implementation was
reduced by 16.5%. Experiments also show that Y-Thread implementations of a flash
modification routine are more processing efficient than versions that dynamically
allocate memory.

The rest of this paper is structured as follows. Section 2 discusses the motivation,
programming model, and implementation of Y-Threads. Experimental test
applications and results are described in Section 3. Section 4 discusses the existing
concurrency models more in depth. Section 5 discusses the possibilities of future
work on Y-Threads. We conclude in Section 6.

2 Y-Threads

Y-Threads are preemptive threads and are well suited to capture the reactive nature of
many WSN programs. It is based on the insight that many WSN applications block,
waiting for specific events to occur, that has motivated the development of Y-
Threads. As events occur, they react by performing atomic computations, changing
their state, and returning to the wait mode. Behavior of many such applications can be
captured in terms of two sets of behavior: the first is a control behavior that is state-
based and that guides the application through different state transitions as different
events occur. The second are the different computational behaviors that occur during
various state transitions.

For instance, consider the time synchronization code sample shown in Fig. 1. The
control behavior is defined in the while loop: the application blocks while waiting for

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 171

events (such as message arrival). Upon occurrences of these events, it performs
specific actions (such as processMsg), and then goes back to wait for other events to
occur.

We observe that the size of stack required to execute the control behavior is fairly
small. By separating the execution stacks of control and computational behavior, we
can support preemptive threading model and save on memory space. Y-threads
implement this idea by providing support for both control and computational
behaviors.

void timesync_ReceiveTask(){
 TimeSyncMsg msg;
 while(1) {
 recv_radio_msg(&msg);
 leds_greenToggle();
 if((state & STATE_PROCESSING) == 0){
 mess.arrivalTime = hal_sys_time_getTime32();
 processMsg(&msg);
} } }

void processMsg(TimeSyncMsg *msg){
 …
}

Fig. 1. Time Synchronization code sample

2.1 Y-Threads Programming Model

Y-Threads provide the capabilities of preemptive multithreading with good utilization
of limited RAM. Y-Threads are preemptive threads with small pre-allocated stacks.
Y-Threads have the same semantics as general threads, but the majority of work is
done by Run to Completion Routines (RCR) that execute on a separate common
stack. Task stack sharing and a scheduling method for correct system operation are
discussed in [11]. The difference in Y-Threads is that RCRs execute as the invoking
thread and maintains the invoking threads priority, whereas [11] discusses run to
completion flyweight tasks. The Y-Thread interface provides two primary functions,
one to create the Y-Threads, and one to invoke the RCRs. Fig. 2 shows the Y-Thread
and RCR APIs. The APIs are discussed in further detail in Section 2.2.

typedef void (*oss_task_function_t)(void);
typedef void *oss_rcr_data_t;
typedef void (*oss_rcr_function_t)(oss_rcr_data_t);
oss_taskp_t oss_ythread_create(oss_task_function_t
task_func, uint16_t sz);
void oss_rcr_call(oss_rcr_function_t func,
oss_rcr_data_t data);

Fig. 2. Y-Thread and RCR API

172 C. Nitta, R. Pandey, and Y. Ramin

Fig. 3 shows the memory map of two different threads each invoking an RCR. Task 1
has higher priority than Task 2 and waits until the semaphore is signaled. The arrow
in each portion of Fig. 3 signifies the current execution stack. In a of the figure Task1
is blocked, and Task2 is running. Task 2 invokes an RCR in b, which executes on a
separate stack and then returns in c. Task1 is of higher priority, and is unblocked in d
and invokes its RCR in e. The RCR returns and Task1 continues to execute on its
stack in f. Notice the sharing of the common stack space for both RCRs. The stack
sharing provides programming semantics of a much larger virtual stack for each task.
The source in Fig. 4 is an example that corresponds to the memory map in Fig. 3.

Run To
Complete

Stack
Free

Space
Task 2
Calls
RCR

Task 1

Task 2

Task 2
Non-

blocking

Task 1

Task 2

Task 2
RCR

Returns

Run To
Complete

Stack
Free

Space

Task 1

Task 2

Task 1
Calls
RCR

Task 1
Non-

blocking

Task 1

Task 2

Task 1
RCR

Returns

Run To
Complete

Stack
Free

Space

Task 1

Task 2

Task 1
Unblocks

Run To
Complete

Stack
Free

Space

Task 1

Task 2

a b c d e f

Fig. 3. Y-Threads Memory Usage

void Task1(){
 while(1){
 wait_sem(&sem1);
 oss_rcr_call(Task1Process,NULL);
} }

void Task2(){
 while(1){
 oss_sleep(100);
 oss_rcr_call(Task2Proccess,NULL);
 signal_sem(&sem1);
} }

void Task1Process(oss_rcr_data_t *data){
 ...//Do something
}

void Task2Process(oss_rcr_data_t *data){
 ...//Do something else
}

Fig. 4. Y-Thread Code Example

Y-Threads are similar to preemptive multithreads that spawn run to completion
threads without the overhead of creating a run to completion thread. It may be
possible to implement Y-Threads such that an RCR can be preempted by threads of
higher priority since threads that are on the RCR stack cannot block. Currently Y-

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 173

Threads have not been implemented in this manner and such an implementation
should rename RCR to Non-Blocking Routine (NBR).

Parameters can be passed to RCRs and results can be returned, since it is just a
matter of copying data to and from the correct contexts. Since the invoking thread
transfers execution control to the RCR during invocation, all data on the controlling
thread’s stack can be accessed by the RCR. The RCR signature is dependent upon the
implementation of Y-Threads. The initial implementation of Y-Threads uses a single
function to invoke the RCR. RCRs can invoke subroutines as long as none of the
subroutines attempt to block execution. If an RCR invokes another RCR, it has the
same semantics as invoking a subroutine since the invoking RCR is already executing
on the RCR stack.

Y-Thread behavior can be emulated on any RTOS that has both preemptive threads
and light weight or run to completion threads with extra overhead. Y-Threads are
similar to OSEK[12] Extended tasks that spawn Basic tasks, in those systems that
execute Basic tasks on a common stack. The exception is that they do not execute as
Extended tasks and do not inherit their priority.

Y-Threads have better memory utilization than just pure preemptive multithreading
since large amounts of memory can be automatically allocated and freed on the RCR
stack. Preemptive multithreads must pre-allocate enough memory for the worst case
stack utilization; therefore there is memory that is unused in each thread, but is also
unusable by other threads. Y-Threads do not need to pre-allocate large amounts of
memory for potential future use unlike purely preemptive multithreading. Y-Threads
can also automatically allocate large amounts of memory on the RCR stack with less
overhead than dynamic memory allocation. Y-Threads provide the advantages of
preemptive multithreading without the disadvantage of high memory overhead.

2.2 Y-Thread Implementation

Y-Threads were first implemented on OS*1 for the AVR ATMega128 using an
invocation to a helper function oss_rcr_call. The signature of the RCRs is a single
void pointer parameter with a void return type. The RCR data types and oss_rcr_call
prototype can be seen in Fig. 2. Light Weight Threads (LWT) are implemented in
OS* using an RCR wrapper. The calling convention of the ATMega128 under GCC
passes most function parameters in registers making overhead of the oss_rcr_call
helper function very low. The advantage of compiler support or oss_rcr_call in-lining
is not likely to be as great for the ATMega128 as it may be for other architectures
where parameters are primarily passed on the stack. Switching the control to the RCR
stack was relatively straight forward in the ATMega128 since GCC uses registers and
the frame pointer to access local variables and parameters.

OS knowledge is necessary for any Y-Thread implementation. OS knowledge is
necessary since it must be known if the RCR stack is in use or not. Furthermore, if
RCRs are implemented as “Non-Blocking Routines” as discussed in Section 2.1, the
current top of the NBR stack must be stored during a context switch from a thread in
the NBR. Fig. 5 illustrates a higher priority thread preempting an NBR. In part a of
the figure Task 2 of lower priority is executing a NBR. Task1 is unblocked by an ISR

1 OS* is a light-weight synthesizable operating system for the Mica, Telos and Stargate

families of sensor nodes currently under development by the SENSES group at UC Davis.

174 C. Nitta, R. Pandey, and Y. Ramin

in part b and context switch from Task2’s NBR to Task1 occurs. Task1 invokes an
NBR in part c which executes on the common stack under Task2’s ready NBR. Task
1’s NBR would overwrite Task 2’s NBR if the NBR stack top is not stored during the
context switch. Due to the nature of the OS* scheduler, our current Y-Thread
implementation does not need to store the top of the RCR stack.

Task 2
NBR

Task 1

Task 2

ISR
Unblocks

Task 1

Task 1
Calls NBR

Task 2
NBR

Task 1
NBR

Task 1

Task 2

Task 2
NBR

Task 1

Task 2

Task 1
NBR

Returns
and

Blocks

Task 2
NBR

Task 1

Task 2

a b c d

Fig. 5. NBR Preemption by higher priority thread

We also implemented Y-Threads for the TI MSP430. The RCR API is identical to
that of the ATMega128 implementation. Unlike the ATMega128, the implementation
of Y-Threads for MSP430 was complicated by GCC’s use of the frame pointer. The
difficulty arose in implementing a version of Y-Threads that operated properly under
all optimization levels of GCC. One possible solution is to have implementations for
different compiler options; this is similar to libraries that are developed for both
banked and non-banked memory models.

3 Applications and Performance Evaluation

Since Y-Threads are preemptive multithreads with small stacks, any application that
can be implemented using preemptive multithreads can also be implemented using Y-
Threads. The applications evaluated in this paper show the advantage of a preemptive
multithreading programming model, and the need for relatively large temporary
memory allocations. All applications evaluated were compiled for the AVR
ATMega128. All test data was either collected from AVRORA2 or backed out of
object dumps of the applications.

3.1 Run to Completion Routine vs. Subroutine and Light Weight Thread
Invocation

The overhead associated with invoking an RCR compared to a normal subroutine is
an important metric to evaluate. LWTs are run to completion threads on OS* and
therefore are a possible alternative to RCRs for the execution of non-blocking code. A
test program was written to evaluate the overhead associated with RCR, subroutine
and LWT invocations. Fig. 6 shows the overhead in instruction cycles for invoking

2 AVRORA is an AVR simulator developed by UCLA Compilers Group and available at

http://compilers.cs.ucla.edu/avrora/

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 175

each type of routine. LWTs must be posted to the scheduler prior to the thread switch;
therefore the LWT thread switch is shown with and without the scheduler posting
overhead. As expected the invocation overhead of the RCR is higher than the normal
subroutine, but it is less than half as much as the LWT. The overhead of the RCR
(177 instructions) is closer to that of a subroutine (94 instructions) than that of the
LWT (462 instructions).

0

50

100

150

200

250

300

350

400

450

500

RCR Subroutine LWT LWT w/ Posting

Routine Type

In
st

ru
ct

io
n

 C
yc

le
s

Return

Invocation

Fig. 6. RCR, Subroutine, and LWT Invocation Times

3.2 Dynamic Allocation vs. Y-Thread Automatic Allocation

Limited resource systems often need to allocate relatively large memory buffers for
temporary use. Modifying flash is one such application that is necessary in many
embedded systems. The nature of flash requires that entire pages, sometimes as large
as 512B in size, be erased before reprogramming can occur. These resource
constrained systems typically have between 1KB and 10KB of RAM, and therefore a
flash page is relatively large compared to the entire system memory. Fig. 7 illustrates
the copy, erase, modify, write back cycle of modifying a flash page.

There are two methods to allocate relatively large amounts of memory for
temporary use in a preemptive multithreading environment. Memory can be
dynamically allocated through a function invocation such as malloc and then freed
when not needed through an invocation of free. The other method is to automatically
allocate the memory on the stack by invoking a function.

Dynamic memory allocation has the advantage that the allocation size is bound at
run-time unlike automatic allocation that is bound at compile-time. The overhead of
automatic allocation is constant and is typically lower than dynamic allocation. In a
preemptive multithreading environment the drawback to automatic allocation is that
the memory must be pre-allocated during the context allocation. The pre-allocated
memory is unusable by other threads even when it is not in use by the thread. The
advantage of Y-Threads is that they can automatically allocate memory in an RCR
with less overhead than dynamic memory allocation. Further when a thread is not in
an RCR the memory is available for other threads to use.

176 C. Nitta, R. Pandey, and Y. Ramin

Fig. 7. Flash Page Modification

A flash modification application was implemented using four different methods. All
test applications were implemented on OS* for the AVR ATMega128 and analyzed
using AVRORA. The first method uses a small thread that dynamically allocates
memory for the modification buffer via malloc. When the buffer is no longer needed
it is freed. The second method utilizes a global buffer for the modification. The final
two test applications utilize RCRs that automatically allocate the modification buffer
on the stack. One of the methods uses the oss_rcr_call while the other inlines the
oss_rcr_call to emulate compiler support for Y-Threads.

The flash modification function execution time is dependent upon the
fragmentation of the heap for the malloc version. All other versions of the function
were independent of heap fragmentation. Fig. 8 shows the execution time of each of
the function versions normalized to the RCR version. The malloc version is slightly
slower than the RCR version in the best case and climbs to over 8% higher at only 16
fragments. The RCR inlined version and the global buffer version were 0.7% and
1.7% faster than the RCR version respectively. If Y-Threads were to be supported by
the compiler or inlined through optimizations the RCR version would be
approximately 1% slower than the global buffer version.

0.98

1

1.02

1.04

1.06

1.08

1.1

0 2 4 6 8 10 12 14 16

Heap Fragments

F
un

ct
io

n
In

vo
ca

tio
nT

im
e

(N
or

m
al

iz
ed

)

malloc
global
RCR
RCR Inline

Fig. 8. Flash Modification Time vs. Heap Fragmentation

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 177

The malloc version while slightly slower than the RCR version in the best case
performs worse as memory becomes fragmented. The non-determinism of the malloc
version makes it undesirable for any application that has real-time requirements. Also
the RCR version does not statically allocate memory that cannot be used like the
global buffer version does.

3.3 Time Synchronization

Time synchronization is a common service that is often required in WSNs. The time
synchronization code illustrated in Fig. 1 was evaluated for performance. The
processMsg subroutine was replaced with an RCR version for evaluation. Fig. 9
shows the code for the RCR version of the application from Fig. 1. Notice that very
few changes were required. The processMsg subroutine has floating point math that is
relatively RAM intensive for the 8-bit AVR ATMega128 CPU. The simulation of the
time synchronization routine was run on AVRORA for ten seconds.

void timesync_ReceiveTask(){
 TimeSyncMsg msg;
 while(1) {
 recv_radio_msg(&msg);
 leds_greenToggle();
 if((state & STATE_PROCESSING) == 0){
 mess.arrivalTime = hal_sys_time_getTime32();
 oss_rcr_call(processMsg, & msg);
} } }

void processMsg(oss_rcr_data_t *data){
 TimeSyncMsg *msg = (TimeSyncMsg *)data;
 ...}

Fig. 9. RCR Time Synchronization Code Sample

The energy consumption and the number of active CPU cycles were compared for
the original and the RCR versions of the time synchronization algorithm. Fig. 10
shows the results of the tests. The RCR version was active for 0.12% more instruction
cycles than the non-RCR version, and consumed 0.02% more energy. The overhead
of running the RCR version is insignificant in terms of energy usage.

RAM utilization was also compared for the both the RCR and original versions.
Fig. 11 illustrates the worst-case, thread stack, interrupt and RCR stack memory
usage for both the original and RCR versions. The worst-case memory was calculated
as the total memory required for maximum function invocations plus the maximum
ISR requirements. The worst-case memory usage originally started at 278 bytes and
was reduced to 232 bytes in the RCR version. Since the processMsg call was switched
to an RCR call, the thread stack requirements were reduced from 142 to 58 bytes. The
transition of processMsg to an RCR call alone should actually increase the total
required RAM, but when interrupts are considered the worst-cast RAM utilization is
actually reduced in the RCR version. In the original version LWTs execute on the

178 C. Nitta, R. Pandey, and Y. Ramin

scheduling stack, whereas the RCR version LWTs utilize the RCR stack. Sharing of
the RCR stack is the main reason for the reduction in worst-case RAM utilization
from that of the original version. As the number of Y-Threads increases, the worst-
case RAM savings of RCR versions should increase because more RAM should be
shared on the RCR stack.

1.205

1.21

1.215

1.22

1.225

1.23

1.235

Original RCR

Jo
u

le
s,

 1
00

 M
ill

io
n

 C
yc

le
s

Energy
Active Time

Fig. 10. Time Synchronization Energy and Active Time

Fig. 11. Time Synchronization Memory Usage

3.4 “Delta” Based Code Distribution

The distribution of a new code image to an embedded system is difficult and often
requires a significant amount of system resources. The method discussed in [13] of
transmitting only deltas for system updates has much promise and could benefit from
the use of Y-Threads. In order to minimize data transmission, deltas or differences
between the new and existing image are transmitted.

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 179

The update application receives deltas and modifies flash pages. As discussed in
[14], implementing state machines is often easier using preemptive multithreading
than event based programming. The reception of delta packets can easily be done in a
preemptive thread. Since the size of the deltas are relatively small compared to the
size of a flash page, the delta packets can be stored on the thread stack.

A large buffer is required to construct the new flash pages from the deltas and the
existing image. As discussed previously, the nature of flash requires that the entire
page be erased prior to reprogramming. Prior to the implementation of Y-Threads, a
statically allocated global buffer was used to implement the delta update application.
A RCR can be used to construct the updated flash pages from the deltas and the
existing image. The large buffer can be allocated on the RCR stack as discussed in the
previous section. The delta update RCR constructs the new flash page in RAM, erases
the page to be updated, and then reprograms the page.

4 Concurrency Model Discussion

The two main concurrency models are event-based microthreads, and preemptive
multithreads. Event-based microthreads have very low overhead both in processing
and memory utilization. Preemptive multithreaded systems allow for per thread state
maintenance and thread blocking. The preemptive multithreaded programming model
makes application development easier when true CPU concurrency is necessary.

Event-based microthreads and preemptive multithreading are not the only
concurrency models that exist. Lazy threads and protothreads are two other pseudo-
concurrency models. Both lazy threads and protothreads allow for blocking and are
implemented using co-routine like mechanisms. Protothreads have been used
successfully in Contiki[14][15]. All of the concurrency models must also deal with
interrupts; therefore we discuss various implementation techniques for interrupt
handlers.

4.1 Event-Based Microthreads

Event-based programming does not require a separate stack per execution context.
Event handlers are typically implemented purely as function invocations making
events efficient both in execution and memory utilization. Event-based systems often
can be implemented in a high level language making the system easier to implement
and more portable. Fig. 12 shows the single stack utilization of event based threads.

Task 1

ISR

Task 2

Free Space

Task 1

Free Space

ISR
Dispatches

Task 2

a b

Fig. 12. Event-Based threading stack

180 C. Nitta, R. Pandey, and Y. Ramin

The disadvantage of the event-based concurrency model is that events or
“microthreads” must be run to completion; events are not allowed to block. The ease
of system development can come at the cost of complicated application development
for systems that require true CPU concurrency. A further disadvantage of
microthreads is that state maintenance across event handler calls must be done via
global variables [16]. The use of global variables to maintain state may limit the
modularity that can be achieved especially if written in a language such as C.

4.2 Preemptive Multithreading

Preemptive threads require RAM for each execution context. Preemptive threads
allow for blocking, and per thread state maintenance. State maintenance with true
CPU concurrency is often easier to implement in a multithreaded environment. Often
WSN applications need to implement communication protocols with similar timeouts
and system states. The increased modularity and ease of application programmability
comes at a cost.

Task 1

Task 1 Free
Space

Unused
Context
Space

Task 2
Dispatched

Task 1

Task 1 Free
Space

Task 2

Task 2 Free
Space

a b

Fig. 13. Preemptive multithreading memory

Preemptive threads require assembly at the systems level for the context switch,
complicating systems development. The context switch also has higher overhead than
a function invocation. Preemptive threads must pre-allocate enough RAM to execute
the deepest sequence of function invocations, and therefore hold an unused resource
most of the time. Pre-allocation of memory is illustrated in Fig. 13. The pre-allocation
of memory is the main drawback that has driven the use of event-based programming
model in many embedded systems.

4.3 Lazy Threads

Lazy threads are a threading model that allows for parallel function invocations. The
need for fast thread forking has driven the development of lazy threads. Lazy threads
implementations attempt to allocate child threads on the parents stack in a
“stacklet”[17]. If blocking of the child is necessary an entirely separate context must
be allocated for the child and the child thread must be transferred. Unfortunately lazy
threads are non-preemptive and therefore require cooperative multithreading.
Implementations of lazy threads require compiler support to properly allow for
continuations. No pointers to stack data are allowed since there is a possibility of
context relocation, further limiting the flexibility of lazy threads.

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 181

4.4 Protothreads

Protothreads are pseudo threads that use a coroutine technique to implement blocking
threads. Protothreads all execute on a single stack and are implemented entirely in C.
The advantage of Protothreads is that they best utilize limited resources while
providing a somewhat preemptive multithreading programming model. Fig. 14 shows
the coroutine thread intertwining on a single stack. There are a few limitations of
Protothreads; a major limitation is that automatic variables are not saved across
blocking waits. The automatic variable limitation is not intuitive, and therefore can
lead to programming mistakes. Blocking waits may only occur in the Protothread
function and cannot occur in subroutines called by the Protothread. The blocking wait
subroutine limitation is not as severe as automatic variable limitation especially when
considering that blocking is often done at the highest level.

Task 1

Task 2

Task 3

Task 2

Free Space

Task 2
Unblocks

Task 3

Task 1

Task 2

Task 3

Free Space

a b

Fig. 14. Protothreads stack usage

4.5 Interrupts

Since interrupts can occur at any time, preemptive multithreads must accommodate
for them by allocating extra space for the largest interrupt service routine (ISR). This
extra overhead is also required for Y-Threads. A separate stack can be used for
interrupt processing, which reduces the overhead required per thread to that required
for context storage. The disadvantage of a separate interrupt stack is added processing
overhead for the stack switch. A combination of separate and common stack
processing for ISRs can be used to allow for good RAM usage while providing good
performance for higher frequency ISRs. Having two types of ISRs reduces the ISR
uniformity, making it a less ideal method.

Y-Threads already provide a method of processing on a common stack. This means
that all ISRs can be written to execute on the current stack, and if the ISR needs extra
space for processing it can invoke an RCR. The Y-Threading ISR programming
paradigm is uniform, and provides the flexibility for either fast or large ISRs.

5 Future Work

The main areas of future work are related to development tools. Adding Y-Thread
support to a language and the development of Y-Thread compatible libraries is a
major area of future work. As stated in [18] threading must be part of the language for
the best performance, and not just implemented in a library. This is true for Y-
Threads as well. Another area of future work is to statically profile the Y-Thread
software.

182 C. Nitta, R. Pandey, and Y. Ramin

5.1 Language/Compiler Support

Language/Compiler support can improve the ease of programmability, and reduce the
overhead of invoking Y-Thread RCRs. Currently Y-Thread RCRs are implemented
using a helper function to call the RCR. The calling syntax is less than ideal since the
function pointer and the data parameter must be passed to the oss_rcr_call helper
function. Ideally the programmer would just invoke the RCR as if it were a normal
function invocation, and the compiler would generate the stack switching wrapper
necessary for the RCR call. If the language/compiler natively supported Y-Threads it
would allow for RCRs with signatures other than a single void pointer with a void
return type. Language/Compiler Support also would reduce the overhead of an RCR
invocation. The data parameters which currently need to be copied twice would be
copied directly to the RCR stack. The overhead of the oss_rcr_call function call
would also be removed. Overall the added overhead of an RCR invocation could be
reduced to checking if currently on the RCR stack, entering/exiting of an atomic state,
and switching of the stack pointer. However, as stated in the Section 2, the compiler
would need to have knowledge of the OS, which most likely would bind the
language/compiler to a single RTOS.

5.2 Y-Threads and Libraries

The initial development of Y-Threads was driven by the observation that embedded
systems often run a cycle of work and waiting. It was also observed that blocking is
often done at the highest level. However not all blocking is done in this manner. If
layers are built upon blocking calls then the dedicated Y-Thread stack may need to be
larger than if blocking were to be done at a shallower location. The feasibility of
using blocking libraries in Y-Threads must still be determined. Development of
libraries using Y-Threads that block at higher levels is one possible option. It is
possible that these libraries could be accessed using some form of message passing or
shared memory, but work in this area is necessary to determine the practicality. The
development of Y-Thread friendly libraries would be a logical extension of
language/compiler support for Y-Threads.

5.3 Static Profiling

If a compiler existed that natively supported Y-Threads it could determine RCR stack
requirements and if an RCR blocked. Determining the RCR stack requirements could
improve memory utilization allowing for more RAM to be available for the heap,
main stack and data space. If higher priority thread preemption is not allowed during
an RCR invocation and there are no recursive function invocations or function pointer
invocations within the RCR, then the memory requirements can be determined for the
RCR stack. Either an error or a warning could be generated by the compiler if it
detects that an RCR can invoke a blocking function since blocking is not allowed in
an RCR. Statically determining if an RCR can invoke a blocking function or not only
requires that no function pointer invocations exist within the RCR or its function
invocations.

The RCR stack only needs to accommodate for the worst case stack utilization for
all RCRs and any functions they invoke. If recursion exists within any of the RCRs
then it will not be possible to determine the RCR stack requirements since the

 Y-Threads: Supporting Concurrency in Wireless Sensor Networks 183

recursion depth is bound at runtime[9]. Function pointer invocations are bound at
runtime and therefore would make a compile time analysis impossible. If higher
priority thread preemption is allowed then the number of simultaneous RCR
invocations cannot be bound at compile time and therefore the RCR stack
requirements cannot be determined.

Determining if an RCR can invoke a blocking function, is a simple matter of
following all possible function invocations from the RCR. This is similar to compilers
detecting dead code.

6 Conclusions

Y-Threads can be implemented easily on systems that currently support preemptive
multithreading as is the case with OS*. The advantage of Y-Threads is that they
provide a preemptive multithreaded programming model with good memory
utilization.

Automatic allocation of memory on the RCR stack can be done with less overhead
than dynamic allocation. The RCR call overhead is constant making it more desirable
than dynamic memory allocation for systems with real-time requirements. The RCR
call and automatic allocation overhead is slightly higher than statically allocated
global buffer implementation without the static allocation of the memory. The RCR
memory is available for use by any thread, where static global allocation of memory
can only be used by a single thread. This need for having memory available for other
threads is shown in the time synchronization application that had less than 41% of
dedicated memory for its threads.

The hybrid of the two concurrency models in Y-Threads has allowed for the best of
both models. Future work could further reduce overhead with language support.
Language support could also add the ability to detect blocking in RCRs and the RCR
stack requirements for further optimization and application correctness checking. The
use of Y-Threads in embedded systems specifically WSN could reduce the time of
application development when compared to event-based approaches. Y-Threads also
have the potential to increase the capabilities of preemptive multithreaded systems
due to better resource utilization.

Acknowledgments. This work is supported in part by NSF grants CNS-0435531,
CNS-0520269, and EIA-0224469. The authors would also like to thank Joel Koshy
and the anonymous referees for their insightful comments on an earlier draft of this
paper.

References

[1] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The Flooding Time Synchronization
Protocol, Proceedings of the second international conference on Embedded networked
sensor systems, 2004.

[2] J. Elson, Time Synchronization in Wireless Sensor Networks, PhD Dissertation, 2003.
[3] N. Reijers, K. Langendoen, Efficient code distribution in wireless sensor networks,

Proceedings of the 2nd ACM international conference on Wireless sensor networks and
applications, 2003.

184 C. Nitta, R. Pandey, and Y. Ramin

[4] S. S. Kulkarni, L. Wang, MNP: Multihop Network Reprogramming Service for Sensor
Networks, 25th IEEE International Conference on Distributed Computing Systems, 2005.

[5] J. Hui, D. Culler, The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale, Proceedings of the 2nd international conference on Embedded
networked sensor systems, 2004.

[6] J. Hill, R. Szewczyk, A. Woo, System Architecture Directions for Network Sensors,
Architectural Support for Programming Languages and Operating Systems, pages 93–
104, 2000.

[7] C. Han, R. Kumar, R. Shea, A Dynamic Operating System for Sensor Nodes, Proceedings
of the 3rd international conference on Mobile systems, applications, and services, 2005.

[8] H. Lauer, R. Needham, On the Duality of Operating System Structures, Proceedings of
the Second International Symposium on Operating Systems, IRIA, 1978.

[9] R. Behren, J. Condit, E. Brewer, Why Events Are a Bad Idea (for high concurrency
servers), 9th Workshop on Hot Topics in Operating Systems (HotOS IX), 2003.

[10] J. Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk given at
USENIX Technical Conference, 1996.

[11] T. Baker, Stack-Based Scheduling of Realtime Processes, Journal of Real-Time Systems,
3, 1991.

[12] OSEK/VDX Operating System Version 2.2.3, available at http://osek-
vdx.org/mirror/os223.pdf, 2005.

[13] J. Koshy, R. Pandey, Remote Incremental Linking for Energy-Efficient Reprogramming
of Sensor Networks, Proceedings of the Second European Workshop on Wireless Sensor
Networks, 2005.

[14] Dunkels, O. Schmidt, and T. Voigt, Using Protothreads for Sensor Node Programming,
Proceedings of the REALWSN'05 Workshop on Real-World Wireless Sensor Networks,
2005.

[15] Dunkels, B. Gronval, T. Voigt, Contiki – a Lightweight and Flexible Operating System
for Tiny Networked Sensors, Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, 2004.

[16] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, J. R. Douceur, Cooperative Task
Management without Manual Stack Management or, Event-driven Programming is Not
the Opposite of Threaded Programming, Proceedings of the 2002 USENIX Annual
Technical Conference, 2002.

[17] S. Goldstein, K. Schauser, E. Culler, Lazy Threads: Implementing a Fast Parallel Call,
Journal of Parallel and Distributed Computing, 1996.

[18] H. Boehm, Threads Cannot Be Implemented as a Library, Proceedings of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation, 2005.

Comparative Analysis of Push-Pull Query
Strategies for Wireless Sensor Networks�

Shyam Kapadia1 and Bhaskar Krishnamachari1,2

1 Department of Computer Science,
University of Southern California, Los Angeles 90089, USA

2 Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089, USA

Abstract. We present a comparative mathematical analysis of two im-
portant distinct approaches to hybrid push-pull querying in wireless sen-
sor networks: structured hash-based data-centric storage (DCS) and the
unstructured comb-needle (CN) rendezvous mechanism. Our analysis
yields several interesting insights. For ALL-type queries pertaining to
information about all events corresponding to a given attribute, we ex-
amine the conditions under which the two approaches outperform each
other in terms of the average query and event rates. For the case of ANY-
type queries where it is sufficient to obtain information from any one of
the desired events for a given attribute, we propose and analyze a modi-
fied sequential comb-needle technique (SCN) to compare with DCS. We
find that DCS generally performs better than CN/SCN for high query
rates and low event rates, while CN/SCN perform better for high event
rates. Surprisingly, for the cases of ALL-type aggregated queries and
ANY-type queries, we find that there exist “magic number” event rate
thresholds, independent of network size or query probability, which dic-
tate the choice of querying protocol. While our analysis is based on a
single-sink square-grid deployment, we believe the insights can be gen-
eralized to random deployments.

1 Introduction

The primary function of a sensor network is to enable information gathering. The
simplest strategy is to have all sensors provide a continuous stream of all the data
that they gather to a sink node. However, for many classes of applications where
only a small subset of the collected information is likely to be useful to end-users,
this simple approach can become very inefficient. Researchers have therefore
advocated the use of data-centric techniques which allow for efficient in-network
storage and retrieval of named data using queries [1]. A number of data-centric
querying and routing techniques have been proposed and examined in recent
years: directed diffusion [2], TAG/TinyDB [3], rumor routing [4], hash-based

� This work has been supported in part by NSF grants numbered CNS-0435505 (NeTS
NOSS), CNS-0347621 (CAREER), CCF-0430061, and CNS-0325875 (ITR).

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 185–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 S. Kapadia and B. Krishnamachari

data centric storage [5], hybrid push-pull [8], comb-needles [9], ACQUIRE [10],
and TTL-based expanding search [11, 12].

With the presence of an increasing number of choices of data-centric stor-
age and querying techniques, it becomes of crucial importance to understand
and quantify their performance (both in absolute terms and with respect to
each other) with respect to key application, network, and environmental param-
eters. In particular, carefully developed mathematical models can provide deep
practical design insights on protocol selection as well as protocol parameter op-
timization for different sensor network deployments.

There are several interesting prior studies on analytical modelling of query
strategies [5], [6], [7], [8], [9], [10], [12]. The energy costs of data centric storage
are compared with the two extremes of external storage and local storage in [5]. A
hybrid push-pull query processing strategy is proposed and analyzed in [8]. Push
and pull alternatives of directed diffusion are also analyzed in [7]. Shakkotai [6]
has presented a comparison of the asymptotic performance of three random walk-
based query strategies, showing that a push-pull rendezvous-based sticky search
has the best success probability over time. The optimal parameter setting for the
comb-needles approach is analyzed in [9]. The optimal replication level for queries
disseminated using expanding ring searches is analyzed in [12]. A common thread
through much of this literature on the analysis of query techniques is the argu-
ment that tunable hybrid push-pull strategies offer significant advantages. Our
work builds on and complements these existing studies, as we aim to compare two
distinct and important approaches to hybrid push-pull querying.

Following the nomenclature used to classify peer-to-peer networks, we can
distinguish between two main categories of hybrid push-pull query strategies:
structured and unstructured. The structured approach is exemplified by ge-
ographic hash table-based data centric storage technique [5]. The data from
sources is placed at a location using the same hash that the sink uses to retrieve
it. This significantly simplifies the query since the sink effectively “knows” ex-
actly where to look for the stored information. The unstructured approach to
push-pull querying is exemplified by the comb-needle approach [9]. In this ap-
proach, the absence of a hash implies that the sink does not have prior knowledge
of the location of the information. In that case, the queries are disseminated in
the form of a comb with horizontal teeth, while the sources send event notifi-
cations independently in the form of limited vertical needles in either direction.
The inter-teeth spacing and needle size are chosen and optimized to ensure that
sources and sinks can rendezvous with each other efficiently. To the best of our
knowledge, these two distinct and important approaches to hybrid push-pull
querying — the structured DCS and the unstructured comb-needle technique —
have never been compared to each other. This is our objective in this paper.

We undertake a mathematical analysis comparing the expected total energy
costs of both these approaches on a grid-based sensor deployment. Our modelling
of these query strategies allows us to study the impact of several key parameters
such as the size of the network, the event and query rates, the use of data aggre-
gation (using summaries), as well as the type of queries. For a fair comparison,

Comparative Analysis of Push-Pull Query Strategies 187

we carefully select optimized versions of each strategy. In particular, we allow the
storage location to be chosen optimally for the hash based data-centric storage
scheme, and we use optimized inter-tooth spacing for the comb-needle approach.

We consider two important types of one-shot queries in this paper. We refer
to the first query type as an ALL-type query. These are global discovery-type
queries, such as ‘Give me the location of all the lions in the sensor deployed
area?’ or ‘Return the locations that have temperature ≥ 60◦ F’. In this case, the
desired information must be obtained from all nodes in the network with relevant
event information. The second type of query, which we refer to as an ANY-type
query, is a one-shot query where any event that has the information can reply
to the querier. Examples of such queries are ‘Give me any location where a lion
has been spotted in the sensor deployed area?’ or ’Give me any location where
the measured temperature is greater than 60 F’. For the ANY-type queries, the
entire network need not be necessarily covered by the combs in the comb-needle
strategy. Based on this insight, we propose and analyze a modified sequential
comb-needle querying scheme (see Section 2.3).

Our analysis yields a number of useful insights into the relative performance
of structured and unstructured approaches to hybrid push-pull querying. In all
cases, we find that the unstructured comb-needle approach outperforms the data
centric storage strategy when the number of events per epoch is large, while
the reverse is true for small number of events, particularly for higher query
rates. A particularly surprising and strong finding of our analysis is that un-
der the assumptions of our modelling (large square grid network with a single
caching-enabled querying sink located at bottom left) for the cases of aggregated
ALL-type queries as well as the ANY-type queries, there exist “magic numbers”
dictating which approach should be used for a given application scenario. In
particular, for ALL queries, we find that if the number of events per epoch is
greater than about 40 (regardless of the query rate or size of the network), the
comb-needle strategy always outperforms data centric storage. For ANY queries,
when the number of events per epoch is less than 1.56 (regardless of the query
rate or size of the network) the data centric storage strategy always outperforms
the sequential comb-needle strategy. However, if the number of events is greater
than 3.16 (regardless of the query rate or size of the network), the sequential
comb-needle strategy always outperforms data-centric storage.

Even though the topology considered in this study is a square grid (more
amenable to analysis), we believe that similar magic numbers will be obtained
in case of a random deployment. This is because the behavior of the querying
strategies considered in this study scales in a similar manner with the network
topology-related parameters and is more critically affected by the application
parameters such as average event and query rates. This remains a subject of
future investigation.

The rest of the paper is organized as follows. In Section 2, we present a
brief overview of the algorithms to be analyzed in our paper: data centric stor-
age (DCS), the basic comb-needle (CN) algorithm, and sequential comb-needle
(SCN) algorithm. We specify our modelling assumptions in Section 3. We derive

188 S. Kapadia and B. Krishnamachari

and compare the costs of data centric storage and comb-needle strategies with
and without summary aggregation for ALL-type queries in Section 4. Then we
analyze and compare data centric storage with the sequential comb-needle algo-
rithm in Section 5. Finally, we discuss our key findings, along with directions for
future work in the concluding Section 6.

2 Overview of Algorithms

2.1 Data Centric Storage (DCS)

The data centric storage query dissemination strategy uses distributed hash ta-
bles to store the event data sensed by a particular node (see Figure 1(a)). All the
events of a particular event type (i.e. event having similar attributes) are hashed to
the same node location. The data is then transported from the various event nodes
along the shortest path to the node at the chosen location. Assuming the presence
of location information, the authors propose to use GPSR to perform the routing.
Queries for an event are then directed along the shortest path to these named loca-
tion, since the query nodes also use the same hash function. The query responses
are sent on the reverse path along which the query is forwarded.

2.2 Comb Needle (CN)

In this query dissemination strategy, the event nodes send out the sensed infor-
mation vertically up and down like a spike (needle) of a certain length (see Fig-
ure 1(b)). Let the length of the needle be denoted by s. The sink then sends out a
query that traverses the network along a comb. The separation between the teeth
of the comb is also s to ensure that at least one comb teeth hits each needle, so as to
not miss out any event nodes. The information requested is then sent back to the
sink along the shortest path. Note that this strategy is used when the average num-
ber of queries, Q, is less than or equal to the average number of events, E. When

(a) Data Centric Storage (b) Comb-Needle

Fig. 1. Illustration of the DCS and CN querying techniques

Comparative Analysis of Push-Pull Query Strategies 189

Q > E, a reverse comb-needle strategy is used where the query nodes form a nee-
dle and the event information is forwarded along a comb. Hence, the total cost for
query dissemination in case of CN (CCN) depends on the relationship between Q
and E. However, in our case, since the sink is fixed and located at the left-bottom
corner of the grid, we do not use the reverse comb needle scheme.

2.3 Sequential Comb-Needle (SCN)

The motivation behind introducing this query scheme is to efficiently resolve the
ANY type queries in which case the query terminates as soon as the query hits
the first event node of interest. In this way, the sequential comb needle scheme will
always do better than the comb-needle scheme since it does not pay the extra cost
incurred by the comb during query dissemination. In this scheme, similar to the
comb-needle scheme, the event nodes form needles by spreading their information
vertically to some nodes above and below them. The query originates from the sink
and traverses the network as shown in Figure 2(a). Again, the size of the needles is
denoted by s. Also, the distance between consecutive query horizontal traversals is
s. The moment the query hits a node with the desired event information, the query
path is truncated and the response is returned back to the sink.

(a) Sequential Comb-Needle (b) Optimal DCS Calculation Illustration

Fig. 2. Illustration of the SCN and the four-rectangle decomposition for calculating
d2(p) - the average distance between all nodes and a storage point located at Popt(p, p),
respectively

3 Model and Assumptions

We first present our modelling assumptions:

– We consider a
√

N × √
N regular grid comprising N nodes. Each node has

4 neighboring nodes adjacent to it. Hence, the distances between the nodes
are evaluated as Manhattan distances.

190 S. Kapadia and B. Krishnamachari

– Queries only occur at the sink node located at the left-bottom corner of the
grid. This represents the interface of the sensor network to the outside world.

– We consider a time period, T , defined as an epoch. This represents the period
of time when the event information stored by the nodes will be valid.

– Our analysis aims at optimizing the total expected energy cost incurred
during each epoch. We use the total number of required unicast transmissions
as the indicator of energy costs.

– Without loss of generality, we focus the analysis on queries and events for
a single generic event attribute (i.e. event type). Events corresponding to
this attribute are assumed to occur uniformly across the sensor network.
Evaluation of complex queries comprising multiple attributes remains a topic
of future research.

– We denote by E the average number of events that occur during epoch T .
– We denote by Q the expected number of queries that occur within epoch

T . Since the event information does not change over an epoch, Q is always
between 0 and 1 and represents the probability that a query is issued during
that epoch.

– We assume the presence of a suitable MAC layer to handle collisions and
contention.

4 Analysis of ALL-Type Queries

As mentioned earlier, ALL-type queries are of the type ‘Give me all locations in
the network where a lion was seen’. We first present the comparison of the data-
centric storage and comb-needle scheme for such queries. We consider two cases:
(a) When all the event information is sent to the sink (Without aggregation,
i.e., with no summaries). (b) When only an aggregated summary of the event
information is sent to the sink (With aggregation, i.e., using summaries).

4.1 Without Aggregation/Summaries

Cost of DCS with optimized hash location. Below, we calculate the average
cost incurred in case of the DCS strategy in terms of the number of hops needed
for query resolution in the epoch T .

There are 3 different query costs involved, Cst to store events, Cqd the query
dissemination cost and Cqr the cost for the query response. Hence, we have the
total cost in case of DCS given by,

CDCS = Cst + Cqd + Cqr (1)

Since the position of the sink is fixed and known a priori, the DCS scheme can
be optimized on the basis of the position of the hashed named location where all
the event nodes send their data. Let Popt(x, y) denote the location of the node at
that point. By symmetry, it is easy to see that Popt will lie on the diagonal of the
grid, otherwise, nodes on either side of the diagonal will have a larger distance
to Popt. Hence, they will pay more for transferring the event information to Popt

Comparative Analysis of Push-Pull Query Strategies 191

as compared to the other nodes. Say, we have x = y = p. Let d1(p) denote the
distance from the sink to Popt, and d2(p) the average distance between any node
on the grid to the node located at point Popt.

Note that without summaries, all the event information has to be sent out in
the reply to the sink. Hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) · Q + d1(p) · Q · E)(-Without summaries) (2)

We can determine the distance from the sink to Popt trivially as

d1(p) = x + y = 2p (3)

The calculation of d2(p) is more involved. We can consider the grid as be-
ing divided into 4 rectangles as shown in Figure 2(b). The size of these rect-
angles is p × p, (

√
N − p) × (

√
N − p), p × (

√
N − p) and (

√
N − p) × p.

The average distance from a node, located on a corner, to any node for a
rectangle of size X × Y is given by Equation 38 (see Appendix), Drect =
X·Y ·(X+Y −2)

2·(X·Y −1) .
For rectangle 1, the average distance between the node on its right-top corner

and the other nodes is given by p2

p+1 . Note that there are p2 − 1 nodes in this
rectangle other than the node at the right-top corner. Hence, the total distance
between any node and the node on the right-top corner is given by,

D1 =
p2

p + 1
· (p2 − 1) (4)

Similarly, total distance for rectangle 3 is given by,

D3 =
(
√

N − p)2√
N − p + 1

· (
√

N − p)2 − 1) (5)

Since rectangles 2 and 4 are of the same size, we have their total distance
given by,

D2 = D4 = 2 · p(
√

N − p)
2

·
√

N − 2
p(

√
N − p) − 1

· (p(
√

N − p) − 1) (6)

Also, note that the distance from A to Popt is 2, while the distance from B
and C to Popt is 1. Hence, we need to add an additional 2p2 and 2p(

√
N − p) to

account for the distances between all the points in rectangles 1, 2 and 4 to point
Popt.

From Equations (4), (5), and (6) we get,

d2(p) =
1

N − 1
·
[
(
√

N − p)2 · (
√

N − p − 1)

+p · (
√

N − p) · (
√

N − 2) + p2 · (p − 1) + 2 · p2 + 2 · p · (
√

N − p)
]

(7)

192 S. Kapadia and B. Krishnamachari

Simplifying the above expression we get,

d2(p) =
1

N − 1
·
[
N ·

√
N − N − 2 · N · p + 2 ·

√
N · p2 + 2 ·

√
N · p

]
(8)

From Equation (2) we have,

CDCS = min
p

(
E

N − 1
·
[
N ·

√
N − N − 2 · N · p

+2 ·
√

N · p2 + 2 ·
√

N · p
]

+ 2 · Q · (E + 1) · p) (9)

Using
√

N + 1 =
√

N − 1 ≈ √
N and N − 1 ≈ N , for large N, and simplifying

the above equation we get,

CDCS = min
p

((
√

N − 2 · p + 2√
N

· p2) · E + 2 · Q · (E + 1) · p) (10)

In order to determine the optimum value of p, we differentiate the above
equation with respect to p and set it to 0. This yields the minimum value for
CDCS because the above expression is convex in p. Hence, we get the optimal
value of p as,

p∗ =

√
N(

√
N − 1) · E − Q · (E + 1) · (N − 1)

2 · E · (√N + 1)
≈

√
N

2 · E (E − Q · (E + 1)) (11)

In the above expression, if p∗ ≤ 0, this implies that the event nodes should
send all their information directly to the sink. This resembles the external storage
scheme. In that case, the expression for CDCS reduces to

√
N · E. Hence, the

cost for query dissemination then goes to 0. Also, the condition for which p∗ > 0
is given by Q < E

E+1 .
Putting the optimal value of p∗ obtained from Equation (11) into Equa-

tion (10), we get the total cost for the DCS scheme (without summaries) as,

CDCS =

{√
N

[
Q · (1 + E) − Q2·(1+E)2

2·E + E
2

]
if Q < E

E+1√
N · E Otherwise

(12)

Cost of CN with optimized inter-tooth spacing. The derivation for the
analysis of the comb-needle strategy is adapted from [9], however, here we use
the exact expressions in case of the grid. First, we consider the case without
summaries. As with DCS, there are 3 different costs involved, Cneedle represents
the needle costs for forwarding the event information to a subset of nodes, Ccomb

represents the query dissemination cost and Cqr represents the cost for the query
response. Below, we present expressions for each of them.

CCN = Cneedle + Ccomb + Cqr (13)

Let s be the length of the needle formed by each node that senses an event.
Then, the total needle cost is given by,

Cneedle = s · E (14)

Comparative Analysis of Push-Pull Query Strategies 193

In the comb-needle strategy, the query is first sent out vertically upward from
the sink and then fans out horizontally (see Figure 1(b)). The distance between
consecutive horizontal fan outs is also s, also known as the teeth separation for
the comb.

Ccomb = (
√

N − 1) · (1 + (�
√

N − 1
s

� + 1)) · Q ≈ 2 ·
√

N · Q +
N · Q

s
(15)

Note that the ceil is present because there is a horizontal fan out at (0,0) and
(
√

N −1,0). Assuming, that each node where the comb tooth intersects with the
needle, replies along the shortest path to the sink (see Appendix 6), we have the
total query response cost given by,

Cqr =
N√

N + 1
· E · Q ≈

√
N · E · Q (16)

Hence, the total cost for the comb needle strategy is given by,

CCN = s · E + 2 ·
√

N · Q +
N · Q

s
+

√
N · E · Q (17)

Now we find the value of s that minimizes this total query cost. On solving

we get, s∗ =
√

N ·
√

Q
E

Hence, the total cost with the comb needle scheme without summaries is given
by,

CCN =
√

N · (2 · Q + 2 ·
√

Q · E + E · Q) (18)

Comparison of DCS and CN. Figure 3(a) and 3(b) compare the normalized
expected cost of querying (which is calculated as the total expected cost divided
by the square-root of the number of nodes) with the DCS and CN strategies
with respect to the two key parameters E and Q. Note that from Equations (12)
and (18), we can see that the total expected cost of querying is proportional
to

√
N for both DCS and CN. We observe that CN outperforms DCS as the

average number of events per epoch increases, while DCS outperforms CN when
the per-epoch query probability increases.

Figure 4 shows the regions in the E-Q plane where DCS and CN outperform
each other. This is generated by obtaining the zero-contour of the surface rep-
resenting the difference in cost between DCS and SCN as a function of E and
Q. We note that the equal-cost curve grows slowly with respect to E1. In par-
ticular, here, there is no threshold event rate beyond which CN is always better
regardless of the query rate — we shall see later that this is not always the case.

4.2 With Aggregation/Summaries

Cost of DCS with optimized hash location. With summaries, all the event
information can be compressed into a single packet and sent out to the sink,
1 This can be shown rigorously in terms of the derivative of that curve, but we do not

present that analysis here due to lack of space.

194 S. Kapadia and B. Krishnamachari

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Average no of events (E)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

CN
DCS

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Query probability (Q)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

CN
DCS

(a) (b)

Fig. 3. Cost of CN and DCS for ALL-type queries, without summary aggregation, with
respect to E (for Q = 0.1) and Q (for E = 10)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average no of events (E)

Q
ue

ry
 p

ro
ba

bi
lit

y
(Q

)

DCS is better

CN is better

Fig. 4. Relative Performance of CN and DCS for ALL-type queries, without summary
aggregation, with respect to event and query rates

hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) · Q + d1(p) · Q)(-With summaries) (19)

Using a similar procedure to that used earlier for the case without summaries,
since only the reply cost is different and everything else is the same, we obtain
the total cost for DCS with summaries as,

CDCS =

{√
N

[
2 · Q − 2·Q2

E + E
2

]
if Q < E

2√
N · E Otherwise

(20)

Cost of CN with optimized inter-tooth spacing. We now describe the
CN cost with summaries. The query dissemination cost, Cqd and the needle cost

Comparative Analysis of Push-Pull Query Strategies 195

Cneedle remain the same as was the case without summaries. For the reply cost,
we note that reply from the various events can be aggregated on the way back
to the sink. To account for this aggregation we approximate the reply cost to be
the same as the cost for the comb i.e. the cost for query dissemination. This is
because the events need only send their data horizontally toward the sink, the
vertical path downward toward the sink will account for the aggregation. Hence,
now we have the total cost for CN given by,

CCN = Cneedle + Ccomb + Cqr = Cneedle + 2 · Ccomb (21)

CCN = s · E + 4 · Q · (
√

N − 1) + 2 · (
√

N − 1) · (�
√

N − 1
s

�) · Q
≈ s · E + 4 · Q ·

√
N + 2 · Ns · Q (22)

Again, we solve for the optimum s to get, s∗ =
√

N ·
√

2·Q
E

Hence, the total cost with the comb needle scheme with summaries is given
by,

CCN = 2 ·
√

2 · N · Q · E + 4 ·
√

N · Q (23)

Comparison of DCS and CN. Figures 5(a) and 5(b) compare the normalized
expected cost of storage and querying with the DCS and CN strategies with re-
spect to the two key parameters E and Q. We observe that even with summaries
CN outperforms DCS as the average number of events per epoch increases, while
DCS outperforms CN when the per-epoch query probability increases.

Figure 6 shows the regions in the E-Q plane where DCS and CN outperform
each other. We can see that (unlike in the case without summaries) there exists an
threshold Θ for the event rate beyond which CN is always better. This threshold
can be derived analytically.

First, we can prove that when Q ≥ E/2, CDCS =
√

NE is always smaller
than CCN , hence there is no solution for CDCS − CCN = 0 in this case. When
Q < E/2, then we can write the expression for the equal-costs curve as follows:

√
N

[
(2Q − 2Q2

E
+

E

2
) − (2

√
2QE + 4Q)

]
= 0 (24)

As can be seen from the figure, the threshold event rate corresponds to the
point when there is a query at every epoch. Setting Q = 1, and solving the
above expression for E, we find that the threshold Θ ≈ 39.78. An important
point to note is that this threshold is a “magic number” that is independent
of the size of the network. It tells us a surprising design lesson: for a grid-
based network where ALL-type queries are always injected from the bottom left
corner, if there are more than 40 events on average in each epoch that must
be aggregated in response to queries, then a comb-needle approach is preferable
in terms of total energy cost as compared to a hash-based data-centric storage
approach.

196 S. Kapadia and B. Krishnamachari

0 2 4 6 8 10
0

1

2

3

4

5

6

Average no of events (E)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

CN
DCS

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Query probability (Q)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

CN
DCS

(a) (b)

Fig. 5. Cost of CN and DCS for ALL-type queries, with summary aggregation, with
respect to E (for Q = 0.1), and with respect to Q (for E = 1)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average no of events (E)

Q
ue

ry
 p

ro
ba

bi
lit

y
(Q

)

CN is better

DCS is better

Θ

Fig. 6. Relative Performance of CN and DCS for ALL-type queries, with summary
aggregation, with respect to event and query rates

5 Analysis of ANY-Type Queries

Recall that in case of ANY-type queries, the query need not visit every node
in the network, it should be terminated as soon as it hits a node that has the
desired information. Here, for such query types, we obtain the expressions for
the data-centric storage scheme and the modified comb and needle scheme which
we call the sequential comb-needle (SCN) scheme.

Cost of DCS. The cost for ANY-type queries remains the same as that ob-
tained for ALL-type queries with summaries. This is because the data centric
storage scheme stores all the information about a given event type at a named
location. Hence, the reply to the ANY-type query can be considered similar to

Comparative Analysis of Push-Pull Query Strategies 197

just returning the summary. Hence, the cost in case of DCS can be obtained
from Equation 20.

Cost of SCN. We now derive the cost for the sequential comb-needles (SCN)
approach. To determine the cost for the query transmission we need to obtain
the average number of hops/transmissions till a node with the desired event
information is hit. Since each event node replicates the data to s other nodes,
and the separation between successive horizontal traversals along the query path
is also s, the original grid with N nodes can be transformed to a new grid with
N
s nodes. The sequential comb-needle scheme then traverses this new grid as a
chain of N

s nodes. Denote n = N
s . Let X be a random variable that determines

the number of hops till a event node is hit by the query. Note that, even in this
compressed chain, E·s

s = E is the number of event nodes. Now, we have the cdf
of X given by,

FX(k) = P (X ≤ k) = 1 − (
n − k

n
)E (25)

We can now obtain the pmf of X as,

pX(k) = P (X ≤ k) − P (X ≤ k − 1) = (1 − k − 1
n

)E − (1 − k

n
)E (26)

0 2 4 6 8 10
0

1

2

3

4

5

6

Average no of events (E)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

SCN
DCS

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

Query probability (Q)

N
or

m
al

iz
ed

 e
ne

rg
y

co
st

SCN
DCS

(a) (b)

Fig. 7. Cost of SCN and DCS for ANY-type queries, with summary aggregation, with
respect to E (for Q = 0.1), and with respect to Q (for E = 2)

Now the expected value of X can be obtained by using Equation 26 as follows,

E[X] =
n−1∑
k=1

k · ((1 − k − 1
n

)E − (1 − k

n
)E) (27)

Let f(k) = (1 − k
n)E . Then we get,

E[X] =
n−1∑
k=1

k · (f(k − 1) − f(k)) (28)

198 S. Kapadia and B. Krishnamachari

This summation can be opened up so that the consecutive terms can be
grouped together to leave,

E[X] =
n−1∑
k=1

f(k) − n · f(n) =
n−1∑
k=1

(1 − k

n
)E (29)

Note that f(n) = 0, hence, in the above expression by substituting j = n− k,
we get,

E[X] =
n−1∑
j=1

(
j

n
)E =

1
nE

n−1∑
j=1

jE (30)

Approximating the summation by an integration, we get,

E[X] ≈ 1
nE

· nE+1

E + 1
=

n

E + 1
=

N
s

E + 1
(31)

Note that E[X] just accounts for the number of horizontal steps taken by the
SCN query path. We also need to account for the vertical steps that it takes.
This can be approximated by determining the y-coordinate of the point where
SCN hits the first event node. This is given by,

E[Y] =
N

s·(E+1)√
N

· s =
√

N

E + 1
(32)

For simplicity, we assume that the query response path is the same as that
taken by the query. Now, we can get the total cost in case of SCN as,

CSCN = Cneedle + Cqd + Cqr (33)

CSCN = s.E +
N
s

E + 1
· Q +

N
s

E + 1
· Q + 2 ·

√
N

E + 1
(34)

Solving for the value of s that minimizes CSCN we get s∗ =
√

2·N ·Q
E·(E+1) . Using

this value, we get the total cost in case of the sequential comb-needle strategy
as,

CSCN = 2 ·
√

2 · N · Q · E
E + 1

+ 2 ·
√

N

E + 1
(35)

Comparison of DCS and SCN. Figures 7(a) and 7(b) compare the normal-
ized expected cost of storage and querying with the DCS and SCN strategies
with respect to the two key parameters E and Q. We observe that SCN out-
performs DCS as the average number of events per epoch increases, while DCS
outperforms SCN when the per-epoch query probability increases.

Figure 8 shows the regions in the E-Q where DCS and SCN outperform each
other. We can see that in this case, there are two significant thresholds for the
event rate. Below a lower threshold Θlower, we find that DCS is always better

Comparative Analysis of Push-Pull Query Strategies 199

(regardless of the query probability), and above an upper threshold Θupper , SCN
is always better (regardless of the query probability). These “magic numbers”
can be derived analytically.

First, similar to the analysis of the DCS and CN strategies with aggregated
responses for the ALL-type queries, we can prove that when Q ≥ E/2, CDCS =√

NE is always smaller than CSCN . When Q < E/2, then we can write the
expression for the equal-costs curve as follows:

√
N

[
(2Q − 2Q2

E
+

E

2
) − (2

√
2QE

E + 1
+

2
E + 1

)

]
= 0 (36)

As can be seen from the figure, the threshold event rate corresponds to the
point when there is a query every epoch. Setting Q = 0, and solving the above
expression for E, we get the lower threshold Θlower ≈ 1.56. Setting Q = 1 and
solving the above expression for E, we find that the threshold Θupper ≈ 3.16.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average no of events (E)

Q
ue

ry
 p

ro
ba

bi
lit

y
(Q

) DCS is better

SCN is better

Θ
upper

Θ

lower

Fig. 8. Relative Performance of SCN and DCS for ANY-type queries with respect to
event and query rates

6 Conclusions and Future Research Directions

We have presented a comparative analysis of two distinct and important ap-
proaches to hybrid push-pull querying in wireless sensor networks - the struc-
tured hash-based DCS, and the unstructured CN/SCN. We have examined their
performance with respect to key environment, network, and application param-
eters including the event and query rates, network size, type of query, and the
use of in-network aggregation.

We have found that the costs of DCS, CN, and SCN are all directly propor-
tional to the square-root of the number of nodes in the network. Therefore, the
relative performance of DCS versus CN/SCN is unaffected by network size. The
exact shape of the relative best performance regions for the two approaches do
change depending on the query type (ALL, ANY) and the use/non-use of sum-
mary aggregation; however, we find in all cases that the unstructured CN/SCN

200 S. Kapadia and B. Krishnamachari

approach generally outperforms the DCS strategy when the number of events per
epoch is large, while the reverse is true for small number of events, particularly
for higher query rates. A possible explanation for this is that, relatively speak-
ing, the query cost burden is reduced in structured strategies like DCS when
compared with an unstructured strategy like CN/SCN because the use of hash-
ing provides a predetermined location to pick up information about all events.
But this comes at the expense of a higher cost burden in event notification since
all events must be transmitted to a generally non-local hash location. Thus a
hash-based push-pull scheme like DCS favors high query rates but low event
rates, compared to a path-intersection based push-pull scheme like CN/SCN. It
is possible that considering replication of event storage locations in DCS changes
this tradeoff. This can be explored in future work.

Our analysis reveals the existence of event rate thresholds for aggregate ALL-
type queries (Θ ≈ 39.78) as well for as ANY-type queries (Θlower ≈ 1.56, Θupper ≈
3.16), that dictate which protocol should be used in a given application scenario
regardless of the query probability. Moreover, we believe that these magic num-
bers will exist even in the case of a random deployment of sensor nodes. This re-
mains a promising future research direction. We are currently implementing sim-
ulations and considering extending the analysis to further study the behavior of
these strategies with a random deployment of sensor nodes.

Besides offering some concrete guidelines for practitioners, this study sug-
gests a number of other interesting directions for future work. Our analysis can
be extended to include other querying protocols enabling comparison of various
proposed schemes under a common framework. These include extensions of the
analysis taking into account different deployment topologies, different cost met-
rics (including other energy models, as well as delay), different types of queries
(for example, complex queries involving multiple attributes) and allowing mul-
tiple querying sinks. The theoretical results we present should also be validated
through experiments on a real application/test-bed.

Acknowledgements

We’d like to thank the members of the USC Autonomous Networks Research
Group for their feedback on this paper. A special thanks to Joon Ahn, Sundeep
Pattem, and Kiran Yedavalli for their technical input.

References

1. R. Govindan, “Data-Centric Storage in Sensor Networks, in Wireless Sensor Net-
works”, (T. Znati, K. Sivalingam, C. S. Raghavendra Ed.), Kluwer Publishers,
2003.

2. C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks, In Proceedings of the Sixth
Annual International Conference on Mobile Computing and Networks (MobiCOM),
August 2000.

Comparative Analysis of Push-Pull Query Strategies 201

3. S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, TAG: a Tiny AGgre-
gation Service for Ad-Hoc Sensor Networks, 5th Symposium on Operating System
Design and Implementation (OSDI 2002), December 2002

4. D. Braginsky and D. Estrin, “Rumor Routing Algorithm For Sensor Networks”,
The First Workshop on Sensor Networks and Applications (WSNA’02), October
2002.

5. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-Centric
Storage in Sensornets”, ACM SIGCOMM, Computer Communications Review,
Vol. 33, Num. 1, January 2003.

6. S. Shakkottai, Asymptotics of Query Strategies over a Sensor Network, INFO-
COM’04, March 2004

7. B. Krishnamachari and J. Heidemann, “Application-Specific Modelling of Infor-
mation Routing in Wireless Sensor Networks,” Workshop on Multihop Wireless
Networks (MWN’04) held in conjunction with the IEEE International Performance
Computing and Communications Conference (IPCCC), April 2004.

8. N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. “Hybrid Push-
Pull Query Processing for Sensor Networks”, In Proceedings of the Workshop on
Sensor Networks as part of the GI-Conference Informatik 2004. Berlin, Germany,
September 2004.

9. X. Liu, Q. Huang, Y. Zhang, “Combs, Needles, Haystacks: Balancing Push and
Pull for Discovery in Large-Scale Sensor Networks”, ACM Sensys, November 2004

10. N. Sadagopan, B. Krishnamachari, and A. Helmy, “Active Query Forwarding in
Sensor Networks (ACQUIRE)”, Ad Hoc Networks Journal-Elsevier Science, Vol.
3, No. 1, pp. 91-113, January 2005.

11. N. Chang and M. Liu, “Revisiting the TTL-based Controlled Flooding Search:
Optimality and Randomization”, Proceedings of the Tenth Annual International
Conference on Mobile Computing and Networks (ACM MobiCom), September,
2004, Philadelphia, PA.

12. B. Krishnamachari and J. Ahn, “Optimizing Data Replication for Expanding Ring-
based Queries in Wireless Sensor Networks”, USC Computer Engineering Technical
Report CENG-05-14, October 2005.

Appendix

Average distance between a node located at the bottom-left corner
and any other node within a X × Y rectangular grid.

This can be expressed by the following summation:

Drect =

∑X−1
i=0

∑Y −1
j=0 (i + j)

X · Y − 1
(37)

Evaluating the above expression, we get

Drect =
X · Y · (X + Y − 2)

2 · (X · Y − 1)
(38)

Note that from this by setting X = Y =
√

N , we have the distance from the
node at one corner to any point in the

√
N by

√
N square grid:

Dsquare =
N√

N + 1
(39)

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 202 – 217, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Data Aggregation to Prevent Traffic Analysis
in Wireless Sensor Networks

William Conner, Tarek Abdelzaher, and Klara Nahrstedt

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, Illinois, USA 61801-2302

{wconner, zaher, klara}@uiuc.edu

Abstract. When communication in sensor networks occurs over wireless links,
confidential information about the communication patterns between sensor
nodes could be leaked even when encryption is used to protect the actual
contents of the messages. The communication patterns, which often reveal
higher volumes of traffic near the sink, could allow an attacker to identify the
vicinity of the sink node. With this information, an attacker could potentially
disable the network by destroying the sink. In this paper, we present the decoy
sink protocol, which protects the location of the sink in target tracking sensor
network applications by forwarding data to a decoy sink for aggregation before
the aggregated data is forwarded to the real sink from the decoy sink.
Combining indirection and data aggregation in our protocol creates more traffic
away from the sink and reduces the amount of traffic near the sink, which
makes traffic analysis more difficult for attackers.

Keywords: Traffic analysis prevention, data aggregation, sensor networks.

1 Introduction

In recent years, many applications have been implemented on top of wireless sensor
networks. The types of sensor network applications and their primary users vary
greatly with applications ranging from habitat monitoring [1] used by scientists to
shooter localization [2] used by soldiers. One particular class of sensor network
applications that has received much attention from the sensor network research
community is target tracking [3],[4],[5]. In target tracking applications, the sensors
in the network collectively monitor the current position of one or more objects
meeting some user-defined criteria (e.g., exceeding some amount of ferrous content
as suggested in [6]). Target tracking can be used to monitor the locations of many
types of objects, such as tanks in military scenarios [6] or animals in wildlife
scenarios [7].

Although researchers developing target tracking applications have given much
consideration to challenges, such as target detection [5] and handling multiple targets
[4], very little attention has been given to the security of such systems. As Deng et al.
observe, communication patterns in sensor networks are often very asymmetric with
significantly more traffic appearing near the sink [8]. Many target tracking
applications happen to exhibit this asymmetric communication pattern.

 Using Data Aggregation to Prevent Traffic Analysis 203

In sensor networks, if the sink node and other nodes near the sink have higher
amounts of traffic than nodes further away from the sink, then an opportunity exists
for adversaries equipped with electronic listening devices to locate the sink through
traffic analysis even if all the sensor nodes and sink are camouflaged in the
background, as mentioned in [8]. As Deng et al. also observe in [16], such an attack
does not depend on the adversary viewing the message contents. Therefore,
symmetric encryption schemes, such as those described in [9],[10], and asymmetric
encryption schemes, such as those described in [11],[12], will not protect the sink's
location from being discovered by the adversary.

Assuming that the sink is the interface between the sensor network and the target
tracking application's remote data storage and analysis backend, then an adversary can
prevent target tracking by disabling the sink through physical destruction (e.g.,
detonating an explosive device in the sink's vicinity). Locating the sink allows an
adversary to execute such attacks very efficiently since attacks can be focused on the
sink and its immediate surrounding area. For example, consider the target tracking
application depicted below in Figure 1. If an adversary determined the approximate
location of the sink through traffic analysis, then it could physically damage the area
surrounding the sink through some means, such as detonating an explosive device in
the area shown by the shaded region in Figure 1. If the explosive destroys all the
sensors in the shaded region including the sink, then the remote facility cannot
acquire data from the sensor network.

Fig. 1. Example application with remote storage and analysis

Preventing traffic analysis in sensor networks is a difficult problem. Since
communication is over a wireless medium, adversaries can easily detect the existence
of communication by using electronic listening devices. Although traditional traffic
analysis prevention techniques, such as traffic padding described in [15], are useful in
wired networks and some ad hoc networks, these techniques might consume too much
energy in wireless sensor networks. Therefore, strategies that prevent traffic analysis
in sensor networks must be designed for energy efficiency in addition to security.

In this paper, we present a novel approach for preventing traffic analysis in target
tracking sensor network applications by combining the use of indirection and data
aggregation. In our approach, the basic idea is that all sensors will first send their
readings to some designated non-sink node (referred to as a decoy sink node) that will
aggregate these readings into summary messages that will then be forwarded to the

Remote Data
Storage and

Analysis

Sink
Target

Target

Target

204 W. Conner, T. Abdelzaher, and K. Nahrstedt

real sink node. Since the traffic pattern towards the decoy sink node will increase and
the traffic pattern towards the real sink will decrease (due to aggregation), we are able
to protect the location of the real sink from adversaries performing traffic analysis.
We have extended our basic idea of using a single decoy sink node to our final
solution where multiple decoy sink nodes are used to further increase the randomness
of traffic patterns and provide robustness should an adversary attack a decoy sink
node mistakenly believed to be the real sink. In the next section, we will discuss
related work. In section 3, we will present our solution to preventing traffic analysis
in target tracking sensor networks. Our performance evaluation follows in section 4.
Finally, we will conclude in the last section.

2 Related Work

Much work has previously been done on preventing traffic analysis in traditional
wired networks for applications such as electronic mail and Web browsing. In such
networks, the major concern has typically been the prevention of eavesdroppers
from determining the endpoints of a communication by protecting the identities of
the source and destination. Onion routing, for example, provides anonymous
communication by sending data from a source through a series of onion routers
before the data ultimately reaches its destination [13]. Each message has several
layers of encryption, where each layer corresponds to exactly one onion router
along the path. Each layer is decrypted by the corresponding onion router to
determine the next hop in the path for forwarding. Freenet, which is a peer-to-peer
system that protects the anonymity of both content publishers and content
downloaders, is another example [14].

Some previous work has also been done on preventing traffic analysis in wireless
sensor network applications. Phantom routing protects the location of source sensors,
which detect and report events, by having source sensors first route data in a random
direction toward a phantom source and then route the data from that phantom source
to the sink through flooding [17]. Phantom routing assumes that an adversary is
initially positioned at the sink with a listening device. Phantom routing intends to
protect the source sensors' locations by creating the illusion that sensor data is coming
from several different directions (i.e., phantom sources). This prevents the adversary
from backtracking to the real source location because a steady stream of data from a
stationary source to the sink is not available. Our approach differs from phantom
routing in several ways. First, we are concerned with protecting the sink node rather
than source nodes. Also, our solution relies on data aggregation to protect the sink's
location rather than depending solely on indirection. Unlike phantom routing, our
approach does not assume that adversaries have a limited view of the sensor network.

Deng et al. also present algorithms for protecting the location of the sink in a
wireless sensor network in order to prevent physical attacks made possible by locating
the sink through traffic analysis [16]. Their approach is based on four techniques.
The first two techniques introduce variation in the multi-hop path taken from a sensor
node to the sink by having sensors forward data to a randomly chosen parent from
among multiple parents and also taking random walks along the way. The third

 Using Data Aggregation to Prevent Traffic Analysis 205

technique generates fake packets at nodes forwarding real data with a certain
probability and these fake packets are then routed along random fake paths to non-
existent sinks. The last technique introduces several random areas of high
communication activity by creating random fake paths with a higher probability
towards areas that have forwarded fake packets in the past. Unlike the algorithms
presented in [16], our approach does not rely on creating additional fake packets to
obscure the communication patterns toward the sink. Rather than adding fake traffic
to hide the sink's location, we have chosen to first aggregate data away from the sink
before forwarding the summarized data to the sink in an effort to conceal its location.

3 Decoy Sinks

The decoy sink protocol, which is presented in more detail later in this section, is a
novel approach to traffic analysis prevention in wireless sensor network target
tracking applications. Our solution combines indirection, which has previously been
used in traffic analysis prevention [13],[14],[16],[17], and data aggregation, which is
often used in sensor networks to save energy [18],[19]. We use this combination to
protect the location of the sink. To the best of our knowledge, we are the first to use
in-network data aggregation specifically for the purpose of preventing traffic analysis.
Before describing the decoy sink protocol in depth, we will first discuss the various
assumptions in our sensor network model, application model, and attack model.

3.1 Sensor Network Model

The sensor network model that we assume in the decoy sink protocol is quite simple.
Many simplifying assumptions were made so that we could focus on our specific
research problem of preventing traffic analysis rather than addressing the details of
other open sensor network problems outside the scope of this paper.

In our model, the network consists of a large number of nodes equipped with both
sensors for target detection and radios for communication. The specific type of
sensor used is intentionally left unspecified since that choice is not constrained by our
protocol. We also do not assume that the radios are capable of employing spread
spectrum techniques to interfere with the ability of the attacker to detect
communications with its listening device. Although spread spectrum techniques can
be used in sensor networks consisting of MicaZ motes, our protocol is still useful for
sensor networks consisting of older generations of motes, such as Mica2 [25],[26].
Sensors are also assumed to know their own locations through either manual
configuration or a localization algorithm, such as in [20],[21],[22]. In our model,
sensors are assumed to have energy constraints, so energy is a major concern in our
protocol.

Our sensor network model assumes that communication between the sensors and
the sink is over a multi-hop wireless network since our networks might consist of
hundreds or even thousands of sensor devices. Due to the loss characteristics of
multi-hop wireless sensor networks, as discussed in [23], we assume that there will be
some probability p of packet loss at each hop.

206 W. Conner, T. Abdelzaher, and K. Nahrstedt

3.2 Application Model

The type of application running on top of our sensor network is a simple target
tracking application where we assume that sensors sample the environment once per
sampling period in which they either detect a target or do not detect a target. If one or
more sensors detect a target, then those sensors that detect the target will
collaboratively apply some aggregation function to all of their location information
and send a summarized report back to the sink over possibly multiple wireless hops.
The reports are sent along a shortest path routing tree back to the sink. If a sensor
does not detect a target, then no reports are created and sent from that particular node
(however, that node might forward reports originating at other nodes).

The specific type of targets considered and detection measurements used in our
application model is intentionally left unspecified since our decoy sink protocol is
general enough to be useful in many different target tracking application scenarios.
For specific target detection techniques, the reader should consider one of the target
tracking applications presented in [3],[4],[5],[6]. Figure 2(a) below shows an
example target tracking application where nodes send messages identifying their
location back to the sink if they detect the target.

Fig. 2. Example target tracking application

3.3 Attack Model

When discussing the decoy sink protocol in the next section, we assume that all
messages are encrypted and that adversaries are not capable of breaking the
cryptosystems used for encryption. Therefore, adversaries cannot determine the
contents of messages. However, we also assume that adversaries have a global view
of the sensor network's communication patterns over long periods of time. For
example, an adversary might sparsely deploy several low-end listening devices
capable of counting the number of transmissions overheard. Upon collecting these
devices after some period of time and analyzing their data, the adversary can then
determine the areas of highest communication (i.e., the best candidate areas for
physical destruction).

(a) Without decoy

Target
t = 0

Target
t = 1

Target
t = 2

Target
t = 3

Sink

Target
t = 0

Target
t = 1

Target
t = 2

Target
t = 3

Aggregated
Data

Real
Sink

(b) With decoy

Decoy
Sink

 Using Data Aggregation to Prevent Traffic Analysis 207

Although it would be costly for the adversary, tightly synchronized high-end
listening devices that communicate with each other might be able to collectively
figure out the direction packets are traveling using timing correlation as described in
[16]. However, we do not assume tightly synchronized high-end listening devices
that communicate with one another to perform traffic analysis, because we assume the
adversary wants to execute an inexpensive and efficient attack on the sink area that
does not consume a lot of resources. If a dense field of high-end listening devices
were required, then it might be more efficient for the adversary to destroy the entire
field rather than attempting to locate the sink for a focused attack (e.g., detonating
several explosive devices might be cheaper than deploying several high-end listening
devices).

Phantom routing and the GSAT test used by Deng et al. to evaluate their solution
both assume that adversaries have a view of traffic over a limited surrounding area
within the sensor network with a single attacker gradually moving (based on local
decisions) towards areas of higher traffic until they reach the source sensors or the
sink, respectively [16],[17]. Our attack model places fewer restrictions on the
adversary than these two assumptions since we assume that adversaries can have a
global view of the number of transmissions received by each sensor. Our attack
model makes assumptions closer to the other evaluation criteria presented by Deng
et al. that measures the overall randomness in the entire sensor network's traffic
patterns [16].

3.4 Decoy Sink Protocol

The decoy sink protocol that we propose is straightforward. Rather than forwarding
data directly to the sink along the shortest path, sensors will forward their readings to
an intermediate node other than the sink, which we refer to as the decoy sink. Before
reaching the decoy sink, the data is first aggregated locally in the vicinity of the
detected target. This aggregation is similar to the aggregation already used in many
target tracking applications, such as [6]. We will refer to this sort of aggregation as
local aggregation. Although other aggregation functions could be used, the local
aggregation function that we consider is that every node that detects the target will
broadcast its estimated distance from the target to its neighboring sensors and only the
closest node to the target will actually forward its data to the decoy sink. The decoy
sink will then perform additional aggregation on the aggregated data received from
the sensors. Any further aggregation done by the decoy sink will be referred to as
remote aggregation. After performing remote aggregation, the decoy sink will finally
forward the summarized data to the real sink. While local aggregation is done to save
energy, remote aggregation is done specifically to prevent traffic analysis by reducing
the amount of data headed to the real sink.

In-network Data Aggregation. Sending a stream of readings to a decoy sink before
forwarding them to the real sink creates a high traffic area near the decoy sink but it
does not necessarily conceal the high traffic area near the real sink. To ensure that the
amount of traffic near the real sink is reduced, we have the decoy sink perform remote
aggregation on the readings before sending a stream of summarized data back to the
real sink. Since the real sink is now receiving fewer messages from the decoy sink

208 W. Conner, T. Abdelzaher, and K. Nahrstedt

than it would otherwise receive directly from the sensors, the amount of traffic headed
towards the real sink is significantly reduced. The contrast between Figure 2(b) and
2(a) illustrates the approach of the decoy sink protocol.

Multiple Decoy Sinks. One problem that could potentially arise when the decoy sink
protocol is used is that attackers can use characteristics of the protocol to their
advantage. One potential exploit would be for an attacker to physically destroy the
decoy sink, which can be located by finding the highest traffic area. This traffic
analysis attack is similar to the attack used on the real sink and might occur if an
adversary mistakenly believes that the decoy sink is the real sink. Since all of the
sensor data goes through the decoy sink, the sensor network target tracking
application is now effectively disabled if the decoy sink is destroyed.

Another potential attack that uses characteristics of the decoy sink protocol is that
an attacker could infer the location of the real sink by searching for areas that do not
have the highest amount of traffic since traffic headed towards the real sink is
significantly reduced due to in-network aggregation. Ideally, we want to avoid large
variations in the traffic volume among different areas within the sensor network.

In order to protect against the above attacks, we propose deploying multiple decoy
sinks at random locations in the sensor network to provide robustness against attacks
on the decoy sink location and to more evenly distribute traffic in the sensor network.
These decoy sink nodes can be chosen randomly and configured offline prior to
deployment. Each decoy sink node will have a unique decoy identifier in addition to
its unique node identifier (both of these identifiers are assigned offline prior to
deployment). During initialization of the application, each decoy sink node will flood
a decoy setup message containing its unique decoy identifier in order for the other
sensor nodes to set up their routing information to the different decoy sink nodes.
These decoy setup messages are similar to the message that the real sink floods during
initialization to set up a shortest path routing tree with itself as the root.

Based on the decoy setup messages received, each sensor node will build a decoy
routing table identifying the node along the next hop towards each individual decoy
sink node. The decoy routing table entries are ordered by decoy identifier (from
lowest to highest) and each sensor node will send all readings to a particular decoy
sink for a certain time period T before switching to the next decoy entry in a round-
robin fashion. We assume that the sensor nodes have their clocks synchronized using
a clock synchronization algorithm, such as described in [27]. We also assume that
each sensor uses the same time period T between decoy sink transitions and begins at
the same decoy entry in their respective routing tables (e.g., at time t0, each node will
start with the lowest decoy identifier).

Figure 3 provides an example of a decoy routing table at some sensor node x when
there are four decoys (assume that t is this sensor node's current clock time in
seconds). This sensor node will forward any locally aggregated readings to the
currently active decoy sink based on its decoy routing table. In this example,
assuming that decoys are switched every T seconds where T = 10, then x will send its
reading taken at time t = 65 to the decoy sink with decoy identifier 2 via the node with
node identifier 604. Of course, other intermediate nodes along the path between node
x and decoy 2 might need to forward the reading. After x specifies some decoy sink

 Using Data Aggregation to Prevent Traffic Analysis 209

Decoy
Id

Next Hop
Node Id

Decoy Active When?

0 47 if 0 ≤ (t mod 4T) < T
1 389 if T ≤ (t mod 4T) < 2T
2 604 if 2T ≤ (t mod 4T) < 3T
3 105 if 3T ≤ (t mod 4T) < 4T

Fig. 3. Example decoy routing table

identifier y as the destination for its message, all of the other sensor nodes along the
path must forward the message to y regardless of the time when they receive the
message.

If a decoy sink area is destroyed, then the only data lost would be data sent during
the time period when the decoy sink in that area was supposed to be active. When the
other decoy sinks that have not been destroyed are active, the sensor network would
be able to resume tracking the target. Multiple decoy sinks add robustness against
physical attacks on the decoy sink location. If an attacker has to destroy several
decoy sinks, then the attack becomes expensive, which contradicts the attacker's
original goal of executing an efficient, focused attack. Another benefit of multiple
decoy sinks is that traffic is more evenly distributed throughout the sensor network,
which provides better sink location protection.

4 Performance Evaluation

The decoy sink protocol was evaluated through simulation of a wireless sensor
network target tracking application using the JProwler discrete event simulation tool
from Vanderbilt University [24]. Some of the simulation tool's code was modified in
order to implement the customizations necessary for our simulation. Each simulation
of the application consisted of 1000 sensor nodes placed randomly in a 300 meter ×
300 meter field. The total simulated time for each simulation was 60 minutes. The
radio range of each sensor was 30 meters with p = 0.05 where p is the probability of
packet loss at each hop. To deal with packet losses, link-level retransmissions with
passive acknowledgements, as briefly described in [23], were used. We set the
maximum number of retransmission attempts to three.

In addition to the sensor nodes, a node representing the real sink was placed in the
northwest corner of the field. Targets would appear at a random position along one of
the following borders of the field: north, south, east, or west. Targets would then
move at 4 meters per second across the field headed in one of the following
directions: north to south, south to north, east to west, or west to east. As soon as one
target finished crossing the field, another target would appear in a new random
position. The same sensor network topology and target events were used for each
simulation run to ensure a fair comparison. Upon detecting the target, the sensors
sampling at a rate of 4 Hz would perform local aggregation as described in section 3.4
and send their data over multiple hops either to the real sink or the decoy sink
depending on whether or not the decoy sink protocol was used in that particular

210 W. Conner, T. Abdelzaher, and K. Nahrstedt

simulation run. In the simulations, a sensor would detect the target if the target was
within a range of 10 meters.

In each simulation, zero or more decoy sink nodes would be randomly chosen from
the 1000 total sensor nodes with at most one active decoy sink node at any given time.
Therefore, the decoy's current location was at possibly one or more different random
positions throughout each simulation run when the decoy sink protocol was used. In
our simulations, a new decoy sink node would become active in a new random
location every T seconds as described in section 3.4. In each simulation, T was set to
the total simulation time in seconds divided by the total number of decoy sink nodes.

The remote aggregation function used at the currently active decoy sink node was
to buffer the readings it has received for the past r seconds, average those readings,
send the average value to the real sink, and then clear the buffer. This procedure was
done repeatedly at each currently active decoy sink. With the hope of evenly
distributing the traffic, we tried to choose r in such a way that the real sink would
receive approximately the same number of readings that each decoy sink received.
Assuming that there are d decoy sinks with all sensor nodes sampling at rate s and
that each decoy is active for roughly the same amount of time overall while targets are
present, then each decoy sink receives approximate s / d messages per second on
average. Therefore, we chose r such that r = d / s. This value of r would allow the
real sink to also receive approximately s / d messages per second on average. Please
refer to Table 1 to check the different values of r for the different numbers of decoy
sinks used in our simulations.1

Table 1. Simulation parameters

Number of
decoy sinks d

Remote
aggregation period r

Sampling rate s

1 1 sec 4 Hz
4 1 sec 4 Hz
8 2 sec 4 Hz

20 5 sec 4 Hz

The specific metrics used to evaluate the decoy sink protocol were the following:
protection of the sink's location, and overhead in terms of delay and energy. The
results are discussed in more detail in the following subsections.

4.1 Sink Location Protection

The first measure of how well the real sink's location is protected from adversaries
is checking how the number of transmissions received by each sensor node relates
to the number of hops away from the real sink for that particular sensor node. The
following figures illustrate how the number of transmissions received by each

1 One exception to our rule for choosing an appropriate r was the special case when d = 1 since

we would have to send every message even when remote aggregation was used (i.e., no
remote aggregation would occur). For that case, we set r = 1, which is the same r used with
four decoy sinks.

 Using Data Aggregation to Prevent Traffic Analysis 211

sensor node varies as the number of hops away from the real sink increases. The
different graphs in the figures represent different numbers of randomly placed
decoy sinks used during that simulation run and whether or not remote aggregation
was used.

As shown in the comparison of Figure 4 with Figure 5, using the decoy sink
protocol with one decoy sink creates a high traffic area away from the real sink. In
Figure 5, when remote aggregation is not used, there is still a high traffic area
present near the real sink. In Figure 5, when remote aggregation is used, the traffic
headed towards the real sink is significantly reduced. However, there is a relatively
high volume of traffic near the single decoy sink when remote aggregation is used
and the decoy sink's location is not protected very well since multiple decoy sinks
are not used.

0

20000

40000

60000

80000

100000

120000

0 10 18 26 32 44

Number of Hops from Sink

N
u

m
b

er
 o

f
T

ra
n

sm
is

si
o

n
s

R
ec

ei
ve

d

Fig. 4. No decoy sinks used

The benefits of combining multiple decoy sinks with remote aggregation become
clearer in Figure 6, which shows that using remote aggregation can conceal the
amount of traffic headed towards the real sink considerably while also concealing the
locations of the various decoy sinks. When remote aggregation is not used with
multiple decoy sinks, traffic near the real sink is relatively higher than other areas
because the real sink is still receiving a steady stream of all the locally aggregated
readings while the decoy sinks are only receiving a fraction of those readings.
Therefore, simply using multiple decoy sinks without remote aggregation does not
provide enough protection for the real sink's location. As shown in Figure 6, remote
aggregation reduces the amount of traffic headed towards the real sink. Figure 6 also
shows that using a larger number of decoy sinks tends to more evenly distribute the
number of transmissions received at each node. However, this improvement in traffic
analysis prevention might reduce the performance of the target tracking application
since fewer readings are sent to the real sink due to the larger remote aggregation

212 W. Conner, T. Abdelzaher, and K. Nahrstedt

0

20000

40000

60000

80000

100000

120000

0 10 18 26 32 44

Number of Hops from Sink

N
u

m
b

er
 o

f
T

ra
n

sm
is

si
o

n
s

R
ec

ei
ve

d

0

20000

40000

60000

80000

100000

120000

0 10 18 26 32 44

Number of Hops from Sink

N
u

m
b

er
 o

f
T

ra
n

sm
is

si
o

n
s

R
ec

ei
ve

d

Fig. 5. One decoy sink used

periods that result from using more decoy sink nodes (please see Table 1). The effect
of the decoy sink protocol on the performance of the target tracking application really
depends on the characteristics of the application (e.g., speed of the targets). A tradeoff
exists between protecting the real sink's location and tracking the target's position
with more frequent readings.

Figure 7 uses the standard deviation of the number of transmissions received at
each node to quantify the variability in the number of transmissions received at each
node. When only one decoy sink is used in our simulations, the spread in the number
of transmissions received at each node is quite large because the traffic is not more
evenly distributed, as would be the case when multiple decoy sinks are used. As
Figure 7 shows, increasing the number of decoy sinks when remote aggregation is
used considerably decreases the spread in the number of transmissions received at
each node. A lower standard deviation indicates a more even distribution of traffic,
which makes traffic analysis more difficult.

With remote aggregation

Without remote aggregation

 Using Data Aggregation to Prevent Traffic Analysis 213

0

20000

40000

60000

80000

100000

120000

0 10 18 26 32 44

Number of Hops from Sink

N
u

m
b

er
 o

f
T

ra
n

sm
is

si
o

n
s

R
ec

ei
ve

d

0

20000

40000

60000

80000

100000

120000

0 10 18 26 32 44

Number of Hops from Sink

N
u

m
b

er
 o

f
T

ra
n

sm
is

si
o

n
s

R
ec

ei
ve

d

Fig. 6. Eight decoy sinks used

4.2 Delay and Energy Overhead

Since the decoy sink protocol involves sending data to an intermediate destination
(i.e., the decoy sink) before the summarized data is forwarded to the ultimate
destination (i.e., the real sink), we can expect some additional message overhead with
respect to delay and energy. The expectation of lower delay and lower energy when
the decoy sink protocol is not used is due to the fact that sensor readings are
forwarded directly to the real sink without an intermediate destination along the way.
Table 2 below illustrates the additional delay, which is measured in the average
number of hops per message. Additional message delay along the path from the
sensors detecting the target to the real sink is introduced when we send data to a
decoy sink before forwarding it on to the real sink.

As expected, the average number of message hops increases since all data must
first be forwarded to the decoy sink as an intermediate step before being forwarded to
the real sink. However, one interesting result from Table 2 is that the average number
of hops per message can be brought down considerably in our simulations if we

Without remote aggregation

With remote aggregation

214 W. Conner, T. Abdelzaher, and K. Nahrstedt

0

5000

10000

15000

20000

25000

30000

0 1 4 8 20

Number of Decoy Sinks

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

No remote
aggregation

Remote
aggregation

Fig. 7. Measuring spread in the number of transmissions received at each node

increase the number of decoy sinks used. In the case when only one decoy sink is
used, the average number of hops per message is probably greater since that particular
decoy sink happens to be far away from the real sink in our simulations. By using a
larger number of random decoy sink nodes over time, we can balance long message
hop distances due to decoy sink locations further away from the real sink with shorter
message hop distances due to decoy sink locations closer to the real sink.

Table 2. Average number of hops per message (remote aggregation was used)

Number of
decoy sinks

Avg. number
of hops

0 22.61
1 58.95
4 35.94
8 37.80

20 35.29

An interesting result also appears in Table 3, which shows that the total amount of
energy consumed using the decoy sink protocol is not necessarily that much greater
than the amount of energy consumed without the decoy sink protocol. In Table 3, N
denotes the number of decoy sinks in a particular simulation run. Of course, the
energy costs depend heavily on how much we aggregate the data at the decoy sink
nodes. For example, if we use eight decoy sink nodes, then the total number of
messages transmitted is actually less than the case when no decoy sinks are used at
all. The lower energy costs in this case is due to the more aggressive remote
aggregation used when we have a larger number of decoy sink nodes (please refer to
Table 1). In most of the simulations, locally aggregated message transmissions and
link-level retransmissions were the dominant energy costs. These two types of
messages must be sent regardless of whether or not the decoy sink protocol is used.

 Using Data Aggregation to Prevent Traffic Analysis 215

Table 3. Energy consumed (remote aggregation was used)

Number of Messages Sent/Forwarded for Each Message Type
(LA = locally aggregated, B = broadcast announcing proximity to target,

R = retransmission, RA = remotely aggregated, DS = decoy setup) N

LA B R RA DS Total
0 328235 46656 108698 0 0 483589
1 249679 48946 131623 147971 1002 579221
4 250844 50284 116003 69007 4008 490146
8 241075 48263 102498 39093 8016 438945

20 203221 48622 86392 16133 20040 374408

5 Conclusion

The decoy sink protocol presented in this paper combines the idea of indirection (a
common technique for preventing traffic analysis in traditional wired and sensor
networks) with in-network data aggregation (a technique typically applied to reducing
power consumption in sensor networks) in an effort to prevent traffic analysis in
wireless sensor networks. The attack considered in this paper was adversaries
attempting to locate and destroy the sink node in target tracking sensor networks. The
basic decoy sink protocol operates by having sensor nodes send locally aggregated
readings to a decoy sink node that will remotely aggregate the data before forwarding
it to the real sink. Aggregation reduces the amount of traffic headed towards the real
sink making traffic analysis more difficult. Using multiple decoy sink nodes is an
extension to the basic protocol that adds robustness and more evenly distributes the
traffic in the network. Our protocol was evaluated through simulation.

Acknowledgments. We thank the anonymous reviewers for their helpful comments
on how to improve the final draft of this paper. This work was supported by the
AT&T Labs Fellowship Program and Lucent Gift Fund. Any opinions, findings, and
conclusions are those of the authors and do not necessarily reflect the views of the
above agencies.

References

1. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large
scale habitat monitoring application. In: 2nd ACM Conference on Embedded Networked
Sensor Systems (2004)

2. Simon, G., Maroti, M., Ledeczi, A., Balogh, G., Kusy, B., Nadas, A., Pap, G., Sallai, J.,
Frampton, K.: Sensor network-based countersniper system. In: 2nd ACM Conference on
Embedded Networked Sensor Systems (2004)

3. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a moving
object with a binary sensor network. In: 1st ACM Conference on Embedded Networked
Sensor Systems (2003)

216 W. Conner, T. Abdelzaher, and K. Nahrstedt

4. Hwang, I., Balakrishnan, H., Roy, K., Shin, J., Guibas, L., Tomlin, C.: Multiple-target
tracking and identity management. In: 2nd IEEE International Conference on Sensors
(2003)

5. Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., He, T., Stankovic, J.,
Abdelzaher, T., Krogh, B.: Lightweight detection and classification for wireless sensor
networks in realistic environments. In: 3rd ACM Conference on Embedded Networked
Sensor Systems (2005)

6. Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L.,
He, T., Krishnamurthy, S., Luo, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.:
EnviroTrack: towards an environmental computing paradigm for distributed sensor
networks. In: 24th International Conference on Distributed Computing Systems (2004)

7. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.-S., Rubenstein, D.: Energy-efficient
computing for wildlife tracking: design tradeoffs and early experiences with Zebranet. In:
2nd International Conference on Mobile Systems, Applications, and Services (2004)

8. Deng, J., Han, R., and Mishra, S.: Intrusion tolerance and anti-traffic analysis strategies for
wireless sensor networks. In: The International Conference on Dependable Systems and
Networks (2004)

9. Karlof, C., Sastry, N., Wagner,D.: TinySec: a link layer security architecture for wireless
sensor networks. In: 2nd ACM Conference on Embedded Networked Sensor Systems
(2004)

10. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.: SPINS: security protocols for
sensor networks. In: 7th International Conference on Mobile Computing and Networking
(2001)

11. Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: securing sensor
networks with public key technology. In: 2nd ACM Workshop on Security of Ad Hoc and
Sensor Networks (2004)

12. Gupta, V., Millard, M., Fung, S., Zhu, Y., Gura, N., Eberle, H., Chang Shantz, S.: Sizzle: a
standards-based end-to-end security architecture for the embedded Internet. In: 3rd IEEE
International Conference on Pervasive Computing and Communications (2005)

13. Reed, M., Syverson, P., Goldschlag, D.: Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications (1998)

14. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: a distributed anonymous
information storage and retrieval system. In: International Workshop on Design Issues in
Anonymity and Unobservability (2000)

15. Fu, X., Graham, B., Bettati, R., Zhao, W.: On effectiveness of link padding for statistical
traffic analysis attacks. In: 23rd International Conference on Distributed Computing
Systems (2003)

16. Deng, J., Han, R., Mishra, S.: Countermeasures against traffic analysis attacks in wireless
sensor networks. In: 1st IEEE/CreateNet International Conference on Security and Privacy
for Emerging Areas in Communication Networks (2005)

17. Ozturk, C., Zhang, Y., Trappe, W.: Source-location privacy in energy-constrained sensor
network routing. In: 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks
(2004)

18. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation service for
ad-hoc sensor networks. In: 5th Symposium on Operating Systems Design and
Implementation (2002)

19. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM Transactions on Database Systems, vol.30,
no.1 (2005)

 Using Data Aggregation to Prevent Traffic Analysis 217

20. He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.: Range-free localization
schemes for large scale sensor networks. In: 9th International Conference on Mobile
Computing and Networking (2003)

21. Chan, H., Luk, M., Perrig, A.: Using clustering information for sensor network
localization. In: International Conference on Distributed Computing in Sensor Systems
(2005)

22. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with
noisy range measurements. In: 2nd ACM Conference on Embedded Networked Sensor
Systems (2004)

23. Kim, S., Fonseca, R., Culler, D.: Reliable transfer on wireless sensor networks. In: 1st
IEEE International Conference on Sensor and Ad Hoc Communications and Networks
(2004)

24. Institute for Software Integrated Systems at Vanderbilt University. JProwler:
(http://www.isis.vanderbilt.edu/projects/nest/jprowler/)

25. Crossbow. MICA2 Datasheet: (http://www.xbow.com/Products/Product_pdf_files/
Wireless_pdf/MICA2_Datasheet.pdf)

26. Crossbow. MICAz Datasheet: (http://www.xbow.com/Products/Product_pdf_files/
Wireless_pdf/MICAz_Datasheet.pdf)

27. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization protocol.
In: 2nd ACM Conference on Embedded Networked Sensor Systems (2004)

Efficient and Robust Data Dissemination
Using Limited Extra Network Knowledge�

Ioannis Chatzigiannakis1, Athanasios Kinalis1,2, and Sotiris Nikoletseas1,2

1 Computer Technology Institute, P.O. Box 1382, 26500 Patras, Greece
{ichatz, kinalis, nikole}@cti.gr

2 Department of Computer Engineering and Informatics,
University of Patras, 26500 Patras, Greece

Abstract. We propose a new data dissemination protocol for wireless sensor
networks, that basically pulls some additional knowledge about the network in
order to subsequently improve data forwarding towards the sink. This extra in-
formation is still local, limited and obtained in a distributed manner. This extra
knowledge is acquired by only a small fraction of sensors thus the extra energy
cost only marginally affects the overall protocol efficiency. The new protocol has
low latency and manages to propagate data successfully even in the case of low
densities. Furthermore, we study in detail the effect of failures and show that our
protocol is very robust. In particular, we implement and evaluate the protocol us-
ing large scale simulation, showing that it significantly outperforms well known
relevant solutions in the state of the art.

1 Introduction

In this paper we study the problem of data propagation in wireless sensor networks. We
propose a new protocol which is simple, local and uses limited extra knowledge of the
network that is obtained in a distributed manner. The protocol uses local information
regarding the surrounding actual network conditions, acquired by appropriately vary-
ing the range of wireless communication, and then plans a path of pairwise adjacent
sensor devices that are used in the forwarding (i.e. propagation) of data towards the
sink. Neighboring devices decide individually on whether to participate in propagation
of events. The demand-driven sequence of plan & forward phases aims at better perfor-
mance, compared to typical fixed transmission range data propagation, most needed in
some frequently occurring situations like the case of low local densities of faulty sensor
devices where fixed range protocols may trap in backtracking actions when no devices
towards the sink are found; our protocol, by increasing the transmission range, may find
such devices and avoid extensive backtracking.

This role-based approach where a limited number of devices do the high cost plan-
ning, while the rest operate in a low cost state, leads to systems that have increased

� This work has been partially supported by the IST Programme of the European Union under
contract number IST-2005-15964 (AEOLUS), the Programme PYTHAGORAS under the Eu-
ropean Social Fund (ESF) and Operational Program for Educational and Vocational Training
II (EPEAEK II) and the Programme PENED of GSRT under contract number 03ED568.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 218–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient and Robust Data Dissemination 219

energy efficiency and high fault-tolerance, since the planning phases allow to optimize
propagation paths and bypass obstacles (where no sensors are available) or faulty sen-
sors (e.g. due to physical damage, power failure). We show that the cost of forward
planning is amortized by the low energy short-range optimized hop-by-hop transmis-
sions performed by our protocol; this selective spending of energy increases the life-
time of the network and the total number of events successfully reported to the control
center.

The basic idea of our approach is to trade-off the cost of obtaining a certain amount
of limited extra knowledge with the performance gains achieved using this additional
knowledge in the subsequent propagation of data. By obtaining this extra knowledge
about the network conditions (e.g. energy actually available at sensors, distance to the
sink, faults etc.) at a somewhat global level, several performance measures (such as
energy dissipation, latency, fault-tolerance) can be improved.

We implement and evaluate our protocol using simulation, showing that it signifi-
cantly outperforms existing, well established relevant solutions in the state of the art.
In particular, we demonstrate the above performance properties by comparing the new
protocol to the well known Directed Diffusion paradigm [19] for information dissem-
ination in wireless sensor networks using several important efficiency measures with
a focus on energy dissipation, success rate and delivery delay. The extensive simula-
tions that we present here, highlight the behavior of the internal mechanisms of the new
framework and give useful insight on the fine-tuning of the various network parameters.
The findings indeed demonstrate that our protocol achieves significant improvements in
energy efficiency, higher success rates in faulty networks of low densities, and manages
to disseminate data to their destination faster.

Related Work and Comparison. Local optimization protocols (like the Local Tar-
get Protocol, [13]) evolve in a greedy fashion trying to make optimal choices based
on network knowledge within the typical fixed transmission range of the sensor cur-
rently possessing data under propagation. Such protocols tend to be more suitable in
dense networks, with rather “uniform” conditions, i.e. where local samples of the net-
work tend to be representative of it as a whole. Our protocol instead performs opti-
mizations at a more global (yet limited) level, taking advantage of the extra knowledge
obtained. Several protocols in the state of the art (most notably Directed Diffusion,
[19]) try to maintain and update some global structure, such as a set of paths towards
the sink to pull down data. Such approaches perform well in networks of low dynam-
ics but their efficiency may drop in networks with many frequent changes and failures.
Our protocol tries to become aware of the current, actual network conditions and ac-
cordingly optimize; however, this is done at a relatively local level in order to avoid
collected knowledge becoming obsolete in the case of high dynamics. Furthermore,
no structure or hierarchy are maintained by our protocol; once network information is
obtained and optimized paths are chosen, data propagation happens in a hop by hop
manner.

Our multi-hop approach is also in contrast to clustering protocols such as LEACH
[17]. In such protocols, sensors self-organize themselves into clusters; in each clus-
ter, only a single cluster head transmits directly to the sink, while the rest of the sensors
propagate data to their cluster head. Such protocols perform well in small area networks

220 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

of low event generation rate; however in larger networks of high event generation rates,
transmissions happen at large distances and rotation of cluster heads may be too slow to
avoid their energy depletion. Probabilistic forwarding schemes (like PFR, [9]) perform
redundant optimized multi-path transmissions to combine energy efficiency and fault-
tolerance. Such protocols, although well suitable in sparse networks, tend to spend a
lot of energy in the case of high densities. For a survey of data propagation protocols,
see [4]. Also, efficient protocols for fundamental problems in optical smart dust net-
works are proposed in [15], while routing communications methodologies are given
in [1].

In [3], the computational complexity of the localization problem is studied for the
first time, proving that it is NP-hard in sparse networks. We note that, also in view
of this result, we avoid to solve a localization procedure since the network we study
may be sparse; instead we obtain some implicit locality-related measurements (such
as distances) at a local level. In fact, we neither assume an a-priori sense of orien-
tation, since we only progressively build such a knowledge. Clearly, we can assume
an explicit sense of orientation mechanism. For example, [16] presents self-stabilizing
procedures for broadcast, flooding and sense of direction in wireless sensor networks.
Such a sense of direction protocol can be used by our protocol in order to obtain
local orientation references (i.e. for the sensors to know a general direction towards
the sink).

Main Findings. Our extensive performance evaluation indicates that the amount of
local information (on the surrounding actual network conditions) that is available to
the protocol plays a crucial role in the overall performance of the network. This extra
knowledge does not need to be accessible by all the devices of the network; allowing
access to only a small group of devices suffices to considerably improve the overall
performance. Interestingly, the additional energy spent by this small group (to obtain
the extra knowledge) does not affect the overall energy dissipation, which is dominated
by the high number of short-range transmissions employed during the data dissemina-
tion. Our protocol uses a simple collision-resolution mechanism to improve the network
performance in cases of dense deployment of sensor devices and/or when no suitable
underlaying MAC protocol is available. By carefully adjusting the protocol parame-
ters we can trade-off latency with collision resolution. In fact, a limited increase to
the delivery delays may lead to dramatic reductions to the total number of dropped
packets.

In order to acquire a more complete view on the performance of our protocol, we
conduct a comparative study with Directed Diffusion, a representative global struc-
ture based approach. The extensive experiments that we conducted, highlight the ad-
vantages of our approach that achieves significant improvements in energy efficiency,
higher success rates in networks of low densities, and manages to disseminate data to
their destination faster. We move beyond the typical study of networks with no fail-
ures, and investigate the performance of the two protocols in the presence of permanent
node failures. We show that even under harsh conditions where more than 50% per-
cent of the network becomes inoperable, out protocol still outperforms Directed Diffu-
sion in all fundamental performance metrics (success rate, energy dissipation and deli-
very delay).

Efficient and Robust Data Dissemination 221

An early version of some of the ideas of our work have appeared in [12], a brief
announcement in the 17th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA 2005).

2 A Simple Model for Sensor Networks

We abstract the technological specifications of existing wireless sensor systems [14, 18].
Each node in our model is a fully-autonomous computing and communication device,
is equipped with a set of monitors (e.g. sensors for temperature, humidity etc.) and is
characterized mainly by its available power supply (battery) and the energy cost of com-
putation and transmission of data. The communication equipment broadcasts messages
to nearby devices within range R that can vary (i.e. the transmission power can be set at
appropriate levels). Following [2, 10, 17, 20], for the case of transmitting and receiving
a message we assume the following simple model where the radio dissipates Eelec to
run the transmitter and receiver circuitry and εamp for the transmit amplifier to achieve
acceptable SNR (signal to noise ratio). We also assume an r2 energy consumption due
to channel transmission at distance r. Thus to transmit a k-bit message at distance r
in our model, the radio expends ET (k, r) = Eelec · k + εamp · k · r2 and to receive this
message, the radio expends ER(k, r) = Eelec · k .

We consider a simple sensor network for remote surveillance of a region. In practice,
such a network might consist of several hundreds or thousands of sensor devices de-
ployed within that region. Let n be the total number of sensor devices, that are present
in an area of size A. In some cases, the devices may be deployed in a regular fashion
(e.g. a lattice, or a linear array) within that region. More generally, however, commu-
nication and networking protocols cannot assume structured sensor fields. Here, we
assume that the sensor devices do not move and that the setting is two-dimensional.

A user of this remote surveillance system, which we call the sink S, may contact the
sensor devices in order to acquire information regarding the environmental conditions.
In this sense, the user injects sensing tasks in the network, i.e. by broadcasting mes-
sages with a task description; the system can support a variety of task types [5]. Those
sensor devices that match the task description report to S using hop-by-hop wireless
communication and routing mechanisms described in Sec. 3.

The networks that we consider in our model are prone to failures due to the following
reasons: (i) the components that make up a sensor device are of low-cost and also of
low-reliability, (ii) the area of deployment may be harsh and unfriendly (e.g. terrain with
water puddles, animals that run over the sensors) thus many operational failures may
occur. We here model such situations by introducing the failure rate F : the number
of sensor devices that permanently fail to function per unit of time. For each unit of
time, F failures occur at randomly chosen nodes, instantly, and no further computation
and/or communication can be performed by these failed nodes.

3 Our Data Dissemination Protocol

The basic idea of our approach is that dissemination of information towards S is carried
out within the wireless sensor network using a series of interchanging phases: (i) the

222 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

listening phase (the device is sensing the environment and passively listening for mes-
sages), (ii) the planning phase (the device is preparing to propagate data to the sink S)
and (iii) the forwarding phase (the device is participating in data propagation).

Given a particular environmental event that is sensed by a device p, and a surveil-
lance (sensing) task that is set by S, a new message M is generated by p. Our goal
is to use a limited (by β, a protocol parameter, that can be set by the implementor,
described below) number of long range transmissions to collect information regarding
neighboring nodes and then plan a series of short range, low power transmissions be-
tween nearby particles, based on certain optimization criteria, so that data is propagated
to S. This plan & forward procedure provides (i) high fault-tolerance as long range
transmissions allow to select paths that bypass obstacles (where no sensors are avail-
able) or faulty sensors (that have been disabled e.g. due to power failure), (ii) increased
energy-efficiency because of the long range optimization performed and also as short-
range hop-by-hop transmissions can effectively overcome some of the signal propaga-
tion effects in long-distance transmissions and (iii) enhanced security as the low energy
transmissions protect from undesired discovery of the data propagation operation.

In our protocol, each sensor uses two small-sized data structures: (i) the neighbors
cache that stores a small set of information about the active neighboring devices and
(ii) the path cache, a list of node IDs that keeps track of the last path used to propagate
data to S. The size of the neighbors cache is based on the density of the network while
the path cache is bounded by the protocol parameter β. These structures are maintained
during the listening phase and are extensively used during the planning phase.

Initialization Phase. We assume that there exists an initialization phase of the network
during which all devices invalidate their local caches and execute an underlying local-
ization protocol l. Since, in our model, the sensor devices cannot move, this phase is
executed only once and does not impose any further overheads to the execution of the
network. The protocol l is used by the sensors so that they can be able to estimate their
distances within a certain accuracy factor, that depends on current technology advance
and the actual protocol l. Let d(i, j) be the Euclidean distance of sensor devices i, j and
des(i, j) be the estimation of this distance measured by sensor devices. Note that des

is not necessarily an exact value but rather an estimate of the real distance d; we how-
ever assume that measured distances are analogous to real ones. Protocol l may operate
without any common sense of orientation or any geolocation abilities, obviously, as-
suming special hardware equipment (e.g. smart antennae or GPS) makes this task even
easier. Such a protocol is presented in [21] (and is compatible with our model of Sec. 2)
that assigns fictitious virtual coordinates to all the devices of the network. In [22] the
authors propose a greedy geometric routing protocol using pseudo (or virtual) coordi-
nates, i.e. vectors composed by the hop distances from a node to a set of designated
nodes (the anchors) in the network. Such a protocol can be used in our approach.

The Listening Phase. In this phase, sensor devices stay idle by passively listening for
nearby devices that transmit announcements (see planning phase below) or that respond
to the announcements, until (i) a new event is sensed that matches the interests given by
S or (ii) a message M is received from another device.

When a device p listens an announcement from p′, it first checks if des(p, p′) ≤
Rclose, a constant set by the protocol implementor (see Fig. 2). If this is true, it adds

Efficient and Robust Data Dissemination 223

a new path P ′ = {p′} in the path cache. Then, it individually decides (based on local
criteria) whether to respond to this announcement or not. The incentive here is to allow
each device to control the energy consumption by ignoring some low-priority tasks, or
deciding not to join a forwarding path when the network is dense and many neighboring
devices have already joined. This decision can be based on a mechanism that consid-
ers various criteria regarding the conditions of the device (e.g. available energy, current
load levels, etc.), the local conditions of the network (e.g. average neighborhood en-
ergy, local density, etc.) and even global conditions imposed by the network controller
(e.g. operation-rule: all devices must join to increase success rate). In [12], we propose a
mechanism that allows the devices to react locally on environment and context changes
by using a set of rules that are based on response thresholds that relate individual-level
plasticity with network-level resiliency, motivated by the nature-inspired method for di-
viding labor, a metaphor of social insect behavior for solving problems [6]. We plan to
include this mechanism in extended versions of our protocol.

The device continues to passively listen to any device p′′ that responded to the an-
nouncement of p′, and if des(p′′,S) < des(p,S) (i.e. p′′ is closer to S than p), it adds p′′

in the neighbors cache. This passive listening allows the devices to update their cache.
In some sense, devices take advantage of any long range announcements conducted
by nearby devices that undergo the planning phase to better understand the surround-
ing network conditions, and essentially reduce their own (future) needs to discover the
neighborhood.

We here note that it is not necessary for the devices to constantly listen the radio chan-
nel, a very energy-consuming process. Our protocol can be combined with a lower-layer
power conservation scheme like the one proposed in [11] or easily extended by incorpo-
rating sleep-awake schemes into the listening phase as done in [20]. Based on the perfor-
mance evaluation presented in Sec. 5, our protocol operates well even for sparse networks,
or otherwise, sensor networks implementing aggressive sleep-awake strategies.

The Planning Phase. A sensor enters the planning phase when data needs to be prop-
agated. During this phase, p first examines the path cache. If the cache contains a valid
path P of intermediate devices, it concludes and proceeds to the forwarding phase. If
no such path exists, then p examines the neighbors cache in order to construct a new
path P that will be used to forward M towards S.

If the neighbors cache is outdated or empty, or because the cache contains very
limited data regarding neighboring devices preventing p from constructing a sufficiently
long path, p tries to discover all neighboring devices. Given a transmission range R, p
performs a high power data transmission with range β · R (β is a protocol parameter)
to announce its interest to disseminate data.

Remark that during an announcement, it is possible that p will not manage to discover
all the neighboring devices because of message collisions occurring due to the concur-
rent responses of the nearby nodes. In order to tackle this problem, we implement a
simple random backoff scheme during which p, after making the announcement, waits
for a predetermined amount of time ts. The nearby devices delay their response by a
random period tr, where 0 ≤ tr < ts. Of course, this mechanism can be avoided if the
MAC protocol can properly handle collisions. In [8] distributed, contention-free self-
organizing MAC protocols which do not assume a global time reference are proposed.

224 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

Fig. 1. Transmission example

R
close

Sp2

p

p
p

1
3

’

Fig. 2. Nearby sensor devices react to Announcements

A distributed, local approach like in [8] can be assumed to run in combination with our
protocol at a lower level to resolve medium access conflicts.

Still, it is possible that the device cannot detect any neighbor (e.g. because of low
density, or high rate of failures, etc.). In this case the protocol has reached a Dead-
end situation [21]. A possible way to overcome it is by repeating the transmission of
the announcement (in case some devices have decided to participate, some previous
inactive devices are now awake), or by using a Range Variation operation, similar to
the one presented in [2] where the sensor device modifies its transmission range R
according to a change-function, or even by using a Backtracking mechanism, similar to
the one presented in [13].

Given that p has acquired enough information about the surrounding network con-
dition, it selects a path P such that M is delivered to another sensor device p′′ that is
closer to S than p. This selection can be optimized in several ways, e.g. by selecting
the particle with the higher available energy resources, the particle that has the lowest
message load, or even the particle that has the most up-to-date cache. Clearly, the length
of the path P is characterized by the locality of the information kept in the cache of p.
If the knowledge about the neighboring devices is limited, path P will be short.

As soon as p′′ is selected, p separates all the neighboring nodes, for which it has
information in the cache, in β sublists (L1, L2, . . . , Lβ) in a way such that ∀pj ∈ Li :
(i − 1) · R < des(p, pj) ≤ i · R. Then p chooses one sensor device from each sublist
Li (i ∈ {1, β − 1}) so that the path P = p1, p2, . . . , pβ−1, p

′′ is defined. We here
consider an optimization criteria for selecting one device from each sublist that is based
on the relative distances of the nodes.

The sensor device executes a preparation procedure during which a bipartite multi-
stage graph of β stages is generated based on L. Each stage i of the graph G(V, E)
contains vertices that correspond to the sensor devices of Li and the edges of G are
between vertices of consecutive stages. Weights are assigned to the edges of G to reflect
the estimated physical distance of the sensor devices that correspond to the adjoining
vertices. Then, based on G, the protocol calculates the shortest path joining p and p′′.
The intuition for using a bipartite multi-stage graph is to reduce the total number of
edges m = |V | and therefore reduce the complexity of the shortest path operation
given certain processing power limitations.

Note that it is possible that the operation of splitting L in β sublists (L1,L2, . . . ,Lβ)
may result in some sublists Li being empty, probably due to low-density of sensor
devices on the particular sector of the transmission radius. In this case the protocol
will produce a path P of length l < β. Certainly, there might exist other strategies for
selecting path P that emphasize other aspects (such as available energy, distance from

Efficient and Robust Data Dissemination 225

the S) and/or may also include randomization techniques. We are currently working on
such alternative choices.

As soon as the decision on such a path P is made, the protocol enters the forward-
ing phase by transmitting (M,P) to the first sensor device in P (i.e. in the example
of Fig. 1, p1). Then, every device pj that receives (M,P) forwards (M,P − {pj})
to pj+1. When device p′′ (i.e. in the example of Fig. 1, p3) receives (M, {·}) the for-
warding phase concludes and the protocol enters a new planning phase. Now p′′ is
responsible to further disseminate M towards S.

The Forwarding Phase. In the forwarding phase, given a message of type (M,P), the
sensor device does the following:

P is not empty. The message contains information about a path of sensor devices. If
the path P ′ = P − {pj} is not empty, P ′ is added in the path cache and p sends
(M,P ′) to p1 and sends a success message to sender(M) (i.e. to the device
it originally received the information from); in case p generated M, no success
message is sent. Otherwise, if P ′ is empty, the protocol enters the planning phase.

P is empty. The message contains no information about the path of sensor devices to
use in order to propagate M towards S. The protocol enters the planning phase.

After transmitting the packet, p will wait for p1 to send a success message in order
to ensure that M was received properly and the dissemination continues as planned. If
p1 does not respond within a predefined period of time, p assumes that the transmission
fails and retransmits the packet to p1. This process is repeated until either p responds
with a success message or until the maximum number of retries has been reached (a
protocol parameter). In this case, p decides that p1 is no longer active, updates its cache
(by removing p1 and P) and enters the planning phase.

4 Performance Metrics

In this work we wish to evaluate the performance of our protocol based on the follow-
ing three fundamental metrics: the success rate, the energy dissipation and the delivery
delay. These performance metrics characterize the ability of the protocol to coordinate
the sensor devices so that all messages regarding the realization of environmental phe-
nomena are transferred to S, in an energy efficient way and with minimum delay. The
importance of each of the above metrics depends on the nature of the application since
there are inherent trade-offs between success rate, energy and latency.

In the previous sections we described the basic design properties of our protocol
considering the existence of a single monitoring task and the dissemination of messages
related to this task. In reality the system will have to handle multiple concurrent task
initiations and in extend the diffusion mechanisms will be used for a large number of
messages. Let K be the total number of crucial events (E1, E2, . . . , EK) that need to
be reported to a particular S in the area and let us consider that a data dissemination
protocol manages to report k number of these events.

Definition 1 (Success Rate). IPs, is the fraction of the number of events successfully
propagated to the sink over the total number of events, i.e. IPs = k

K .

226 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

Definition 2 (Total Energy Dissipated). Etot =
∑n

i=1

(
Einit

i − Ei

)
, where Einit

i is
the initial energy of sensor device i and Ei the available energy of device i at the end
of the system operation.

Definition 3 (Delivery Delay). Let D be the total period of time that elapsed since the
realization of a crucial event E until it was finally delivered to the sink S.

Furthermore, we consider three protocol specific metrics that measure (i) the Total
Number of Announcements, (ii) the Average Path Length and (iii) the Number of
Collisions in terms of dropped packets. These performance metrics characterize the
network management overhead imposed by the protocol stack (a combination of data
dissemination and collision-resolution protocols) given a set of monitoring tasks. These
metrics provide useful insights on the effect of the various network and protocol param-
eters to the overall performance of the system.

Based on the energy cost model used (see Sec. 2), the energy consumption for the
transmission of a message is related to the distance that it is required to travel and its
size in bits. Since announces sent during the planning phases are very short (e.g. a small,
constant number of ka bits), the extra energy spent due to increasing the transmission
range is not increased a lot; in any case, this extra energy is worth spending since the
additional knowledge obtained allows for much better path selection. Also, the prop-
agation of the actual data packets during the forwarding phase (which may be longer
than the short announces, i.e. ki bits) is still performed in a multi-hop way, thus the
energy spent in each hop is in the order of R2.

In fact, based on the energy cost model, the total energy spent in each sequence of
plan & forward phases is proportional to ka · (β · R)2 + β · ki · R2. If β < ki

ka
then

the energy cost of the announcements is smaller than the actual data propagation energy
cost, i.e. the total energy is β · k′

i · R2, where k′
i is constant, similar to other, common

multi-hop approaches.
Assuming that the sensor devices are random uniformly distributed on the area, the

density can be calculated according to [7] as μ(R) = (n π R2)
A . Basically, μ(R) gives

the number of sensor devices within the transmission radius of each device in region A.
Therefore, when R is set to βR, the effective density (μ(R)) of the devices becomes
β2 times larger, which leads to many more devices responding to the announcement.
To scan the same area and number of devices, a much greater number of short range
transmissions (at least β2) would be needed. Of course, the increased number of concur-
rent responses to the long-range announcement will potentially result in a high number
of collisions, random back-off (or other collision resolution mechanisms) are more ef-
ficient in our case (as shown by the low latency achieved and the high success rate)
since devices found during a single scan can be better coordinated with respect to many
nearby announcements of shorter range.

5 Performance Evaluation

In this section we present a comparative evaluation study of our protocol (which we
hereafter call the CKN protocol) with the well established Directed Diffusion (which

Efficient and Robust Data Dissemination 227

we hereafter call DD) paradigm for information dissemination in wireless sensor net-
works [19]. We implement our protocol at the same level of the network stack with
DD and use a higher layer sensing application that injects sensing tasks to the sen-
sor network. A number of events is generated, corresponding to the sensing tasks,
for propagation to the sink S. The experimental evaluation is conducted based on
the commonly used Network Simulator (ns-2 version 2.26), that provides a quite de-
tailed implementation of the physical and MAC layers and allows detailed measure-
ments of many variables (such as the energy dissipation) in simulations of wireless
networks.

The sensor network is considered as a rectangular area of size A = 500m × 500m,
where a number of n ∈ [200, 400] sensor devices are randomly distributed in the area.
We set R = 50m, Rclose = 50m and position S at point (0, 0). Based on these settings,
the corresponding μ(R) is in the range of [6.28, 12.57]. In [19] the experimental study
conducted also considered networks of different sizes and number of sensor devices
but with an almost fixed density μ(R) ≈ 9.817. The energy available to the sensor
devices was set to high levels (Einit

i = 20J), to create good enough initial condi-
tions (in terms of available energy) where all the events can be delivered. This setting
allows us to compare the energy dissipation of the protocols in a fair way. We im-
plement the energy cost model of Sec. 4 in ns-2, and set the exact values of εtrans,
εrecv and Eidle to match as close as possible the specifications of the mica mote
platform [14].

We start the evaluation of our protocol by investigating the impact of the various
parameters on the performance of the network. In the first set of experiments we exam-
ine the impact of parameter β, i.e. the parameter that controls the transmission range
for the announcements and in extend the length of the path generated during the plan-
ning phase. Figure 3 depicts the six efficiency metrics discussed in Sec. 4. In this first
set, we fix the search time to ts = 75ms and inject a set of sensing tasks that gen-
erate 2 events/sec. Each event is being sensed by a randomly chosen sensor device
and in our simulation 1000 events are generated. The simulation duration is calcu-
lated according to the event rate and is long enough to allow all messages to be gener-
ated. Another 15 seconds of simulation time are added to allow the arrival of delayed
messages.

The results depicted in Figure 3 demonstrate the ability to improve the success rate
of our protocol in the cases of sparse deployment of sensor devices by adjusting β. For
all network densities considered, setting β = 2 suffices to achieve a 100% success rate.
In terms of energy consumption, as it was discussed in Sec. 4, the cost of the long range
transmission of announcement messages is indeed amortized by the high number of
short-range transmission of messages regardless of the density of the network and β.
However, we are pleased to report that the latency of the network is improved when β
increases. This is related to the fact that the devices transmit fewer announcements as β
increases, thus reducing the overall delay as the devices spend less time waiting for the
nearby devices to respond to their announcements. Therefore, although the long-range
transmission of announcements lead to a higher number of collisions, this does not
critically affect the performance of the network while the protocol manages to devise
“good” paths based on the additional information acquired.

228 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40

 30

 20

 10
 4 3 2 1

S
uc

ce
ss

 R
at

e
%

Beta

200 particles
300 particles
400 particles

 0.5

 0.45

 0.4
 4 3 2 1

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

Beta

200 particles
300 particles
400 particles

 0.2

 0.15

 0.1
 0.09

 4 3 2 1

D
el

ay
 (

se
c)

Beta

200 particles
300 particles
400 particles

 0

 200

 400

 600

 800

 1000

 4 3 2 1

N
um

be
r

of
 A

nn
ou

nc
em

en
ts

Beta

200 particles
300 particles
400 particles

 4

 3.5

 3

 2

 1

 4 3 2 1

P
at

h
Le

ng
th

Beta

200 particles
300 particles
400 particles

 1000

 10000

 100000

 4 3 2 1

D
ro

pp
ed

 P
ac

ke
ts

Beta

200 particles
300 particles
400 particles

Fig. 3. Success Rate (IPs), Energy Dissipation (Etot), Delay (D), Average Number of Announce-
ments, Average Path Length and Average Number of Dropped packets for different values of
β ∈ [1, 4], various number of devices (n ∈ [200, 400]) and fixed search time (ts = 75ms)

In the second set of experiments (see Figure 4) we examine the impact of parameter ts,
that is the time period that a device waits after making an announcement so that nearby
devices can respond; we refer to ts as the search time. The central idea for adjusting ts
is to allow the responses to spread over a longer period of time and in this way increase
the effectiveness of the collision resolution protocol. Of course, by increasing ts, the
delivery delay of the network is also affected. However, as shown in Fig. 4, the overall
degradation of the latency is limited while the number of dropped packets (i.e. the number
of collisions) is dramatically reduced (notice that the figure is in logarithmic scale). This
allows the devices to collect more information regarding the neighboring devices and
thus devise longer paths. Interestingly, even if, by increasing ts, the need to make an
announcement is reduced, the overall energy dissipation seem to remain fixed, implying
that the overall energy consumption is dominated by the short-range transmissions of
info messages rather than by the long-range transmissions of announcements.

Efficient and Robust Data Dissemination 229

 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40

 30

 20

 10
 0.1 0.075 0.05 0.025

S
uc

ce
ss

 R
at

e
%

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

 0.5

 0.45

 0.4
 0.1 0.075 0.05 0.025

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

 0.2

 0.15

 0.1
 0.09

 0.1 0.075 0.05 0.025

D
el

ay
 (

se
c)

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

 0

 200

 400

 600

 800

 1000

 0.1 0.075 0.05 0.025

N
um

be
r

of
 A

nn
ou

nc
em

en
ts

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

 0

 1

 2

 3

 4

 5

 0.1 0.075 0.05 0.025

P
at

h
Le

ng
th

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

 1000

 10000

 100000

 0.1 0.075 0.05 0.025

D
ro

pp
ed

 P
ac

ke
ts

Search Time (sec)

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Fig. 4. Success Rate (IPs), Energy Dissipation (Etot), Delay (D), Average Number of Announce-
ments, Average Path Length and Average Number of Dropped packets for different values of
β ∈ [1, 4], different search times ts ∈ [25, 100]ms and fixed number of devices (n = 300)

We now proceed with the comparative study of our protocol (CKN) with DD. In
order to highlight the differences between the two different approaches, we first evaluate
the two protocols in a “controlled” environment. In this set of experiments, since our
protocol essentially variates the transmission range (based on β) in order to make long-
range announcements, to make the comparison fair, when the network executes DD, we
set the transmission range of the devices to β ·R. Note however that unlike our protocol,
DD does not vary the transmission range through out the execution of the network. For
these experiments we consider only the three efficiency metrics discussed in Sec. 4.

In the first set of experiments (see Fig. 5), we measure the performance of the proto-
cols when only 1 message needs to be disseminated to S. This message is generated by
the device positioned at (500, 500), i.e. the device that has the greatest distance from S.
In the second set of experiments (see Fig. 6), we measure the performance of the two
protocols when each device generates 1 message that needs to be disseminated to S,

230 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40
 4 3 2 1

S
uc

ce
ss

 R
at

e
%

Beta

CKN
Directed Diffusion

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 4 3 2 1

E
ne

rg
y

D
is

si
pa

tio
n

(J
ou

le
s)

Beta

CKN
Directed Diffusion

 0

 0.5

 1

 1.5

 2

 4 3 2 1

D
el

ay
 (

se
c)

Beta

CKN
Directed Diffusion

Fig. 5. Success Rate (IPs), Energy Dissipation (Etot) and Delay (D) of CKN and DD in the case
of 1 event (at point 500, 500), for β ∈ [1, 4], fixed n = 300 and fixed ts = 75ms

 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40
 4 3 2 1

S
uc

ce
ss

 R
at

e
%

Beta

CKN
Directed Diffusion

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 4 3 2 1

E
ne

rg
y

D
is

si
pa

tio
n

(J
ou

le
s)

Beta

CKN
Directed Diffusion

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 3 2 1

D
el

ay
 (

se
c)

Beta

CKN
Directed Diffusion

Fig. 6. Success Rate (IPs), Energy Dissipation (Etot) and Delay (D) of CKN and DD in the case
of 300 events (1 per each sensor), for β ∈ [1, 4], fixed n = 300 and fixed ts = 75ms

i.e. the two protocols must disseminate a total of n messages. These two different cases
allow us to investigate the performance of the two protocols in the extreme case when a
message is generated far away from S and in the average case when messages are sent
from all possible positions.

The two different sets of experiments show that in the worst case, DD manages to
deliver the message with higher success rate when β = 1, while for higher values of
β, both protocols always succeed. Furthermore, still in the worst case, for all different
values of β considered, it is seems that DD manages to deliver messages in shorter
time, but at a higher energy cost. For the average case (see Fig. 6), again DD manages
to deliver more messages than our protocol when β = 1, however, in terms of energy
consumption and delivery delays, it is clear that our protocol significantly outperforms
DD. These experiments also indicate the impact of β on the success rate and latency of
our protocol, while the overall energy dissipation is affected at a very limited way that
almost suggests that it is independent of β.

In the set of experiments shown in Fig. 7a we evaluate the two protocols for the
general case, i.e. when we assume a set of sensing tasks that generate 2 events/sec
and each event is being sensed by a randomly chosen sensor device. In this setting we
generate a total of 1000 events and the simulation duration is calculated according to the
event rate and is long enough to allow all messages to be generated. Another 15 seconds
of simulation time are added to allow the arrival of delayed messages. In contrast to the
previous two sets of experiments (see Fig. 5 and Fig. 6), in this set of experiments we
used the original implementation of DD, as described in [19], i.e. the transmission range
is always set to R regardless of β.

This experiment clearly shows the superiority of our approach in all three efficiency
metrics considered here. By setting the parameter β = 2, our protocol achieves a 100%

Efficient and Robust Data Dissemination 231

(a)
 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40

 30

 20

 10
 400 300 200

S
uc

ce
ss

 R
at

e
%

Number of Particles

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 400 300 200

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

Number of Particles

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

 0.5

 0.3

 0.2

 0.15

 0.1 0.09

 400 300 200

D
el

ay
 (

se
c)

Number of Particles

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

(b)
 100
 97.5

 95

 90

 85

 80

 70

 60

 50

 40

 30

 20

 10
 60 50 40 30 20 10 0

S
uc

ce
ss

 R
at

e
%

Failed Particles %

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3
 60 50 40 30 20 10 0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

Failed Particles %

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

 0.5

 0.3

 0.2

 0.15

 0.1

 0.05

 60 50 40 30 20 10 0

D
el

ay
 (

se
c)

Failed Particles %

CKN β=1
CKN β=2
CKN β=3
CKN β=4

Directed Diffusion

Fig. 7. (a) On the left, Success Rate (IPs), Energy Dissipation (Etot) and Delay (D) of CKN and
DD in the case of 1000 event, for n ∈ [200, 400], β ∈ [1, 4] and fixed ts = 75ms. (b) On the
right, Success Rate (IPs), Energy Dissipation (Etot) and Delay (D) of CKN and DD in the case
of 1000 event, when 0 . . . 60% of the n = 300 nodes fail (F ∈ [0, 0.36] failures/sec), β ∈ [1, 4]
and ts = 75ms.

success rate, and delivers all messages to S with significantly lower delays and by
spending fewer energy than DD.

In our last set of experiments we investigate the (more realistic) scenario where stop-
ping failures occur at the sensing devices. In contrast to the previous settings where the
operation of nodes was guaranteed, in this set we examine the behavior of the protocols
under the presence of node failures. We use the failure rate F (defined in Sec. 2) to
control the harshness of the environment and evaluate the fault-tolerance achieved by
our protocol. We deploy n = 300 devices and set F = α·n

Tsim
, where α ∈ [0.1, 0.6] is

a parameter that controls the fraction of nodes that fail and Tsim = 500sec the total
simulation time. Essentially, we allow the 10 . . . 60% of the nodes to fail during the
simulation period. Based on the results shown in Fig. 7b, we observe that the failure

232 I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas

rate mainly affects the success rate of the protocols while the energy consumption and
delivery delay seems to be unaffected. However, in contrast to the case of low densities,
β does not control the performance of the protocol; although for β = 2 the performance
improves, further increases lead to reduced efficiency. This is explained by the fact that
higher β lead to longer path lengths, and thus increased probabilities for a node failure
to damage a path. In such cases the protocol is forced to make additional announce-
ments and discover new paths that lead to slightly increased delivery delays and energy
consumption. Although DD seems to follow a similar pattern of behaviour, our protocol
achieves higher fault-tolerance for all cases of failure rates considered.

6 Future Work

We wish to extend our protocol by introducing adaptive mechanisms that will allow
sensor devices to self-adjust the various parameters (e.g. β, ts) in terms of the actual
network conditions. We plan to compare the performance of our protocol with other,
existing protocols and also using different network shapes, various distributions used to
drop the sensors in the area of interest.

References

1. Alvarez, C., Diaz, J., Petit, J., Rolim, J., Serna, M.: Efficient and reliable high level commu-
nication in randomly deployed wireless sensor networks. In: 3nd International Mobility and
Wireless Access Workshop (MOBIWAC 2004). (2004)

2. Antoniou, T., Boukerche, A., Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: A new energy
efficient and fault-tolerant protocol for data propagation in smart dust networks using varying
transmission range. In: 37th Annual Simulation Symposium (ANSS 2004). (2004) 43–52
IEEE Press.

3. Aspnes, J., Goldberg, D., Yang, Y.: On the computational complexity of sensor network
localization. In: 1st International Workshop on Algorithmic Aspects of Wireless Sensor Net-
works (ALGOSENSORS 2004), Springer-Verlag (2004) 32–44 Lecture Notes in Computer
Science, LNCS 3121.

4. Boukerche, A., Nikoletseas, S.: Protocols for Data Propagation in Wireless Sensor Net-
works: A Survey. In: Wireless Communications Systems and Networks. Kluwer Academic
Publishers (2004) 23–51

5. Boukerche, A., Pazzi, R., Araujo, R.: A supporting protocol to periodic, event-driven and
query-based application scenarios for critical conditions surveillance. In: 1st International
Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2004),
Springer-Verlag (2004) 137–146 Lecture Notes in Computer Science, LNCS 3121.

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999) A Volume in the Santa Fe Institute Studies in the
Sciences of Complexity.

7. Bulusu, N., Estrin, D., Girod, L., Heidemann, J.: Scalable coordination for wireless sensor
networks: self-configuring localization systems. In: International Symposium on Communi-
cation Theory and Applications (ISCTA 2001). (2001)

8. Busch, C., Magdon-Ismail, M., Sinrikaya, F., Yener, B.: Contention-free MAC protocols for
wireless sensor networks. In: 18th International Workshop on Distributed Algorithms (DISC
2004), Springer-Verlag (2004) 245–259 Lecture Notes in Computer Science, LNCS 3274.

Efficient and Robust Data Dissemination 233

9. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A probabilistic forwarding
protocol for efficient data propagation in sensor networks. In: 5th European Wireless Con-
ference on Mobile and Wireless Systems beyond 3G (EW 2004). (2004) 344–350. Also, in
the Journal of Ad-Hoc Networks (2005)

10. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Wireless sensor networks protocols for effi-
cient collision avoidance in multi-path data propagation. In: ACM Workshop on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2004).
(2004) 8–16 Also, in Performance Evaluation Journal: Special issue on PE-WASUN04 (to
appear)

11. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: An adaptive power conservation scheme for
heterogeneous wireless sensor networks with node redeployment. In: 17th Annual Sympo-
sium on Parallel Algorithms and Architectures (SPAA 2005). (2005) 96–105. Also, in the
Theory of Computing Systems Journal (TOCS): Special Issue on SPAA05 (to appear)

12. Chatzigiannakis, I., Nikoletseas, S.: A forward planning situated protocol for data propaga-
tion in wireless sensor networks based on swarm intelligence techniques. In: 17th Annual
Symposium on Parallel Algorithms and Architectures (SPAA 2005). (2005) 214

13. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Efficient and robust protocols for local
detection and propagation in smart dust networks. Journal of Mobile Networks and Appli-
cations 10(1) (2005) 133–149 Special Issue on Algorithmic Solutions for Wireless, Mobile,
Ad Hoc and Sensor Networks.

14. Crossbow technology inc., MICA motes
http://www.xbow.com/Products/productsdetails.aspx?sid=71.

15. Diaz, J., Petit, J., Serna, M.: Evaluation of basic protocols for optical smart dust networks.
IEEE Transactions Mobile Networks 2(3) (2003) 186–196

16. Dolev, S., Herman, T., Lahiani, L.: Polygonal broadcast, secret maturity and the firing sen-
sors. In: 3rd International Conference on Fun with Algorithms. (2004) 41–52

17. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication
protocol for wireless microsensor networks. In: 33rd IEEE Hawaii International Conference
on System Sciences (HICSS 2000). (2000)

18. Hollar, S.: COTS Dust. Msc thesis, Engineering-Mechanical Engineering, University of
California, Berkeley, USA (2000)

19. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust com-
munication paradigm for sensor networks. In: 6th ACM/IEEE Annual International Confer-
ence on Mobile Computing (MOBICOM 2000). (2000) 56–67

20. Nikoletseas, S., Chatzigiannakis, I., Euthimiou, H., Kinalis, A., Antoniou, T., Mylonas, G.:
Energy efficient protocols for sensing multiple events in smart dust networks. In: 37th Annual
Simulation Symposium (ANSS 2004). (2004) 15–24 IEEE Press.

21. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing with-
out location information. In: 9th ACM/IEEE Annual International Conference on Mobile
Computing (MOBICOM 2003), San Diego, CA (2003) 96–108

22. Wattenhofer, M., Wattenhofer, R., Widmayer, P.: Geometric routing without geometry.
In: 12th Colloquia on Structural Information and Communication Complexity (SIROCCO
2005), Springer-Verlag (2005) 307–322 Lecture Notes in Computer Science, LNCS 3499.

Distance-Sensitive Information Brokerage
in Sensor Networks

Stefan Funke1, Leonidas J. Guibas1, An Nguyen1, and Yusu Wang2

1 Department of Computer Science
Stanford University, Stanford, CA 94305

2 Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210

Abstract. In a sensor network information from multiple nodes must
usually be aggregated in order to accomplish a certain task. A natural
way to view this information gathering is in terms of interactions between
nodes that are producers of information, e.g., those that have collected
data, detected events, etc., and nodes that are consumers of informa-
tion, i.e., nodes that seek data or events of certain types. Our overall
goal in this paper is to construct efficient schemes allowing consumer
and producer nodes to discover each other so that the desired informa-
tion can be delivered quickly to those who seek it. Here, efficiency means
both limiting the redundancy of where producer information is stored,
as well as bounding the consumer query times. We introduce the notion
of distance-sensitive information brokerage and provide schemes for effi-
ciently bringing together information producers and consumers at a cost
proportional to the separation between them — even though neither the
consumers nor the producers know about each other beforehand.

Our brokerage scheme is generic and can be implemented on top of
several hierarchical routing schemes that have been proposed in the past,
provided that they are augmented with certain key sideway links. For
such augmented hierarchical routing schemes we provide a rigorous the-
oretical performance analysis, which further allows us to prove worst
case query times and storage requirements for our information broker-
age scheme. Experimental results demonstrate that the practical perfor-
mance of the proposed approaches far exceeds their theoretical (worst-
case) bounds. The presented algorithms rely purely on the topology of
the communication graph of the sensor network and do not require any
geographic location information.

1 Introduction

Early sensor networks were primarily data acquisition systems, where the in-
formation collected by the sensor nodes was to be aggregated and routed to a
central base station. Newer generations of sensor networks, however, act more as
peer-to-peer systems, where arbitrary nodes in the network may wish to collect
information about measurements and events elsewhere in the network. Further-
more, the information needed may be quite specific, with only a very small

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 234–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distance-Sensitive Information Brokerage in Sensor Networks 235

amount of sensor data being relevant for any particular query. This peer-to-peer
view is necessitated as sensor networks expand to serve multiple geographically
dispersed users, as more powerful mobile nodes move through a static sensor
network and use it as a communication backbone to issue queries and collect
data, or even to process complex queries, where sensor nodes may find it nec-
essary to issue sub-queries themselves. The basic problem this creates is that
of information brokerage: how producers of information, e.g., nodes that have
collected data, detected events, etc., and consumers of information, i.e., nodes
that seek data or events of certain types, can find out about each other and
exchange the desired information.

Information brokerage is closely coupled with node naming and routing: even
if we know the exact location of the information we want in the network, we still
need to discover a good path for its retrieval. As sensor networks scale to larger
sizes, the issue of information locality becomes more important. It is natural to
expect that a consumer will be more interested in data collected near its cur-
rent location. This is because such data can be accessed at lower communication
cost/delay, and because in almost all sensor network applications local informa-
tion has higher value and relevance to the task at hand than remote information.
The main problem studied in this paper is what we call distance-sensitive in-
formation brokerage — information brokerage where the cost for a consumer
node to discover a certain piece of information is proportional to the network
distance to where that information was collected. We want to have this property
of distance sensitivity even though neither the consumer node nor the producer
node involved in the information exchange know directly anything about the lo-
cation of the other node in the network. Current common information brokerage
schemes do not have this property. For example, directed diffusion [14] performs
flooding and thus in a 2-D network will visit O(d2) nodes to reach a distance d
from a consumer (sink), while geographic hash tables (GHT) [24] may hash the
information quite far away from a nearby producer-consumer pair.

Our goal in this paper is to develop a unified framework for routing and infor-
mation brokerage which can provide provable guarantees for both good (almost-
optimal) routing paths and distance-sensitive information brokerage. Note that
in all producer-consumer brokerage schemes there is a trade-off between the time
and space effort for information diffusion when producer nodes record new data
and have new detections, vs. the query time of consumer nodes to discover this
information. In this work we aim at minimizing the amount of work/storage
that producers have to invest so that they can be discovered within the con-
sumers’ budget, that is, to be distance-sensitive. We focus on the static case
typical for sensor networks where nodes do not move during the lifetime of the
network, though links may fail or nodes may die. We also assume that, at any
one time, only a small fraction of the network nodes have information to be made
available to the network (such as sightings/measurements of rather exceptional
events).

Related work. Hierarchies for addressing and routing within networks have
been used for a long time and form the basis of the standard TCP/IP proto-

236 S. Funke et al.

cols. The basic idea is to define a tree-like hierarchy of node clusters, based on
the inter-node distances in the network. This tree structure is then used to de-
rive unique addresses for all nodes, based on which local routing schemes can
be developed. Many previous hierarchical approaches have designated nodes as
gateways to route between clusters [1, 22], causing unbalanced node traffic, as
well as making routing sensitive to gateway node failures. Furthermore, since
hierarchies partition the network, there can be nearby nodes that end up in dif-
ferent clusters even at the top level, causing the routing paths to be possibly
much longer than the true shortest paths, violating distance sensitivity. Solu-
tions have been proposed for this difficulty by introducing cross-branch links
in the clustering hierarchy by Tsuchiya [28] and others, and empirical studies
have established their effectiveness. For the case where the underlying commu-
nication graph has constant doubling dimension [11], it has been shown very
recently in [12] (although in a different context) that paths of bounded dilation
can be achieved. Chan et al. [3] present a different hierarchical framework to
achieve slightly better results, but their construction is based on a probabilistic
argument and a non-trivial derandomization thereof.

Since sensor networks are embedded in the physical world, several routing
schemes attempt to exploit naming and routing using this host space to gain
efficiency and avoid expensive preprocessing. For example, geographic routing
schemes [2, 15, 16] name nodes by their geographic coordinates and provide lo-
cal rules for forwarding messages towards their target. Such schemes may have
problems in the presence of holes, in which case packets might get stuck in lo-
cal minima of the distance function to the target. Protocols like GPSR ([15])
or the one proposed by Bose et. al. [2] have been developed to alleviate these
problems, and indeed they can guarantee delivery of the packets by perform-
ing a perimeter routing step around network holes, after an appropriate pla-
narization of the network graph. Still, the paths might be considerably worse
than the true shortest paths. In particular, Kuhn et. al. in [17] show that if
the shortest path has distance d, any geographic routing algorithm might pro-
duce a path of length Ω(d2). Furthermore, in many situations, it is challenging
to obtain geographic coordinates. Various approaches have been developed for
cases in which either a few nodes [26] or no nodes [6, 21, 23] are aware of the
geographic positions. However, a robust routing scheme with proven guaran-
teed performance for sensor networks with arbitrary underlying topology is still
missing.

At the same time, in the past few years, sensor networks have started to
serve more as information processing mechanisms instead of simply as data col-
lection tools [7, 14, 18, 25, 29], requiring more sophisticated operations, such as
data aggregation and range queries. From this point of view, the location of
the sensor that owns information becomes less important than the information
itself. This explains the rise of various data-centric information storage and re-
trieval schemes [27]. A representative is the Geographic Hashing Table (GHT)
approach [24], where each type σ of information (like the measured occurrence of
substance A) is mapped to a specific node v by using a geographic hash function

Distance-Sensitive Information Brokerage in Sensor Networks 237

which depends only on the information type σ and is commonly known to every
node in the network. Upon detection of A, a producer sends a message to node v,
indicating its possession of some data of type σ. Any consumer can then obtain
the data by first visiting v to find out who owns it and then retrieving it from
the owner (many variations are possible). This node v, however, might be far
away from both the producer and the consumer even when the producer and the
consumer are very close in the network. The problem can be partly alleviated
by the GLS [19] approach (originally proposed for providing location services
on mobile nodes), where a producer performs an information diffusion process
by sending a message to a list of server nodes determined by its location and
the data type. A consumer can then retrieve this data in time proportional to
the distance to the producer in the underlying hierarchy, which in the case of
GLS is a positional quad-tree. But since — as in the case of hierarchy-based
routing strategies — nearby nodes might be far away in the hierarchy, the con-
sumer still does not experience distance-sensitive query times. Furthermore this
assumes the availability of geographic location information and an auxiliary ID
server structure that has to be precomputed to allow for information broker-
age1. Very recently, an approach [5] combining Geographic Hash Tables with
landmark-based routing via the GLIDER [6] scheme has been proposed. There
are also several other approaches focusing on data aggregation, multi-resolutional
storage, or database-like queries [10, 8, 20]. They all suffer from the above two
problems, however.

Closest to our approach is the work of [4], where the authors developed a
location/address lookup service called L+ for mobile nodes in a landmark-based
routing scenario aiming at distance sensitivity in the queries, that is, the time
required to lookup the address of a target node should be proportional to its
distance. Their construction could also be extended to an information brokerage
scheme (though they did not do so). Their simulation results show the effec-
tiveness of the approach, even in a mobile scenario, but no rigorous theoretical
analysis was conducted, which this paper aims to provide.

Our contributions. In this paper we analyze augmented hierarchical decompo-
sition schemes for routing and information brokerage built on only the topology
of the communication graph. While such routing hierarchies have been around
for many years and a related theoretical analysis has been very recently found
in a different context [12], this paper is the first to present a unified generic
framework for both routing and information brokerage, and this framework as
well as the accompanying analysis can be applied to various implementations of
hierarchical decompositions (such as those in [1, 9, 22]).

Our framework can be applied to networks with arbitrary communication
graphs and guarantees distance-sensitivity of both routing as well as informa-
tion brokerage. If the shortest path metric of the communication graph has
bounded doubling dimension [11], we can guarantee that the routing tables that
1 The GLS paper did not address the information brokerage application, though the ID

service presented there, which provides a mapping of unique node IDs to geographic
coordinates, can be seen as a special case of information brokerage.

238 S. Funke et al.

need to be installed at every node have size only O(log n) bits. A metric space
has bounded doubling dimension if any ball with radius R in the metric space
can be covered by a constant number of balls with radius R/2. In practice, sen-
sor networks frequently experience low-level link and node volatility. We show
through simulations that our routing protocol is robust: it performs gracefully
against the failure of a small fraction of network nodes, due to the absence of
any backbone or hub structure.

Our information brokerage scheme is built on top of the presented routing
structure at no extra overhead. To our knowledge, this is the first approach
that works for arbitrary communication graphs and has theoretical performance
guarantees in terms of the effort on both the producer and consumer sides. In
particular, after the producer stores references to its data at a small number
(O(log n) in case of metrics of bounded doubling dimension) of nodes (in a
multi-resolution manner), any consumer can retrieve it in a distance-sensitive
way. Furthermore, by visiting only O(d) nodes, the consumer can collect all
occurrences of a particular type of data within a neighborhood of radius d.
This kind of range query2 can be useful for implementing efficient in-network
processing and data aggregation. We are not aware of any other scheme that
efficiently supports this type of query. Our information brokerage scheme inherits
both load-balanced information diffusion and robustness against node failures
from the employed routing scheme. All these results are backed by an evaluation
in simulation which indicates that the practical performance of the analyzed
schemes is significantly better than their theoretical guarantees.

We would like to emphasize again that even though a hierarchy is used in
our approach, nodes high up in the hierarchy do not get any additional load
comparing to nodes in lower levels. During routing, nodes in the hierarchy act
as landmarks toward which packets are forwarded, but they only stay as land-
marks when the packets are still far away from them, so a breakdown of a node
in some sense does not hinder its function as a routing waypoint. Just like any
other nodes, the failure of a node in high level of a hierarchy only has a lo-
cal effect on the routing and information brokerage capabilities of the sensor
network.

Outline. In Section 2, we introduce the notion of a hierarchical decomposition
as a generic hierarchical framework for organizing a sensor network, and then
describe our routing scheme and an information brokerage system under this
framework. The performance of our framework is experimentally evaluated in
Section 3 by extensive simulations. Finally, we conclude and discuss possible
extensions to our scheme in Section 4.

2 Distance-Sensitive Routing and Information Brokerage

In this section, we first introduce the notion of a hierarchical decomposition (HD)
constructed on an arbitrary sensor network in which geographic coordinates of
2 We remark that we use the term range query differently here from work like [8, 20],

where ‘range’ refers to a range in data space and not in the space of sensor locations.

Distance-Sensitive Information Brokerage in Sensor Networks 239

the nodes may not be available. As it becomes clear later, a HD captures all the
necessary properties we need for routing and information brokerage. We then
show how to use a HD of the communication graph for efficient routing and for
distance sensitive information brokerage.

2.1 Hierarchical Decompositions of Graphs

In the following we consider an undirected, weighted, connected graph of n nodes
with node distances induced by the shortest path metric. We call a tree H of
height h a hierarchical decomposition (HD) of S if

– each node c ∈ H is associated with a set of nodes Sc ⊆ S (cluster),
– for the root r ∈ H (which is at level h − 1) we have Sr = S,
– all leaves of H have the same level 0,
– for any node c ∈ H at level k, we have that the cluster Sc associated with c

has diameter less than α · 2k for some constant α,
– if c ∈ H has children c1 . . . cl, we have Sc =

⊎
Sci

In case of an unweighted graph (i.e. edge weights are all 1), the diameter of
a connected n-node graph is at most n, and one can construct a hierarchical
decomposition of height at most h = 1 + �log n� ≤ 2 + log n. The following
discussion focuses on this case for simplicity. We also remark that the constraint
of all leaves being at the same level 0 is not mandatory and could be removed.
We make this assumption for simplicity of the presentation and also because the
hierarchical decomposition we use in our experiments has this property.

There are different ways to construct a HD. In our implementation we use a
specific HD based on the discrete center hierarchy (DCH) from [9], which is also
similar to the hierarchy in [12]. It can be built efficiently and distributedly on
an arbitrary sensor network given only its connectivity graph (details omitted
for lack of space).

2.2 Routing Using Hierarchical Decompositions

First we provide a routing scheme based on a hierarchical decomposition H of
a communication graph. Important properties which we want to ensure are:

– scalability: the routing information that an individual node of the network
has to store should be small compared to the network size; the load on the
nodes should be distributed in a balanced fashion (so we disallow dedicated
hub nodes or backbones).

– efficiency: the path generated by our routing scheme between nodes v and
w should be only a constant factor worse than the optimal shortest path in
the communication network.

– robustness: the impact of nodes or links failing should be limited and local.
In particular, packets that get temporarily stuck due to node or link failures
should be able to recover using local rules.

The scheme we provide has all these three properties.

240 S. Funke et al.

An addressing scheme. Let Δmax be the maximum degree of H . We number
the children c1, . . . co with o ≤ Δmax of a node c arbitrarily, and define the
following addresses for the nodes of the tree:

– the root r has as address the h-dimensional vector f(r) := (1, 0, 0, . . . , 0)
(remember h is the height of H)

– a node c′ ∈ H at level k which is child ci of parent c is assigned the address
f(c′) := f(c) + i · eh−k, where eh−k is the h-dimensional unit vector with a
1 at the (h − k)-th position

Essentially this constructs an IP-type address for each node of the tree and hence
also for each cluster in the hierarchical decomposition. The entries in the vector
are bounded by the maximum number of children Δmax.

Connecting levels and efficient routing. Let us now extend the addressing
scheme to an efficient routing protocol. For that we need the notion of neighboring
clusters of a node:

Definition 1. A cluster L at level k is called a neighboring cluster of a node v
if there exists a node q ∈ L such that d(v, q) ≤ α · 2k+1.

Note that while the number of neighboring cluster of a given node in each level
may be larger than the number Δmax in the decomposition tree, in ‘well-behaved’
decompositions, we expect this number to be small. In particular, when the hop
distance between the nodes is a metric with bounded doubling dimension [11]
and a DCH is used as a hierarchical decomposition, the maximum number λmax

of neighboring clusters of a node in any given level is a constant, and a node
has at most a total of O(h) = O(log n) neighboring clusters. From now on,
we assume this is the case (so Δmax and λmax are constants) to simplify our
presentation.

We let each node in the sensor network store its distances to all of its neigh-
boring cluster. The routing of a message to a node w from v can then be done
as follow. Node v first looks up its neighboring clusters and find the smallest
cluster L containing w. v then locally forwards the message for w to any node
closer to L than v.

We claim that the length of the path when the message arrives at the smallest
cluster containing w is at most a constant times longer than the optimal, shortest
path from v to w in the communication graph. If our hierarchical decomposition
has singleton clusters associated with the leaves, this implies a complete path
from v to w which is a constant factor approximation of the shortest path. In
particular, we have the following result (proof omitted for lack of space).

Lemma 1. Let v, w be two nodes in the network. Then the path generated by
the above routing scheme from v to the cluster of the lowest level containing w
has length at most 4 · dvw where dvw denotes the shortest path distance between
v and w in the communication graph.

Since there are typically many close-to-shortest paths from a given node to
a cluster, this routing scheme has a natural robustness against node or link

Distance-Sensitive Information Brokerage in Sensor Networks 241

failures. And even if none of the immediate neighbors is closer to the target
cluster, inspecting a slightly larger local neighborhood most of the time results
in a successful forwarding of the message towards the target cluster.

If every bit counts. Assuming that the maximum number of neighboring clus-
ters λmax and the maximum number of children Δmax in the HD is a constant,
each node has to store address and distance of O(h) clusters. In case of a com-
munication graph with unit edge weights and singleton clusters at the leaves,
h = Ω(log n) and hence each node has to store Ω(log2 n) bits: the address of
a cluster has h = Ω(log n) components and the bit-complexity of the distance
value stored for a neighboring cluster might be Ω(log n) as well.

If every bit of space is relevant, we can do still better. Let us first consider a
more efficient way to store the addresses of neighboring clusters of a node v. The
key observation here is the trivial fact that if at level k − 1 some cluster L is a
neighbor of v, then in level k its parent p(L) is also a neighbor. That means if a
node has already stored the address of p(L) it can store the neighbor L at level
k − 1 at additional cost of only log Δmax bits. Hence for constant λmax, Δmax,
the addresses of all neighbors at all levels can be stored using O(log n) bits. The
need for Ω(log n) bits per distance value per neighbor can easily be reduced
to a constant by just remembering one edge to an adjacent node in the com-
munication graph that is closer to the neighboring cluster instead of the actual
distance.

Corollary 1. The routing scheme can be implemented by storing O(log n) bits
per node in the network.

We remark that the above addressing scheme as well as the neighboring in-
formation can be computed efficiently by restricted flooding during the ini-
tialization stage. It only increases the construction cost slightly over that of
DCH’s.

2.3 Efficient Information Brokerage Using Hierarchical
Decompositions

Given some fixed HD H , we now show how to achieve efficient distance-sensitive
information brokerage based on the routing scheme described above. Let Σ =
{σ1, σ2, . . . , σm} denote the discrete set of all data items possibly produced or
queried in the sensor net. Some properties of a desirable information brokerage
system include:

– load balance: no node should have the burden of providing lookup-
information for many different types of data items;

– efficiency: references to a certain type of data should be stored at a small
number of nodes, and the time required for node w to access data produced
by node u should be proportional to the distance between u and w.

– robustness: failure of nodes or links should only increase the time to store
or retrieve a certain data item, but not make storage/retrieval impossible.

242 S. Funke et al.

Our information brokerage system exploits the routing structure described
above and to meet these desiderata.

First assume that we have a hash function μ : Σ × HD → S, such that
given any data item σ ∈ Σ and a cluster L ∈ HD, we can compute a unique
sensor node μ(σ, L) ∈ S within this cluster. Furthermore, μ(σ, L) can be accessed
from any node in cluster L (of diameter D) within 2D hops using our routing
structure (we will describe one such hash function at the end of this section). We
call μ(σ, L) the information server of data item σ in cluster L. Our information
brokerage system relies on collecting and distributing some synopses of data
items to a small set of information servers.

Information diffusion. Suppose a node (producer) u has data item σ ∈ Σ.
Recall that u is contained in h clusters of the tree H (i.e., its ancestors), one
in each level. Let L(u, d) be the cluster containing u at level d, and L1

d, . . . , L
l
d

the neighboring clusters of L(u, d). The producer u sends a message (contain-
ing its own address and some synopses of σ) to the information server μ(σ, Lj

d)
associated with each of these Lj

d’s for all 0 ≤ d < h, see Figure 1. If the max-
imum number of neighbors at each level and the maximum degree of H are
constants, then a producer will store a synopses of σ at O(h) = O(log n) nodes.
Since the routing structure already specifies how to access all these neighbor-
ing clusters, no extra per-node storage is required to implement the diffusion
process.

producer

consumer and its search path

info server

Fig. 1. There are exponentially fewer information servers away from the producer
(upper right). The consumer (bottom center) looks for information at information
servers in exponentially bigger clusters containing itself.

The length of the paths to the information servers decreases geometrically
with decreasing level in the hierarchy. Hence the total number of hops to send
synopses to all information servers, i.e., the communication cost for the producer,
is dominated by the length of the paths to the information servers in the highest
level of the hierarchy. For graphs of constant doubling dimension, this cost is in
the order of the diameter of the network. We summarize this in the following
lemma:

Lemma 2. In the above diffusion scheme a producer of some data item σ ∈ Σ
distributes σ to O(log n) nodes in the network at a total cost of O(D) hops, where
D denotes the diameter of the network.

Distance-Sensitive Information Brokerage in Sensor Networks 243

Information retrieval. When a consumer w wants to access some data item
σ, it will look for it in growing neighborhoods, namely, in clusters L(w, i)’s
in increasing order of i, where L(w, i) denotes the ancestor of w at level i,
see Figure 1. More precisely, it starts from w, and visits information servers
μ(σ, L(w, 1)), μ(σ, L(w, 2)), . . ., in sequential order to check whether the data
item σ is there. Note that unlike the producer which sent out messages in different
branches to various information servers, the consumer will only follow one path,
and return as soon as it finds the information sought. The following lemma guar-
antees the distance sensitivity of our method (proof omitted from this extended
abstract).

Lemma 3. If node w wants to retrieve the data item σ ∈ Σ associated with
node u, this request can be completed in O(duw) time steps, where duw denotes
the distance between u and w.

We would like to emphasize that the constant in the O-notation experienced
in practice is very close to 1. Furthermore it frequently happens that when
a node observes an event, nearby nodes also observe the same event. To pre-
vent multiple hashing for the same data item, each node can attempt to first
retrieve the same item from its local neighborhood using the information re-
trieval process. If the item is not found, it can start the information diffusion
process.

Approximate range counting and reporting. Let RC(w, r; σ) denote the
number of occurrences of data item σ detected by some sensor at most r hops
away from w. Our information brokerage system can also be used to perform
approximate range counting or range reporting for a consumer. In particular, we
have the following lemma (proof omitted).

Lemma 4. Let s be the number of distinct messages about σ received at node
μ(σ, L(w, d)), where d = �log(r/α)�, then RC(w, r; σ) ≤ s ≤ RC(w, 4r; σ).

In other words, by visiting the information server μ(σ, L(w, d)) directly, a con-
sumer w is guaranteed to collect all sources that have information about data
item σ within roughly distance 2d to itself. If the consumer only wants to know
the number of such sources (range counting), it can simply return. Otherwise, if
it wishes to report all such data (range reporting), it can then route to each of
these sources and fetch the data.

Hash function μ(σ, L). We still have to define the hash function μ(σ, L) that
maps any given data item σ to an information server in a particular cluster L.
Ideally, in order to have a good load balance, this function should distribute the
information servers uniformly to all nodes contained in L for various σ ∈ Σ.

One possible choice of this function is deployed in the GLS approach, where
each sensor node in the sensor network has a unique id (an integer). Given an
data item σ ∈ Σ, assume there is a function that maps σ to one of this id,
say IDσ, randomly. The information server μ(σ, L) is then defined as the node
s ∈ L with smallest id that is greater than IDσ. However, in order to identify

244 S. Funke et al.

and reach node s, one has to build extra structure (which needs about O(h log n)
bits per-node memory) on top of whatever routing structure exploited.

A simpler way to define μ(σ, L) is to use σ as the seed of some pseudo-
random function and traverse the HD tree downward randomly according to
that function. μ(σ, L) is then defined as the leaf node reached in the process.
Note that this definition of μ(σ, L) also gives a routing path to access it. We can
first route to any node in L, using σ to determine the pseudo-random subcluster
L′ of L that contains μ(σ, L), then recursively route toward μ(σ, L′) = μ(σ, L).
The number of hops to route from any node in L to μ(σ, L) is obviously bounded
by

∑d
i=1 α · 2i ≤ α · 2d+1.

Robustness. The routing components of our information brokerage scheme in-
herit the robustness properties of the routing scheme; in particular, messages
that are unable to make progress due to node or link failures can recover by
simple local rules and be eventually forwarded to their destinations. Further-
more, recovery after failure of an information server is possible by querying the
information server one level higher, incurring only a constant factor overhead.

3 Experimental Results

We implemented the discrete center hierarchy in java to experimentally eval-
uate the performance of our proposed schemes. Currently our implementation
simulates the network at the graph level only. While it does not mimic net-
work attributes like packet loss or delay, we are quite confident that the results
reported here give a good indication about the usefulness of our approach in
practical scenarios.

3.1 Data Generation and Implemented Algorithms

All our measurements were carried out on a unit disk graph of nodes that
were spread uniformly at random in a unit square, and subsequently nodes
may have been removed to simulate the presence of large holes in the network
topology. Note that this “unit disk graph” is not required in our approach—
our system can take an arbitrary graph as input. We also want to emphasize
that in this model, as long as the average node degree is below about 10, a
large fraction of the unit disk graph is not connected, and the dilation fac-
tor is rather large, i.e. the shortest path in the graph between two nodes is
much larger than their Euclidean distance. This is quite different in the ‘skewed
grid’ model where the node positions are determined by randomly perturbing
points on a grid by some rather small amount. There the unit-disk graph is
almost always connected for any grid-width slightly smaller than 1 (which cor-
responds to an average degree of 4 or more) and the geometric dilation is very
small. See Figure 2 for an example. While our scheme performs much better
in the skewed grid model as compared to the random model, we feel the latter
provide more insight on realistic scenarios, and present all our results in this
random model.

Distance-Sensitive Information Brokerage in Sensor Networks 245

Fig. 2. Random sensor field (left) has degree 6.26 and has many holes, some of which
are quite large. Skewed grid field (right) has lower degree, 5.18, yet is much more
regular.

In the following subsections, we compare our routing scheme with GPSR,
and our information brokerage scheme with GHT by assuming that the geo-
graphic locations of sensors are known (although not used in our approach).
The underlying planar graph for GPSR is the Gabriel graph.

3.2 Evaluation of Routing Strategies

Routing quality. In the first experiment we evaluate the quality of the paths
produced by our routing scheme. We fix a sensor field of 2000 nodes and vary
the average degree from roughly 6 to 12. We then select at random 1000 pairs
of nodes from the largest connected component of the sensor field. We compute
the paths between the nodes in these pairs using the HD as well as using GPSR.
For each of such path, its quality is defined as the ratio between its length and
the shortest distance between its two endpoints. We show in Table 1 (a) the
average and standard deviation of the quality of these 1000 paths. Note that our
HD routing scheme always produces near-optimal paths regardless of the node
density. The practical constant is much better than the worst case bound of 4
we could prove.

Network initialization and routing scalability. Here, we fix the average degree
at roughly 6, vary the number of nodes from 200 to 20000 and compute the per-
node storage for the HD routing structure. As expected, the number of entries
in the routing table needed at each node grows very slowly, see Figure 3 (a). In
particular, the maximal storage at a node in the network is quite reasonable,
merely about twice the average per-node storage.

We note that the cost of initializing the network, i.e., the number of messages
sent to establish our hierarchical decomposition, is directly proportional to the
storage at each node. As the storage cost is low, the cost of network initialization
is also low.

Hot spots. Even though our implementation of the HD uses cluster heads, they
are not special nodes in the network In a typical route, the moment a package
heading towards a cluster reaches any of its nodes, the package starts head-
ing towards a different cluster. So these cluster heads do not form a backbone

246 S. Funke et al.

Table 1. (a) Quality of paths from HD and from GPSR. (b) Performance of brokerage.

Avg. Qual. of HD Qual. of GPSR
deg. avg std avg std
6.21 1.08 0.18 4.91 6.79
6.80 1.06 0.11 4.04 7.41
7.39 1.05 0.09 3.25 7.02
7.93 1.09 0.16 2.04 3.10
8.53 1.07 0.12 1.59 2.22
8.94 1.07 0.10 1.51 2.42
9.82 1.07 0.10 1.35 1.62
10.2 1.06 0.09 1.31 1.80
10.8 1.05 0.09 1.44 2.90
12.0 1.06 0.11 1.15 1.30

Size # Info. servers Query time Total time
avg std avg std avg std

200 10.8 0.42 1.22 0.82 2.28 1.31
400 17.0 0.21 0.93 0.63 1.91 1.06
600 28.7 1.36 0.74 0.59 1.73 0.92
1000 34.8 4.36 0.74 0.49 1.71 0.76
2000 50.9 8.22 0.73 0.45 1.76 0.70
4000 65.2 11.8 0.75 0.39 1.69 0.56
6000 75.7 13.5 0.78 0.43 1.79 0.64
8000 83.5 14.8 0.79 0.43 1.83 0.65
10000 85.9 15.5 0.77 0.38 1.77 0.60

(a) (b)

(a) (b) (c)

Fig. 3. (a) The storage required growths slowly when the network becomes large. (b)
The success rate of routing vs. node depletion for sensor fields with various average
degree. (c) Number of hops to information server using HD and number of hops in a
shortest path to an ideally random information server.

structure, nor do they create bottlenecks in network traffic. Figure 4 (c) gives
an example where two routes with nearby sources and destination nodes stay
separate during their course. On the other hand, when large holes are present
in the network, nodes close to holes will naturally have a heavier burden, as
our HD paths approximate the shortest paths well. Still, our paths do not hug
the holes in the sensor net as tightly as GPSR paths do, as shown in Fig-
ure 4 (a) and (b) for a sensor field with 2000 nodes and average degree 9.5.
Our HD scheme produces many fewer higher load nodes (larger dots in the
picture).

Robustness. To measure the performance of our routing scheme under node de-
pletions, we start with a graph with average degree of 7, 8, 9, or 12, build the
HD routing structure on top of it, and then randomly remove a small percentage
of sensors (from 2% to 20%) from the sensor field. We then pick 1000 pairs of
live nodes at random, and show the success rate of routing between these pairs
in Figure 3 (b). During the routing process, if a node finds that the next sensor
on its shortest path to some cluster L is dead, it locally floods a neighborhood
of nodes at most 5 hops away from itself to find a node with smaller distance

Distance-Sensitive Information Brokerage in Sensor Networks 247

(a) (b) (c)

Fig. 4. Hotspots comparisons for (a) GPSR and (b) HD scheme. Larger dots are nodes
with higher traffic loads. In (c), two paths generated by HD scheme with nearby sources
and destinations.

to L. The result shows that the performance is gracefully degraded when the
node failure rate increases.

3.3 Evaluation of the Information Brokerage Scheme

Brokerage quality. The efficiency of a brokerage system includes both the number
of messages (i.e., # information servers) that a producer needs to replicate,
and the number of hops that a consumer needs to access before locating the
data it needs (i.e., the query time). In Table 1 (b), we vary the size of the
sensor field from 200 to 10, 000 nodes. For each sensor field, we randomly choose
1, 000 producer/consumer pairs, with each pair producing/requesting a random
data item. Columns 2,3 show the average number and standard deviation of
information servers for each producer. Columns 4 and 5 show the quality of the
path from the consumer to the information server, defined as the ratio between
query time using our scheme (i.e., the path length to the respective information
server) and the shortest hop distance between the producer and the consumer.
We see from the table that this ratio is always close to 1.0 (in fact, in most cases
it is smaller than 1.0, since the information server can be even closer than the
producer). If the data is large, the producers may not replicate their data and
only leave their addresses at the information servers. In that case, a consumer
after locating the desired information server must further route to the producers
to get the data itself. The quality of the brokerage path is then defined as the
ratio between the path length from the consumer to the producer obtained using
our scheme over the shortest path length between the consumer and producer.
Column 6 and 7 in Table 1 (b) show this ratio in our experiment. In all cases, it
is always small, around 2.0.

While the number of replications used by a particular producer is higher in
our system than in the GHT approach, the query time can be much smaller,
especially when the consumer is closer to the producer. This phenomenon is
illustrated in Figure 3 (c), where we compare the query time in our scheme (lower
curve) with the length of the shortest path to an ideally random information
server (upper curve). Note that the latter is in fact a lower bound of the query

248 S. Funke et al.

Table 2. The average/standard deviation of the number of times that a sensor serves
as an information server for some data item for various network sizes

Size 200 400 600 1000 4000 6000 8000
Avg. 10.0 16.0 25.5 31.5 47.2 61.2 69.7
Std. 14.4 28.1 36.4 52.7 75.4 90.8 99.7

(a) (b)

Fig. 5. (a) Approximate query cost is very low compared to the naive flooding. (b)
The success rate of information brokerage under nodes depletions.

time for any scheme using GHT for information brokerage. The query time for
GHT using GPSR as the underlying routing scheme may be much longer than
this shortest path, due to the path quality returned by GPSR. In short, our
system is attractive for scenarios where there are multiple queries for the same
data, as the overhead for the producer is then amortized.

It is also important to keep the distribution of information servers for different
data items as uniform as possible. To test this, we let each sensor in the network
produce a different data item, and record for each node the number of times that
it serves as an information server for some data item. The results are in Table 2.
The distribution of information servers observed is reasonably good compared
to a distribution obtained by a centralized uniformly random hash function.

Approximate range counting. One important application of our information bro-
kerage system is for approximate range counting, such as reporting all horses
detected within some distance r from a particular sensor. When r is quite small,
flooding is simple and effective. However, the number of nodes accessed in the
flooding approach increases quadratically as r increases. This is illustrated in
Figure 5 (a) where the query cost in our approach (lower curve) increase in a
linear manner, while that for flooding (upper curve) increases quadratically. The
size of the sensor field in this example is 2, 000 with an average degree of 6.1.

Robustness. Again, we fix a sensor field of 2000 nodes with various average
degree, compute the HD routing structure, and remove a portion of sensors
randomly (from 2% to 20%) from the field. We then randomly choose a set
of producer/consumer pair, each generating/seeking a random data item. The
resulting success rates are shown in Figure 5 (b). The brokerage system is slightly
more robust than the routing scheme, which is not surprising: as the robustness

Distance-Sensitive Information Brokerage in Sensor Networks 249

of our information brokerage system comes partly from the robustness of the
routing scheme, and partly from the fact that even if a query fails to route to
a particular information server, it can simply go to the information server one
level up.

4 Conclusion and Discussion

In this paper we have presented a unified framework for efficient routing and
distance-sensitive information brokerage based on augmented hierarchical de-
compositions of communication graphs. In particular, for communication graphs
of constant doubling dimensions, the guarantee for almost optimal routing paths
comes at an additional cost of only O(log n) bits of storage per network node.
Our routing scheme does not rely on a dedicated backbone or hub structure,
and hence performs rather well when some network nodes fail while providing a
natural load balance between routing paths.

Our novel distance-sensitive information brokerage scheme is built based on
the above routing scheme. We showed how information producers can diffuse
pointers to their information to O(log n) other locations and in turn how infor-
mation consumer can exploit this stored data to retrieve the information they
want in a distant sensitive manner. As an application, our brokerage infrastruc-
ture allows for range queries with specified radius that take time proportional to
the radius instead of time proportional to the area of the relevant range region.
All our procedures come with rigorous proofs of their worst-case performance
guarantees, and the experimental results for both routing and information bro-
kerage show considerably better performance than the worst case considerations
in the theoretical analysis, (but the latter in some way explain this good behavior
in practice).

In future work, it might be interesting to view the problem also from a pro-
ducer’s perspective. In particular, we can try to trade off the producer’s effort
to make its information available against the consumer’s effort to obtain that
information. The exact tradeoff can depend on the relative frequencies of data
collection operations vs. queries, in the style of [13]. Furthermore, even though
the main focus of this paper has been the static case where sensor nodes do not
move over the lifetime of the network, it might be interesting to extend our ap-
proach to allow for efficient routing and information brokerage in the presence of
mobile sensor nodes. Also we believe that the use of our distance-sensitive range
queries can lead to interesting new in-network data-aggregation and processing
algorithms.

Acknowledgements

The authors would like to thank the anonymous referees for their constructive
comments. The authors gratefully acknowledge the support of DoD Multidisci-
plinary University Research Initiative (MURI) program administered by the Of-
fice of Naval Research under Grant N00014-00-1-0637, NSF grants FRG-0354543

250 S. Funke et al.

and CNS-0435111, and the Max Planck Center for Visual Computing. The 2nd
author also wishes to thank Scott Shenker for many useful discussions.

References

1. E. M. Belding-Royer. Multi-level hierarchies for scalable ad hoc routing. Wireless
Networks, 9(5):461–478, 2003.

2. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

3. H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in
doubling metrics. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 762–771, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

4. B. Chen and R. Morris. L+: Scalable landmark routing and address lookup for
multi-hop wireless networks, March 2002.

5. Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage and
retrieval in sensor networks. In Proc. of the 25th Conference of the IEEE Commu-
nication Society (INFOCOM’06), April 2006.

6. Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang. GLIDER: Gradient
landmark-based distributed routing for sensor networks. In 24th Conference of the
IEEE Communication Society (INFOCOM), 2005.

7. W. F. Fung, D. Sun, and J. Gehrke. COUGAR: The network is the database. In
SIGMOD Conference, 2002.

8. J. Gao, L. J. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded informa-
tion in a sensor network. In 3rd Int’l. Sympos. Information Processing in Sensor
Networks (IPSN), pages 311–319, 2004.

9. J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. In
Proc. of the 20th ACM Symposium on Computational Geometry (SoCG’04), pages
179–199, June 2004.

10. B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS:
A distributed index for features in sensor networks. In 1st IEEE International
Workshop on Sensor Network Protocols and APplications Anchorage, 2003.

11. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In Proc. IEEE Symposium on Foundations of Computer
Science, 2003.

12. M. Herlihy and Y. Sun. Distributed transactional memory for metric-space net-
works. In Proc. International Symposium on Distributed Computing (DISC 2005),
pages 324–338, 2005.

13. Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile enviroment. In
MobiDe ’01: Proceedings of the 2nd ACM international workshop on Data engi-
neering for wireless and mobile access, pages 27–34, New York, NY, USA, 2001.
ACM Press.

14. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw., 11(1):2–16,
2003.

15. B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In 6th ACM Int’l. Conf. Mobile Computing and Networking (MobiCom),
pages 243–254, 2000.

Distance-Sensitive Information Brokerage in Sensor Networks 251

16. F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing:
of theory and practice. In PODC ’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 63–72, New York, NY,
USA, 2003. ACM Press.

17. F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric
mobile ad-hoc routing. In Proc. Int. Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (Dial-M). ACM Press, pages 24–33,
2002.

18. J. Kulik, W. Heinzelman, and H. Balakrishnan. Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks. In 5th ACM MOBICOM, Seattle, WA,
August 1999.

19. J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A scalable
location service for geographic ad hoc routing. In 6th ACM Int’l. Conf. Mobile
Computing and Networking (MobiCom), pages 120–130, 2000.

20. X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries
in sensor networks. In SenSys ’03: Proceedings of the 1st international conference
on Embedded networked sensor systems, pages 63–75, New York, NY, USA, 2003.
ACM Press.

21. J. Newsome and D. Song. GEM: Graph embedding for routing and data-centric
storage in sensor networks without geographic information. In 1st Int’l Conf.
Embedded networked sensor systems, pages 76–88, 2003.

22. R. Ramanathan and M. Steenstrup. Hierarhically-organized, multihop mibile wire-
less networks for quality-of-service support. Mobile Networks and Applications,
3(1):101–119, 1998.

23. A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without
location information. In 9th ACM Int’l. Conf. Mobile Computing and Networking
(MobiCom), pages 96–108, 2003.

24. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage in sensornets. In 1st ACM
Workshop on Wireless Sensor Networks and Applications, pages 78–87, 2002.

25. N. Sadagopan, B. Krishnamachari, and A. Helmy. Active query forwarding in
sensor networks. Ad Hoc Networks, 3(1):91–113, 2005.

26. A. Savvides, C. C. Han, and M. B. Strivastava. Dynamic fine-grained localization
in ad-hoc networks of sensors. In 7th ACM Int’l. Conf. Mobile Computing and
Networking (MobiCom), pages 166–179, 2001.

27. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric stor-
age in sensornets. ACM SIGCOMM Computer Communication Review, 33(1):137–
142, 2003.

28. P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in very large
networks. In Proceedings on Communications architectures and protocols, pages
35–42, 1988.

29. F. Zhao and L. Guibas. Wireless Sensor Networks: An Information processing
approach. Elsevier/Morgan-Kaufmann, 2004.

Efficient In-Network Processing Through Local
Ad-Hoc Information Coalescence�

Onur Savas, Murat Alanyali, and Venkatesh Saligrama

Department of Electrical and Computer Engineering,
Boston University, Boston, MA, 02215

{savas, alanyali, srv}@bu.edu

Abstract. We consider in-network processing via local message passing.
The considered setting involves a set of sensors each of which can com-
municate with a subset of other sensors. There is no designated fusion
center; instead sensors exchange messages on the associated communi-
cation graph to obtain a global estimate. We propose an asynchronous
distributed algorithm based on local fusion between neighboring sensors.
The algorithm differs from other related schemes such as gossip algo-
rithms in that after each local fusion one of the associated sensors ceases
its activity until it is re-activated by reception of messages from a neigh-
boring sensor. This leads to substantial gains in energy expenditure over
existing local ad-hoc messaging algorithms such as gossip and belief prop-
agation algorithms. Our results are general and we focus on some explicit
graphs, namely geometric random graphs, which have been successfully
used to model wireless networks, and d-dimensional lattice torus with
n nodes, which behave exactly like mesh networks as n gets large. We
quantify the time, message and energy scaling of the algorithm, where
the analysis is built upon the coalescing random walks. In particular, for
the planar torus the completion time of the algorithm is Θ(n log n) and
energy requirement per sensor node is O((log n)2) and for 3-d torus these
quantities are Θ(n) and O(log n) respectively. The energy requirement
of the algorithm is thus scalable, and interestingly there appears little
practical incentive to consider higher dimensions. Furthermore, for the
planar torus the algorithm exhibits a very favorable tradeoff relative to
gossip algorithms whose time and energy requirements are shown here
to be Ω(n). Also, the proposed algorithm can be generalized to robus-
tify against packet losses and permanent node failures without entailing
significant energy overhead. The paper concludes with numerical results.

1 Introduction

Wireless sensors bear a vast potential as they can be networked to form amor-
phous systems that are far more capable than their parts. This potential is

� This research was supported by Presidential Early Career Award N00014-02-100362,
NSF CAREER Programs ANI-0238397, ECS-0449194 and NSF programs CCF-
0430983, and CNS-0435353.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 252–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient In-Network Processing 253

accompanied by substantial technical challenges, namely such systems call for
distributed models of operation that comply with requirements that arise due to
energy limitations of sensors, packet losses along wireless links, sensor failures,
and possibly uncontrollable network topologies.

In this paper we study ad-hoc distributed computation of a wide class of func-
tions of network-wide measurements. The topic of distributed computation has
received significant interest recently in the context of sensor networks (see [17, 8,
5 ,13, 14, 15, 11, 9, 12, 2, 3, 4, 1] and included references). Distributed computa-
tion and optimization arises in a number of different applications ranging from
signal processing such as distributed localization/detection/estimation/tracking
to load balancing and self-organization in communication networks [8, 7]. Pre-
viously proposed techniques can be broadly categorized into two groups: The
fusion-centric approach (see [17, 11, 9] and included references) assumes that each
sensor has a communication link to a data fusion center and each sensor node
computes a local decision, which is then communicated to the fusion center. The
fusion center then forms a global estimate of the desired function based on local
decisions. The ad-hoc approach, on the other hand, involves no designated fusion
center but focuses on establishing consensus within the network via local mes-
sage exchanges. This approach is appears to be more suitable to address energy
issues in large-scale networks and also appears to have robustness advantages.
This is because: (a) it requires much less energy to communicate to neighboring
sensors; (b) in-network processing through locally fusing information results in
compression; (c) no fusion center implies no single point of failure; (d) they are
well suited for asynchronous operation and hence robust to packet losses and
node failures. Specifically, consider the so called gossip algorithm [5] for com-
puting the average of all the sensor observations. Gossip algorithms accomplish
this task by randomly choosing two neighboring sensor nodes at each time and
replacing their current values by their average. It turns out that this process
over time converges to the average of all sensor values at all the sensors, i.e., all
the sensors achieve a consensus. Such consensus algorithms have been recently
explored in other contexts such as detection [2, 3] and control [13].

Nevertheless, these algorithms have fundamental disadvantages from an en-
ergy efficiency perspective. In particular, if n nodes are uniformly distributed in
a given area and Eb is the average communication energy-per-message required
to communicate information to a neighboring node, then the energy-per-node
required to achieve consensus scales as Ω(nEb), which can be significant for a
large sensor network. The fundamental reason is that energy efficiency resulting
from in-network processing is offset by ad-hoc message passing that results in
redundant computations, i.e., the same set (or largely similar set) of nodes re-
peatedly fuse their information at different points in time. In a related problem
involving distributed detection, the significant energy scaling can be attributed
to the loopy nature of the network where messages sent from one node repeatedly
arrive at the node at different points in time. In order to ensure that no informa-
tion from any node is forgotten, each node must re-inject their messages in to the
network to reinforce their information [3]. At a fundamental level the significant

254 O. Savas, M. Alanyali, and V. Saligrama

scaling of energy arises due to the slow mixing rate of large networks, which can
be attributed to rather large second eigenvalues of certain connectivity matrices
associated with the underlying communication graph. An immediate solution to
reduce such redundant computations is to design a communication tree so that
message from the leaf nodes arrive at accumulation points (or clusterheads),
which fuse the information and forward this information to a parent node. How-
ever, such a construction requires centralized planning and is inconsistent with
the requirements of ad-hoc sensor network operation, where packet losses and
node failures are common.

To address these issues we present a novel distributed computing approach
in this paper, where not only is the ad-hoc network operation preserved but
where the energy-related disadvantages of the existing local message passing re-
sulting from repeated redundant computations is also minimized. The emphasis
of the paper is on two important but conflicting figures of merit for wireless
sensor networks, namely the time and the energy required to complete the com-
putation. We introduce an asynchronous distributed algorithm that is based on
autonomous pairwise communications between pairs of neighboring sensors in
the underlying communication topology. The algorithm forces one of the com-
municating nodes to cease transmitting new messages until it is re-activated due
to reception of a message from a neighboring node. This results in exponential
energy gains compared other similar schemes. We adopt messaging complexity
as a proxy for energy requirement (as described earlier) and quantify the trade-
off between this quantity and the completion time. For the d-dimensional lattice
torus with n sensors, we show that the completion time is Θ(n(log n)α) and en-
ergy requirement per sensor node is O((log n)α+1) where α = 1 for d = 2 and
α = 0 for d ≥ 3. The algorithm thus has scalable energy requirement, further-
more its performance is almost insensitive to changes in the network connectivity
represented by different values of d ≥ 2, hinting at the possibility of predictable
performance over mesh topologies. Section 5 focuses on averaging of sensor mea-
surements as a case study for comparison with gossip algorithms. We show that
both the time and the per-node energy requirement of the gossip algorithm of [5]
are Ω(n) on the 2-dimensional torus with n nodes, irrespective of the choice of
the parameters of this algorithm. The algorithm introduced in the present paper
thus exhibits a very favorable trade-off between the two performance measures
for d = 2, but the gains in energy requirements come at the expense of more
substantial compromise in the completion time for larger d.

With regard to other important practical considerations, the algorithm is ro-
bust against packet losses provided that reliable link-layer protocols are employed
in wireless exchanges. The algorithm is also resilient against permanent node fail-
ures, furthermore the tolerable number of node failures can be provisioned and the
energy requirement of the algorithm increases linearly with this number.

The rest of the paper is organized as follows. The distributed computation
problem is formulated in Section 2 and the proposed algorithm is specified in
Section 3. Section 4 is devoted to the analysis of this algorithm on d-dimensional
tori for d ≥ 1. A comparative study with gossip algorithms, specifically on geo-

Efficient In-Network Processing 255

metric random graphs, is given in Section 5, and the paper concludes with final
remarks in Section 6.

2 Problem Definition

Let Λ be a set that is closed under operation f . We shall assume that f is
commutative and associative, and that Λ has an identity element with respect
to f , that is there exists e ∈ Λ such that f(λ, e) = λ for λ ∈ Λ. Let F2 = f . Given
n ≥ 3 and a permutation π of {1, 2, · · · , n} define the mapping Fn : Λn �→ Λ
recursively by

Fn(λ1, λ2, · · · , λn) = f(λπ(1), Fn−1(λπ(2), λπ(3), · · · , λπ(n))), (1)

for λ1, λ2, · · · , λn ∈ Λ. The notational dependence on the permutation π is
dropped here because the mapping Fn does not depend on π due to the com-
mutativity and associativity of f .

We will be concerned with distributed computation of Fn(λ1, λ2, · · · , λn) in
cases when each λi is known to a distinct agent. In typical applications that
motivate this work such an agent represents one of n sensors involved in a sta-
tistical inferencing procedure, λi represents a measurement taken by sensor i or a
function thereof that reflects a local estimate, and Fn(λ1, λ2, · · · , λn) represents
a global estimate or a sufficient statistic of the measurements. For example, in
the simplistic case of computing the maximum value of the sensor measurements
one may take Λ = R∪ {−∞}, e = −∞, and f(λ1, λ2) = max(λ1, λ2). Represen-
tation of weighted vector averages, which are of interest in finding least-squares
estimates, is illustrated in the following example:

Example 1. Let k ≥ 1 be an integer and let Mk×k be the set of k-dimensional
positive definite matrices. For i = 1, 2, · · · , n let xi ∈ R

k and let wi ∈ Mk×k.
The weighted average (

∑n
i=1 wi)−1 ∑n

i=1 wixi can be expressed in the form (1)
by choosing Λ = {R

k × Mk×k} ∪ {e} with λi = (xi, wi), and by setting

f(λ, λ′) = ((w + w′)−1(wx + w′x′) , w + w′),

for λ = (x, w), λ′ = (x′, w′) ∈ Λ − {e}.
We consider computation of Fn(λ1, λ2, · · · , λn) under communication

constraints that are specified by an undirected graph G = (V, E) where each node
in V denotes a sensor (hence |V | = n) and an edge (i, j) ∈ E indicates a bidirec-
tional communication link between sensors i and j. To avoid trivialities we shall
assume that G is connected. Note that since Fn admits flexible decomposition in
terms of the atomic operation f , there exist a sequence (e1, e2, · · · , en−1) of distinct
edges in G such that Fn(λ1, λ2, · · · , λn) can be computed by sequentially execut-
ing f on the values at the two ends of each link in the given order. Furthermore the
edge set {e1, e2, · · · , en−1} forms a spanning tree for G, and some of the aforemen-
tioned operations can be executed in parallel so that the overall computation can
be completed in time proportional to the diameter of G. Rather than such central-
ized algorithms, our focus here is on decentralized algorithms that require neither
global information about G nor network-wide synchronization.

256 O. Savas, M. Alanyali, and V. Saligrama

3 Information Coalescence

Consider the following distributed, asynchronous algorithm which requires each
sensor to be aware of only the sensors that it can communicate directly:

Algorithm COALESCENT(f, λ, G): Each sensor maintains a variable value which
is an element of the set Λ, and a variable status which is either ‘carrier’ or ‘idle’.
We denote the value of sensor i ∈ V at time t ≥ 0 by vi(t), and indicate the
status of the sensor via ξi(t) defined by

ξi(t) =
{

1 if status of sensor i is ‘carrier’ at time t,
0 else.

Initially (vi(0), ξi(0)) = (λi, 1) and these variables evolve as follows: Each sensor
has an independent Poisson clock that ticks at unit rate. When the local clock
of sensor i ticks, say at time to, the sensor does not take any action if its current
status is ‘idle’ (i.e. ξi(t−o) = 0). Otherwise, if ξi(t−o) = 1, the sensor chooses a
neighbor at random, sends its current value vi(t−o) to that neighbor, and sets
(vi(to), ξi(to)) = (e, 0) (in particular sets is status to ‘idle’). The selected neigh-
bor, say sensor j, sets vj(to) = f(vj(t−o), vi(t−o)) and ξj(to) = 1. A pseudo-code
for the algorithm is given in Figure 1.

Procedure Initialize()
{vi ← λi;
status←‘carrier’;}

Procedure Send()
if(status==‘carrier’){
choose neighbor;
send(vi);
vi ← e;
status←‘idle’;}

Procedure Receive(message)
{vi ← f(vi, message);
status←‘carrier’;}

Fig. 1. Three subroutines that specify Algorithm COALESCENT(f, λ, G) at node i. Send()
is activated by the local Poisson clock, and Receive() is activated by message reception
from another sensor.

Algorithm COALESCENT(f, λ, G) is based on sequential execution of f on edges
of G, but these edges are selected in a distributed and randomized manner,
without particular regard to any optimality notion. Note that when an idle node
receives a message the value at the originating node simply passes onto the idle
node, whereas if the receiving node is also a carrier then its value becomes the
image of the two values under f , thereby executing a step towards computation of
Fn(λ1, λ2, · · · , λn). The following proposition points out a sample-path property
that is useful in proving correctness of the algorithm.

Proposition 2. Under Algorithm COALESCENT(f, λ, G),

Fn(v1(t), v2(t), · · · , vn(t)) = Fn(λ1, λ2, · · · , λn),

for all t > 0.

Efficient In-Network Processing 257

We say that a coalescence occurs whenever a message is transmitted from a
carrier sensor to another carrier sensor. Note that the number of carrier sensors
|ξ(t)| �

∑n
i=1 ξi(t) is non-increasing in time t and it decreases by 1 at the times

of coalescence in the network. For each integer k ≤ n define the random time
σk as

σk = inf{t ≥ 0 : |ξ(t)| = k}.
That is, σk is the first time that k carrier nodes remain in the network. The
random variable σ1 is of particular interest since vi(t) = e for each sensor i
such that ξi(t) = 0, and thus by Proposition 2 for t ≥ σ1 there exists a unique
sensor i(t) such that vi(t)(t) = Fn(λ1, λ2, · · · , λn). We therefore regard σ1 as the
stopping time of Algorithm COALESCENT(f, λ, G).

Issues in implementation and robustness. The basic form of the algo-
rithm can be modified to recognize the termination time σ1 by maintaining local
counters that keep track of how many coalescence operations were involved in
obtaining the present value of each sensor. Note that this can be implemented in
a distributed manner by including the local counter as part of each transmitted
message. The algorithm is robust against packet losses provided that reliable
protocols such as those based on handshaking are employed at the link layer.
A more serious mode of failure is permanent failure of sensor nodes, since if a
sensor dies when its status is ‘carrier’, then in addition to its initial value λi a
set of other such sensor values are also lost. The impact of such failures is more
pronounced in later stages of the algorithm when each carrier node is the unique
bearer of typically many sensor values. This issue can be mitigated by running
multiple independent instances of the algorithm simultaneously in the network.
The resulting cost in the energy expenditure is a constant factor, which is the
number of such instances.

For more insight on σ1 define ξ(t) = (ξi(t) : i ∈ V) and note that (ξ(t) : t ≥ 0)
is a time-homogeneous Markov process with state space {0, 1}V . It can be verified
that (ξ(t) : t ≥ 0) can be constructed as follows: At time 0 simultaneously start
n simple symmetric random walks, one at each node of the graph G. Namely
each random walk jumps at the ticks of an independent Poisson clock of unit
rate, to a neighboring node chosen at random. Let distinct random walks evolve
independently until two of them occupy the same node, and coalesce these two
random walks into one (that is, bind these two walks together so that they make
the same moves) from that time on. Finally, set ξi(t) = 1 if there is a random walk
occupying node i at time t, and set ξi(t) = 0 otherwise. The process (ξ(t) : t ≥ 0)
is known as the coalescing random walk, and has been extensively studied as dual
process for voter models of interacting particle systems.

The observation of the previous paragraph will be useful in the analysis of the
algorithm in the following section. Here we note that the algorithm terminates
almost surely on any finite graph:

Lemma 3. P (σ1 < ∞) = 1.

Despite its close relationship to random walks, drawing more detailed conclusions
about the complexity of Algorithm COALESCENT(f, λ, G) on arbitrary graphs ap-

258 O. Savas, M. Alanyali, and V. Saligrama

pears difficult. In the next section we pursue this goal for the special case of
d-dimensional torus for which substantial understanding of the coalescing ran-
dom walk has been developed in the applied probability literature.

4 Time and Energy Requirements on the d-Dimensional
Torus

Given integers d, N ≥ 1 let T
d
N denote the d-dimensional lattice torus with

Nd nodes. The graph T
d
N can be formally defined by identifying its nodes by

members of {1, 2, · · · , N}d and its edges by pairs in {1, 2, · · · , N}d that are at
Hamming distance 1 under modulo arithmetic with respect to N . In this section
we analyze the complexity of Algorithm COALESCENT(f, λ, Td

N) by examining the
coalescing random walk process (ξ(t) : t ≥ 0).

We start with considering the termination time σ1. It appears reasonable to
expect σ1 to be stochastically increasing in the network size; in fact for fixed d
the following result of Cox [10] provides the precise growth rate of each σk with
N . Let

sN =

⎧⎨⎩
N2 if d = 1
N2 log N if d = 2
Nd if d ≥ 3,

and Q =

⎧⎨⎩
1/6 if d = 1
2/π if d = 2
γ(d) if d ≥ 3,

where each γ(d) is a finite and strictly positive constant as identified in [10,
Equation (1.2)].

Theorem 4. ([10, Theorem 6]) Let G = T
d
N . For each integer k ≥ 1 there

exists a random variable σ∗
k such that σk/sN converges in distribution to σ∗

k.
Furthermore limN→∞ E[σ1/sN] = E[σ∗

1] = Q.

Distributions of the limiting random variables σ∗
k are also obtained in [10]. The

characterization of σ∗
k therein reveals an interesting and somewhat surprising

relationship between (|ξ(t)| : t ≥ 0) and a far simpler random process that
provides substantial insight for the present analysis. Namely, let (Dt : t ≥ 0) be
the Markovian pure death process where for each integer state m ≥ 1 a transition

from m to m − 1 occurs at rate
(

m
2

)
. For t ≥ 0 and integers n, k let

qn,k(t) = P (Dt = k|D0 = n).

The exact form of qn,k(t) is not immediately relevant to the present discussion,
however we note that limn→∞ qn,k(t) exists for each k ≥ 1 and t ≥ 0, and denote
the limit value by q∞,k(t). Explicit expressions for qn,k(t) and q∞,k(t) can be
found in [10, 16].

Theorem 5. ([10, Theorem 6]) For each integer k ≥ 1 and t ≥ 0, P (σ∗
k ≤ t) =∑k

l=1 q∞,l(2t/Q).

Efficient In-Network Processing 259

In informal terms, Theorems 4 and 5 suggest that for large values of N the
time scaled process (|ξ(tsN)| : t ≥ 0) behaves almost like the death process
(DtQ/2 : t ≥ 0). It can be verified via straightforward comparison of generators
that (Dt : t ≥ 0) represents the number of distinct random walks in a coalescing
random walk process when G is completely connected. Hence in the limit of
large N the spatial dependence of the process (|ξ(tsN)| : t ≥ 0) completely
washes out; in the new time-scale distinct walks coalesce with randomly chosen
counterparts, at rates that do not depend on locations. This intuition, however,
should be treated with caution, since like Theorems 4–5 it is valid only after
the number of remaining distinct walks reduce to bounded values (for example,
Theorem 5 does not provide any insight on σN/3, i.e. the time required to have
N/3 carriers left).

Remark 6. In search of some insight about the conclusions drawn in previous
paragraphs, suppose for the moment that at each time t the |ξ(t)| carrier nodes
are uniformly distributed over T

d
N , independently of the history prior to t. Note

that there is no particular reason for this to hold for t > 0. The instantaneous
rate of decrease of |ξ(t)| is proportional to the expected number of edges that
connect two carrier nodes; thus if the above assumption were correct, then this
rate would be equal to∑

edges l ∈ E

P (l connects carrier nodes)

=
(

dNd

2

) |ξ(t)|(|ξ(t)| − 1)
Nd(Nd − 1)

≈
(|ξ(t)|

2

)
d

Nd
;

and in turn one would expect (|ξ(tNd)| : t ≥ 0) to behave like the death process
(Dtd : t ≥ 0). Theorems 4–5 indicate that this conclusion is not too far off for
dimensions d ≥ 3.

We next turn to the energy requirement of the algorithm. Let

η(t) = Total number messages sent in the network by time t.

Note that each carrier node transmits messages at rate 1 and idle nodes do not
engage in message transmission; hence |ξ(t)| is the rate of message generation in
the network at time t. The mean number of messages transmitted in the network
before the termination of the algorithm is thus given by

E[η(σ1)] =
Nd∑
k=2

kE [σk−1 − σk] = E

[∫ σ1

0
|ξ(t)|dt

]
. (2)

It is appealing to apply Theorem 5 and compute E[η(σ1)] for large values of
N by computing the limiting expectation of each σk, however only tail of the

260 O. Savas, M. Alanyali, and V. Saligrama

Number of carrier nodes |ξ(t)|

tσk

k

Nd

σk-1

t=o(sN) t=Ω(sN)

0

Fig. 2. The figure illustrates a sample path of the number of carrier nodes in the
network. This trajectory has qualitatively different statistics for small and large values
of t/sN . The mean of the shaded area is the mean aggregate number of transmitted
messages in the network.

integral in equality (2) can be computed in this manner. More explicitly, the
algorithm has two qualitatively different phases as illustrated by Figure 2. For
t = o(sN) there are many carrier nodes in the network, but their number dimin-
ish very quickly due to their high density. For t = Ω(sN) only a bounded number
of carrier nodes exist and σk can be approximated by Theorem 5 in this time
interval. The former phase is short but it involves a high rate of message trans-
missions, whereas the latter phase lasts long but fewer messages are transmitted
per unit time.

An estimate of the message complexity over the interval t = Ω(sN) may be
obtained via the following heuristic argument. Since in this interval (|ξ(tsN)| :
t ≥ 0) is informally approximated by a death process that dies at a rate that is
roughly proportional to the square of its current value, use the solution of

ẏt = −y2
t , y0 = Nd,

as a proxy to (|ξ(tsN)| : t ≥ 0). In particular yt = (t + N−d)−1. One may then
expect ∫ σ1

0
|ξ(t)|dt = sN

∫ σ1/sN

0
|ξ(tsN)|dt

≈ sN

∫ σ1/sN

0
ytdt

= sN ln(t + N−d)|σ1/sN

0 .

Efficient In-Network Processing 261

Since σ1/sN = O(1) by Theorem 4 this argument suggests that O(sN log N)
messages are transmitted in the considered interval. This intuition turns out to
be correct and in fact the bound applies to both intervals. A formal statement
is provided by the next theorem:

Let

mN =

⎧⎨⎩
N2 if d = 1
N2(log N)2 if d = 2
Nd log N if d ≥ 3.

Theorem 7. Under Algorithm COALESCENT(f, λ, Td
N)

lim sup
N→∞

E[η(σ1)/mN] < ∞, for d ≥ 1,

lim inf
N→∞

E[η(σ1)/mN] > 0, for d = 1,

lim inf
N→∞

E[η(σ1)/sN] > 0, for d ≥ 2.

5 A Comparative Case Study

This section compares the time and energy requirements of the proposed algo-
rithm and a gossip algorithm that has been previously studied for distributed
computation of averages. Namely, the task here is to obtain the algebraic aver-
age of Nd numbers x1, x2, · · · , xNd each of which is known to a distinct node on
the torus T

d
N . As noted by Example 1 this task can be accomplished by Algo-

rithm COALESCENT(f, λ, Td
N) by proper choice of Λ, f and λi (namely by choosing

λi = (xi, 1) for node i).
In broad terms, gossip algorithms refer to distributed randomized algorithms

that are based on pairwise relaxations between randomly chosen node pairs. In
the context of the present section a pairwise relaxation refers to averaging the
two values available at the associated nodes. For completeness we next give a
full description of this algorithm as studied in [5]. The algorithm is specified by
a stochastic matrix P = [Pij]Nd×Nd such that Pij > 0 only if nodes i and j are
neighbors in T

d
N :

Algorithm GOSSIP-AVE(P): Each sensor i maintains a real valued variable with
initial value zi(0) = xi. Each sensor has a local Poisson clock that tick indepen-
dently of other such clocks. At the tick of this clock, say at time to, sensor i chooses
a neighbor j with respect to the distribution (Pij : j = 1, 2, · · · , Nd) and both
nodes update their internal variables as zi(to) = zj(to) = (zi(t−o) + zj(t−o))/2.

Let the vector z(t) = (z1(t), z2(t), · · · , zNd(t)) denote the sensor values at time
t, x̄ denote the average of x1, x2, · · · , xNd , and 1 denote the vector of all 1s. Define
τk as the kth time instant such that some local clock ticks and thereby triggers
messaging in the network. For ε > 0 let the deterministic quantity K(ε, P) be
defined by

K(ε, P) = sup
z(0)

inf
{

k : Pr

(‖z(τk) − x̄1‖2

‖z(0)‖2
� ε

)
� ε

}
.

262 O. Savas, M. Alanyali, and V. Saligrama

Table 1. Comparison of the two algorithms on the d-dimensional torus with Nd

nodes, T
d
N

Energy requirement per node Termination time
COALESCENT(f, λ, Td

N) GOSSIP-AVE(P) COALESCENT(f, λ, Td
N) GOSSIP-AVE(P)

d = 1 Θ(N) Ω(N2) Θ(N2) Ω(N2)
d = 2 O((log N)2) Ω(N2) Θ(N2 log N) Ω(N2)
d ≥ 3 O(log N) Ω(N2) Θ(Nd) Ω(N2)

In [5] K(ε, P) is considered as a termination time for Algorithm GOSSIP-AVE(P)
and minimization of K(ε, P) is sought by proper choice of P . While the choice
of K(ε, P) as a stopping criterion might be questioned (‖z(τK(ε,P))− x̄1)‖∞/|x̄|
may be much larger than ε), here we adopt the same interpretation for this
quantity for comparison purposes. The following theorem determines the order
of K(ε, P) uniformly for all P on the torus T

d
N :

Theorem 8. For fixed ε > 0, K(ε, P) = Ω(Nd+2) uniformly for P such that
Pij > 0 only if (i, j) is an edge in T

d
N .

Note that K(ε, P) is a termination criterion in terms of the transmitted messages
in the network. Specifically, K(ε, P) represents half of the aggregate number of
messages transmitted in the network before Algorithm GOSSIP-AVE(P) termi-
nates (to be precise, every time a clock ticks two messages are transmitted in
opposite directions on some edge). This observation translates to a termination-
time estimate since the point process (τ1, τ2, τ3, · · ·) is Poisson with rate Nd and
it takes roughly K(ε, P)/Nd time units to produce a total of 2K(ε, P) messages.
Theorem 8 thus has the following corollary:

Corollary 9. Algorithm GOSSIP-AVE(P) terminates within Ω(N2) time on T
d
N .

The obtained complexity results are summarized in Table 1.
Interestingly, there appears little practical incentive to consider higher dimen-

sions for COALESCENT(f, λ, ·). Namely Table 1 indicates that in arranging n nodes
on T

d
d
√

n
, the marginal gain in either performance measure by going from d to

d + 1 is a factor of O(log n) for d = 2, and a factor of O(1) for larger values of
d. This observation hints at favorable properties of the 3-dimensional torus and
suggests that it is unlikely to experience substantial performance losses due to
edge failures. A formal statement of this intuition does not seem straightforward.
However the suggested insensitivity to nodal degrees is likely to have important
practical implications with regard to robustness, especially in situations where
the network topology cannot be planned or controlled.

We next provide numerical results on geometric random graphs, which have
received substantial interest as suitable models for wireless ad-hoc networks. See
for example [18] and [5]. A geometric random graph Γ = (VΓ , EΓ) is obtained
by uniformly distributing a set VΓ of nodes, hence |VΓ | = n, on the unit square
and drawing an edge between any pair of nodes that fall within distance r(n) =√

2 logn/n of each other. We have first created geometric random graphs and

Efficient In-Network Processing 263

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250
Average Number of Messages

Number of Nodes

COALESCE
GOSSIP−AVE (ε = 10−6)

Fig. 3. The average number of transmitted messages per-node on geometric random
graphs with n nodes. ε = 10−6 for GOSSIP-AVE.

discarded the disconnected ones in order to avoid trivialities. Then we have run
both COALESCE and GOSSIP-AVE on the created geometric random graphs 50
times in order to quantify the number of transmitted messages. We have taken
ε = 10−6 for GOSSIP-AVE. The results are plotted in Figure 3. It is observed
from Figure 3 that COALESCE favors significantly against GOSSIP-AVE in terms
of number of messages transmitted. The asymptotic properties of COALESCE on
geometric random graphs as the number of nodes gets large is still ongoing
research.

Remark 10. Time and message complexities of Algorithm GOSSIP-AVE(P) are
inherently related to mixing times of random walks on the torus, and thereby to
the spectral gap of the stochastic matrix P . The conclusions of this section should
be expected to hold for other distributed algorithms, such as those in [13, 3, 15],
that are based on powers of the incidence matrix of an underlying connectivity
graph and have similar stopping criteria.

6 Conclusions

This paper concerns distributed algorithms for in-network computation of de-
composable functions in sensor networks. Such algorithms typically need to com-
ply with two conflicting requirements: On the one hand expedited convergence
of the algorithm is desirable from an application viewpoint. On the other hand
limitations due to energy-limited sensors impose frugal usage of energy as an
indispensable feature. The emphasis of this paper is the trade-off between time
and energy requirements.

We introduced and analyzed a distributed algorithm that is based on co-
alescing random walk on the communication graph of a sensor network. The

264 O. Savas, M. Alanyali, and V. Saligrama

algorithm is asynchronous, requires local information for each sensor node, and
it is resilient against packet losses and node failures. In informal terms, the main
theme of this algorithm is parsimonious message transmissions. Namely, upon
transmitting a message a node enters a quiescent state which lasts until the node
receives a message from a neighbor. This operational mode leads to substantial
energy savings as the long-term rate of message transmissions at any node de-
creases in time and tends to the reciprocal of the total number sensors in the
network. We show that the algorithm terminates with the exact value of inter-
est, regardless of the network topology. We pursue more detailed analysis on the
d-dimensional torus with n nodes and show that the completion time of the algo-
rithm is Θ(n(log n)α) and energy requirement per sensor node is O((log n)α+1)
where α = 1 for d = 2 and α = 0 for d ≥ 3. The algorithm thus has a scalable
energy requirement, furthermore its performance fairly insensitive to the dimen-
sion d of the torus so long as d ≥ 2. This latter observation may prove useful in
estimating the performance of the algorithm on less regular network topologies.

We also studied the relative time and energy requirements of the algorithm
with respect to other in-network processing algorithms based on powers of the
network connectivity graph. In particular we focused on a gossip algorithm for
computing averages, and showed that both time and per-node energy require-
ments scale as Ω(n) on the 2-dimensional torus irrespectively of the choice of
distribution for neighbor selection for pairwise relaxation. Hence the proposed
algorithm achieves a factor of Ω(n/(log n)2) gain in energy at the expense of a
factor of O(log n) loss in completion time.

References

1. O. Savas, M. Alanyali and V. Saligrama, Randomized Sequential Algorithms for
Data Aggregation in Sensor Networks, CISS 2006, Princeton, NJ.

2. M. Alanyali, V. Saligrama, O. Savas, and S. Aeron. Distributed bayesian hypothesis
testing in sensor networks. In American Control Conference, Boston, MA, July
2004.

3. V. Saligrama, M. Alanyali and O. Savas. Distributed detection in sensor networks
with packet losses and finite capacity links. IEEE Transactions on Signal Process-
ing, to appear, 2005.

4. M. Alanyali and V. Saligrama, “Distributed target tracking on multi-hop net-
works,” IEEE Statistical Signal Processing Workshop, Bordeaux, France, July 2005.

5. S. Boyd, A. Ghosh, B. Prabhakar and D. Shah. Gossip algorithms: Design, analysis
and applications. In Proceedings of IEEE INFOCOM 2005, 2005.

6. Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
7. D. Bertsekas, R. Gallager Data Networks. Pearson Education, 1991.
8. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-

merical Methods. Prentice Hall, 1989, republished by Athena Scientific, 1997.
9. J. F. Chamberland and V. V. Veeravalli. Decentralized detection in sensor net-

works. IEEE Transactions on Signal Processing, 2003.
10. J. T. Cox. Coalescing random walks and voter model consensus times on the torus

in Z
d. The Annals of Probability, 17(4):1333-1366, 1989.

Efficient In-Network Processing 265

11. A. Giridhar and P. R. Kumar. Computing and communicating functions over sensor
networks. IEEE JSAC Special Issue on Self-Organizing Distributed Collaborative
Sensor Networks, 23, 2005.

12. A. O. Hero and D. Blatt. Sensor network source localization via projection onto
convex sets(pocs). In IEEE International Conference on Acoustics, Speech, and
Signal Processing, Philadelphia, PA, March 2005.

13. R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with
switching topology and time-delays. IEEE Transactions On Automatic Control,
vol. 49, pp. 1520-1533, Sep., 2004.

14. M. G. Rabbat and R. D. Nowak. Distributed optimization in sensor networks.
In Third International Symposium on Information Processing in Sensor Networks,
Berkeley, CA, April 2004.

15. D.S. Scherber and H.C. Papadopoulos. Distributed computation of averages over
ad hoc networks. IEEE Journal on Selected Areas in Communications, vol. 23(4),
2005.

16. S. Tavaré. Line-of-descent and genealogical processes, and their applications in
population genetics models. Theoret. Population Biol., vol. 26, pp. 119-164, 1984.

17. J. N. Tsitsiklis. Decentralized detection. in Advances in Statistical Signal Process-
ing, H. V. Poor and J. B. Thomas Eds, 2, 1993.

18. P. Gupta and P. Kumar, The capacity of wireless networks, IEEE Trans. on Infor-
mation Theory, 46(2):388-404, March 2000.

Distributed Optimal Estimation from Relative
Measurements for Localization

and Time Synchronization

Prabir Barooah1, Neimar Machado da Silva2, and João P. Hespanha1

1 University of California, Santa Barbara, CA 93106, USA
{pbarooah, hespanha}@ece.ucsb.edu

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
neimarms@gmail.com

Abstract. We consider the problem of estimating vector-valued vari-
ables from noisy “relative” measurements. The measurement model can
be expressed in terms of a graph, whose nodes correspond to the vari-
ables being estimated and the edges to noisy measurements of the dif-
ference between the two variables. This type of measurement model ap-
pears in several sensor network problems, such as sensor localization and
time synchronization. We consider the optimal estimate for the unknown
variables obtained by applying the classical Best Linear Unbiased Esti-
mator, which achieves the minimum variance among all linear unbiased
estimators.

We propose a new algorithm to compute the optimal estimate in an
iterative manner, the Overlapping Subgraph Estimator algorithm. The
algorithm is distributed, asynchronous, robust to temporary communi-
cation failures, and is guaranteed to converges to the optimal estimate
even with temporary communication failures. Simulations for a realistic
example show that the algorithm can reduce energy consumption by a
factor of two compared to previous algorithms, while achieving the same
accuracy.

1 Introduction

We consider an estimation problem that is relevant to a large number of sensor
networks applications, such as localization and time synchronization. Consider
n vector-valued variables x1, x2, . . . , xn ∈ R

k, called node variables, one or more
of which are known, and the rest are unknown. A number of noisy measurements
of the difference between certain pairs of these variables are available. We can
associate the variables with the nodes V = {1, 2, . . . , n} of a directed graph
G = (V,E) and the measurements with the edges E of it, consisting of ordered
pairs (u, v) such that a noisy “relative” measurement between xu and xv is
available:

ζuv = xu − xv + εuv, (1)

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 266–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Optimal Estimation from Relative Measurements 267

where the εuv’s are uncorrelated zero-mean noise vectors with known covariance
matrices. That is, for every edge e ∈ E, Pe = E[εeε

T
e] is known, and E[εeε

T
ē] = 0

if e �= ē. The problem is to estimate all the unknown node variables from the
measurements. We call G a measurement graph and xu the u-th node variable.
The node variables that are known are called the reference variables and the
corresponding nodes are called the reference nodes. The relationship of this es-
timation problem with sensor network applications is discussed in section 1.1.

Our objective is to construct an optimal estimate x̂∗
u of xu for every node

u ∈ V for which xu is unknown. The optimal estimate refers to the esti-
mate produced by the classical Best Linear Unbiased Estimator (BLUE), which
achieves the minimum variance among all linear unbiased estimators [1]. To
compute the optimal estimate directly one would need all the measurements
and the topology of the graph (cf. section 2). Thus, if a central processor has
to compute the x̂∗

us, all this information has to be transmitted to it. In a large
ad-hoc network, this burdens nodes close to the central processor more than
others. Moreover, centralized processing is less robust to dynamic changes in
network topology resulting from link and node failures. Therefore a distributed
algorithm that can compute the optimal estimate while using only local com-
munication will be advantageous in terms of scalability, robustness and net-
work life.

In this paper we propose a new distributed algorithm, which we call the Over-
lapping Subgraph Estimator (OSE) algorithm, to compute the optimal estimates
of the node variables in an iterative manner. The algorithm is distributed in the
sense that each node computes its own estimate and the information required
to perform this computation is obtained from communication with its one-hop
neighbors. We show that the proposed algorithm is correct (i.e., the estimates
converge to the optimal estimates) even in the presence of faulty communica-
tion links, as long as certain mild conditions are satisfied. The OSE algorithm
asymptotically obtains the optimal estimate while simultaneously being scalable,
asynchronous, distributed and robust to communication failures.

1.1 Motivation and Related Work

Optimal Estimation. The estimation problem considered in this paper is mo-
tivated by sensornet applications such as time synchronization and location es-
timation. We now briefly discuss these applications.

In a network of sensors with local clocks that progress at the same rate but
have unknown offsets between them, it is desirable to estimate these offsets. Two
nodes u and v can obtain a measurement of the difference between their local
times by exchanging time stamped messages. The resulting measurement of clock
offsets can be modeled by (1)(see [2] for details). The problem of estimating the
offset of every clock with respect to a single reference clock is then a special case
of the problem considered in this paper. Karp et. al. [3] have also investigated
this particular problem. The measurement model used in [3] can be seen as an
alternative form of (1). In this application, the node variable xu is the offset of
u’s local time with respect to a “reference” clock, and is a scalar variable.

268 P. Barooah, N.M. da Silva, and J.P. Hespanha

Optimal Estimation from relative measurements with vector-valued variables
was investigated in [4, 5]. Localization from range and bearing measurements is
an important sensor network application that can be formulated as a special case
of the estimation problem considered in this paper. Imagine a sensor network
where the nodes are equipped with range and bearing measurement capability.
When the sensors are equipped with compasses, relative range and bearing mea-
surement between two nodes can be converted to a measurement of their relative
position vector in a global Cartesian reference frame. The measurements are now
in the form (1), and the optimal location estimates for the nodes can now be
computed from these measurements (described in section 2). In this application
the node variables are vectors.

Several localization algorithms have been designed assuming only relative
range information, and a few, assuming only relative angle measurement. In re-
cent times combining both range and bearing information has received some
attention [6]. However, to the best of our knowledge, no one has looked at
the localization problem in terms of the noisy measurement model (1). The
advantage of this formulation is that the effect of measurement noise can be
explicitly accounted for and filtered out to the maximum extent possible by
employing the classical Best Linear Unbiased Estimator(BLUE). This estima-
tor produces the minimum variance estimate, and hence is the most accurate
on average. Location estimation techniques using only range measurement can
be highly sensitive to measurement noises, which may introduce significant er-
rors into the location estimate due to flip ambiguities [7]. The advantage of
posing the localization problem as an estimation problem in Cartesian coor-
dinates using the measurement model (1) is that the optimal (minimum vari-
ance) estimates all node positions in a connected network can be unambigu-
ously determined when only one node that knows its position. A large num-
ber of well placed beacon nodes that know their position and broadcast that
to the network – a usual requirement for many localization schemes – are not
required.

Distributed Computation. Karp et. al. [3] considered the optimal estimation
problem for time synchronization with measurements of pairwise clock offsets,
and alluded to a possible distributed computation of the estimate, but stopped
short of investigating it. In [5], we have proposed a distributed algorithm for
computing the optimal estimates of the node variables that was based on the
Jacobi iterative method of solving a system of linear equations. This Jacobi al-
gorithm is briefly discussed in section 2. Although simple, robust and scalable,
the Jacobi algorithm proposed in [5] suffered from a slow convergence rate. The
OSE algorithm presented in this paper has a much faster convergence rate than
the Jacobi algorithm. Delouille et. al. [8] considered the minimum mean squared
error estimate of a different problem, in which absolute measurements of random
node variables (such as temperature) were available, but the node variables were
correlated. They proposed an Embedded Polygon Algorithm (EPA) for comput-
ing the minimum mean squared error estimate of node variables in a distributed
manner, which was essentially a block-Jacobi iterative method for solving a set

Distributed Optimal Estimation from Relative Measurements 269

of linear equations. Although the problem in [8] was quite different from the
problem investigated in this paper, their EPA algorithm could be adapted to
apply to our problem. We will call it the modified EPA. Simulations show that
the OSE algorithm converges faster than the modified EPA.

Energy Savings. Since OSE converges faster, it requires fewer iterations for
the same estimation error, which leads to less communication and hence saves
energy in ad-hoc wireless networks. Here estimation error refers to the differ-
ence between the optimal estimate and the estimate produced by the algorithm.
It is critical to keep energy consumption at every node at a minimum, since
battery life of nodes usually determines useful life of the network. The im-
proved performance of OSE comes from the nodes sending and processing larger
amounts of data compared to Jacobi and modified EPA. However, the energy
cost of sending additional data can be negligible due to the complex dependence
of energy consumption in wireless communication on radio hardware, under-
lying PHY and MAC layer protocols, network topology and a host of other
factors.

Investigation into energy consumption of wireless sensor nodes has been rather
limited. Still, we can get an idea of which parameters are important for energy
consumption from the studies reported in [9, 10, 11]. It is reported in [9] that
for very short packets (in the order of 100 bits), transceiver startup dominates
the power consumption; so sending a very short message offers no advantage in
terms of energy consumption over sending a somewhat longer message. In fact,
in a recent study of dense network of IEEE 802.15.4 wireless sensor nodes, it is
reported in transmitted energy per bit in a packet decreases monotonically upto
the maximum payload [10]. One of the main findings in [11] was that in highly
contentious networks, “transmitting large payloads is more energy efficient”. On
the other hand, receive and idle mode operation of the radio is seen to consume
as much energy as the transmit mode, if not more [12]. Thus, the number of
packets (sent and received) appear to be a better measure to predict energy
consumption than the number of bits.

In light of the above discussion, we used the number of packets transmitted
and received as a coarse measure of the energy consumed by a node during
communication. With number of packets as the energy consumption metric,
simulations indicate that the OSE algorithm can cut down the average energy
consumption for a given estimation accuracy as much by a factor of two or more
(compared to Jacobi and modified EPA).

1.2 Organization

The paper is organized as follows. In section 2, the optimal estimator for the
problem at hand is described. In section 3, we describe three algorithms to
compute the optimal estimate iteratively - Jacobi, modified EPA and the Over-
lapping Subgraph Estimator (OSE) and discuss correctness and performance.
Simulation studies are presented in section 4. The paper concludes with a sum-
mary in section 5.

270 P. Barooah, N.M. da Silva, and J.P. Hespanha

2 The Optimal Estimate

Consider a measurement graph G with n nodes and m edges. Recall that k is the
dimension of the node variables. Let X be a vector in R

nk obtained by stacking
together all the node variables, known and unknown, i.e., X := [xT

1 , xT
2 , . . . , xT

n]T .
Define z := [ζT

1 , ζT
2 ,, ζT

m]T ∈ R
km and ε := [εT

1 , εT
2 , ..., εT

m]T ∈ R
km. This

stacking together of variables allows us to rewrite (1) in the following form:

z = ATX + ε, (2)

where A is a matrix uniquely determined by the graph. To construct A, we start
by defining the incidence matrix A of the graph G, which is an n × m matrix
with one row per node and one column per edge defined by A := [aue], where
aue is nonzero if and only if the edge e ∈ E is incident on the node u ∈ V. When
nonzero, aue = −1 if the edge e is directed towards u and aue = 1 otherwise. The
matrix A that appears in (2) is an “expanded” version of the incidence matrix
A, defined by A := A ⊗ Ik, where Ik is the k × k identity matrix and ⊗ denotes
the Kronecker product.

4

35

6

2

1
e1

e2

e3
e4

e5

e6 ⎡⎢⎣
ζ1
ζ2
ζ3
ζ4
ζ5
ζ6

⎤⎥⎦=

⎡⎢⎣
I 0 −I 0 0 0
0 0 I 0 −I 0
0 0 I −I 0 0
0 0 0 0 I −I
0 0 0 I 0 −I
0 −I 0 0 0 I

⎤⎥⎦
⎡⎣ x1

x2
x3
x4
x5
x6

⎤⎦+

⎡⎣ ε1
ε2
ε3
ε4
ε5
ε6

⎤⎦
Taking out the rows 1 : k, k+1 : 2k and 4k+1 : 5k (corresponding to the reference
nodes 1, 2, 5), we construct Ar; the remaining rows constitute Ab. For this example,
AT

r xr = [xT
1 , −xT

5 , 0, xT
5 , 0, −xT

2]T and so eq. (3) becomes⎡⎢⎣
ζ1−x1
ζ2+x5

ζ3
ζ4−x5

ζ5
ζ6+x2

⎤⎥⎦
︸ ︷︷ ︸

z̄

=

⎡⎣ −I 0 0
I 0 0
I −I 0
0 0 −I
0 I −I
0 0 I

⎤⎦
︸ ︷︷ ︸

AT
b

[x3
x4
x6

]
︸ ︷︷ ︸

x

+

⎡⎣ ε1
ε2
ε3
ε4
ε5
ε6

⎤⎦
︸ ︷︷ ︸

ε

.

In the case when every measurement covariance is equal to the identity matrix,
eq. (4) becomes [3I −I 0

−I 2I −I
0 −I 3I

] [x̂∗
3

x̂∗
4

x̂∗
6

]
=
[−ζ̄1+ζ̄2+ζ̄3

−ζ̄3+ζ̄5
−ζ̄4−ζ̄5+ζ̄6

]
,

whose solution gives the optimal estimates of the unknown node variables x3, x4

and x6.

Fig. 1. A measurement graph G with 6 nodes and 6 edges. Nodes 1, 2 and 5 are
reference nodes, which means that they know their own node variables.

Distributed Optimal Estimation from Relative Measurements 271

By partitioning X into a vector x containing all the unknown node variables
and another vector xr containing all the known reference node variables: XT =
[xT

r ,xT]T , we can re-write (2) as z = AT
r xr + AT

b x + ε, where Ar contains the
rows of A corresponding to the reference nodes and Ab contains the rows of
A corresponding to the unknown node variables. The equation above can be
further rewritten as:

z̄ = AT
b x + ε, (3)

where z̄ := z−AT
r xr is a known vector. The optimal estimate (BLUE) x̂∗ of the

vector of unknown node variables x for the measurement model 3 is the solution
to the following system of linear equations:

Lx̂∗ = b, (4)

where L := AbP−1AT
b , b := AbP−1z̄, and P := E[εεT] is the covariance

matrix of the measurement error vector [1]. Since the measurement errors on
two different edges are uncorrelated, P is a symmetric positive definite block
diagonal matrix with the measurement error covariances along the diagonal:
P = diag(P1, P2, . . . , Pm) ∈ R

km×km, where Pe = E[εeε
T
e] is the covariance of

the measurement error εe.
The matrix L is invertible if and only if every weakly connected component

of the graph G has at least one reference node [4]. A directed graph G is said to
be weakly connected if there is a path from every node to every other node, not
necessarily respecting the direction of the edges. In a weakly connected graph, the
optimal estimate x̂∗ for every node u is unique for a given set of measurements z.
The error covariance of the optimal estimate Σ := E[(x− x̂∗)(x− x̂∗)T] is equal
to L−1 and the k × k blocks on the diagonal of this matrix gives the estimation
error covariances of the node variables.

Figure 1 shows an example of a measurement graph and the relevant
equations.

3 Distributed Computation of the Optimal Estimate

In order to compute the optimal estimate x̂∗ by solving the equations (4) directly,
one needs all the measurements and their covariances (z, P), and the topology of
the graph (Ab,Ar). In this section we consider iterative distributed algorithms to
compute the optimal estimates for the measurement model (2). These algorithms
compute the optimal estimate through multiple iterations, with the constraint
that a node is allowed to communicate only with its neighbors. The concept
of “neighbor” is determined by the graph G, in the sense that two nodes are
neighbors if there is an edge in G between them (in either direction). This
implicitly assumes bidirectional communication. We describe three algorithms -
Jacobi, modified EPA, and OSE, the last being the novel contribution of this
paper. We will see that OSE algorithm converges even when communication
faults destroy the bidirectionality of communication.

272 P. Barooah, N.M. da Silva, and J.P. Hespanha

3.1 The Jacobi Algorithm

Consider a node u with unknown node variable xu and imagine for a moment
that the node variables for all neighbors of u are exactly known and available
to u. In this case, u could compute its optimal estimate by simply using the
measurements between itself and its 1-hop neighbors. This estimation problem
is fundamentally no different than the original problem, except that it is de-
fined over the much smaller graph Gu(1) = (Vu(1),Eu(1)), whose node set
Vu(1) include u and its 1-hops neighbors and the edge set Eu(1) consists of
only the edges between u and its 1-hops neighbors. We call Gu(1) the 1-hop
subgraph of G centered at u. Since we are assuming that the node variables of
all neighbors of u are exactly known, all these nodes should be understood as
references.

In the Jacobi algorithm, at every iteration, a node gathers the estimates of
its neighbors from them by exchanging messages and updates it own estimate
by solving the optimal estimation problem in the 1-hop subgraph Gu(1) by
taking the estimates of its neighbors as the true values (reference variables). It
turns out that this algorithm corresponds exactly to the Jacobi algorithm for
the iterative solution to the linear equation (4) and is guaranteed to converge to
the true solution of (4) when the iteration is done in a synchronous manner [5].
When done asynchronously, or in the presence of communication failures, it is
guaranteed to converge under additional mild assumptions [5]. The algorithm
can be terminated at a node when the change in its recent estimate is seen to be
lower than a certain pre-specified threshold value, or when a certain maximum
number of iterations are completed. The details of the Jacobi algorithm can be
found in [2, 5].

Note that to compute the update x̂
(i+1)
u , node u also needs the measure-

ments and associated covariances ζe, Pe on the edges e ∈ Eu(1) of its 1-hop
subgraph. We assume that after deployment of the network, nodes detect their
neighbors and exchange their relative measurements as well as the associated
covariances. Each node uses this information obtained initially for all future
computation.

3.2 Modified EPA

The Embedded Polygon Algorithm (EPA) proposed in [8] can be used for it-
eratively solving (4); since it is essentially a block – Jacobi method of solving
a system of linear equations, where the blocks correspond to non-overlapping
polygons. The special case when the polygons are triangles has been extensively
studied in [8]. We will not include here the details of the algorithm, including
triangle formation in the initial phase, the intermediate computation, commu-
nication and update. The interested reader is referred to [8]. It is not difficult
to adapt the algorithm in [8] to the problem considered in this paper. We have
implemented the modified EPA algorithm (with triangles as the embedded poly-
gons) and compared it with both Jacobi and OSE. Results are presented in
section 4.

Distributed Optimal Estimation from Relative Measurements 273

3.3 The Overlapping Subgraph Estimator Algorithm

The Overlapping Subgraph Estimator (OSE) algorithm achieves faster conver-
gence than Jacobi and modified EPA, while retaining their scalability and ro-
bustness properties. The OSE algorithm is inspired by the multisplitting and
Weighted Additive Schwarz method of solving linear equations [13].

The OSE algorithm can be thought of as an extension of the Jacobi algorithm,
in which individual nodes utilize larger subgraphs to improve their estimates.
To understand how this can be done, suppose that each node broadcasts to its
neighbors not only is current estimate, but also all the latest estimates that it
received from his neighbors. In practice, we have a simple two-hop communica-
tion scheme and, in the absence of drops, at the ith iteration step, each node will
have the estimates x̂

(i)
v for its 1-hop neighbors and the (older) estimates x̂

(i−1)
v

for its 2-hop neighbors (i.e., the nodes at a graphical distance of two).
Under this information exchange scheme, at the ith iteration, each node u has

estimates of all node variables in the set Vu(2) consisting of itself and all its 1-
hop and 2-hop neighbors. In the OSE algorithm, each node updates its estimate
using the 2-hop subgraph centered at u Gu(2) = (Vu(2),Eu(2)), with edge set
Eu(2) consisting all the edges of the original graph G that connect element of
Vu(2). For this estimation problem, node u takes as references the variables of
the nodes at the “boundary” of its 2-hop subgraph: Vu(2) \Vu(1). These nodes
are at a graphical distance of 2 from u. We assume that the nodes use the first
few rounds of communication to determine and communicate to one another the
measurements and associated covariances of their 2-hop subgraphs. The OSE
algorithm can be summarized as follows:

1. Each node u ∈ V picks arbitrary initial estimates x̂
(−1)
v , v ∈ Vu(2) \ Vu(1)

for the node variables of all its 2-hop neighbors. These estimates do not
necessarily have to be consistent across the different nodes.

2. At the ith iteration, each node u ∈ V assumes that the estimates x̂
(i−2)
v , v ∈

Vu(2) \ Vu(1) (that it received through its 1-hop neighbors) are correct and
solves the corresponding optimal estimation problem associated with the 2-
hop subgraph Gu(2). In particular, it solves the following linear equations:
Lu,2yu = bu, where yu is a vector of node variables that correspond to the
nodes in its 1-hop subgraph Gu(1), and Lu,2,bu are defined for the subgraph
Gu(2) as L,b were for G in eq. (4). After this computation, node u updates its
estimate as x̂

(i+1)
u ← λyu + (1 − λ)x̂(i)

u , where 0 < λ ≤ 1 is a pre-specified
design parameter and yu is the variable in yu that corresponds to xu. The new
estimate x̂

(i+1)
u as well as the estimates x̂

(i)
v , v ∈ Vu(1) previously received

from its 1-hop neighbors are then broadcasted by u to all its 1-hop neighbors.
3. Each node then listens for the broadcasts from its neighbors, and uses them

to update its estimates for the node variables of all its 1-hop and 2-hop
neighbors Vu(2). Once all updates are received a new iteration can start.

The termination criteria will vary depending on the application, as discussed for
the Jacobi algorithm. As in the case of Jacobi, we assume that nodes exchange

274 P. Barooah, N.M. da Silva, and J.P. Hespanha

measurement and covariance information with their neighbors in the beginning,
and once obtained, uses those measurements for all future time.

As an illustrative example of how the OSE algorithm proceeds in practice,
consider the measurement graph shown in figure 2(a) with node 1 as the sin-
gle reference. Figure 2(b) shows the 2-hop subgraph centered at node 4, G4(2),
which consists of the following nodes and edges: V4(2) = {1, 3, 5, 4, 6, 2} and
E4(2) = {1, 2, 3, 4, 5, 6}. Its 2-hop neighbors are V4(2) \V4(1) = {1, 2, 5}. After
the first round of inter node communication, node 4 has the estimates of its
neighbors 3 and 6: x

(0)
3 , x

(0)
6 (as well as the measurements ζ3, ζ5 and covariances

P3, P5). After the second round of communication, node 4 has the node esti-
mates x1, x̂

(1)
3 , x̂

(0)
5 , x̂

(1)
6 , x̂

(0)
2 (and the measurements ζ1, . . . , ζ6 and covariances

P1, . . . , P6). Assuming no communication failures, at every iteration i, node 4
uses x1, x̂

(i−2)
3 and x̂

(i−2)
5 as the reference variables and computes “temporary”

estimates y3, y4, y6 (of x3, x4 and x6) by solving the optimal estimation problem
in its 2-hop subgraph. It updates its estimate as : x̂

(i+1)
4 ← λy4 + (1 − λ)x̂(i)

4 ,
and discards the other variables computed.

Note that all the data required for the computation at a node is obtained by
communicating with its 1-hop neighbors. Convergence to the optimal estimate
will be discussed in section 3.5.

Remark 1 (h-hop OSE algorithm). One could also design a h-hop OSE algorithm
by letting every node utilize a h-hop subgraph centered at itself, where h is
some (not very large) integer. This would be a straightforward extension of
the 2-hop OSE just described, except that at every iteration, individual nodes
would have to transmit larger amounts of data than in 2-hop OSE, potentially
requiring multiple packet transmissions at each iteration. In practice, this added
communication cost will limit the allowable value of h. �

The Jacobi, EPA and OSE algorithms are all iterative methods to compute the
solution of a system of linear equations. The Jacobi and EPA are similar in na-
ture, EPA essentially being a block-Jacobi method. The OSE is built upon the
Filtered Schwarz method [2], which is a refinement of the Schwarz method [13].
The OSE algorithm’s gain in convergence speed with respect to the Jacobi and
modified EPA algorithms comes from the fact that the 2-hop subgraphs Gu(2)
contain more edges than the 1-hop subgraphs Gu(1), and the subgraphs of differ-
ent nodes are overlapping. It has been observed that a certain degree of overlap
may lead to a speeding up of the Schwarz method [13].

Improving Performance Through Flagged Initialization. One can fur-
ther improve the performance of OSE (and also of Jacobi and modified EPA) by
providing a better initial condition to it, which does not require more commu-
nication or computation. After deployment of the network, the reference nodes
initialize their variables to their known values and every other node initializes its
estimate to ∞, which serves as a flag to declare that it has no estimate. In the
subsequent updates of a node’s variables, the node only includes in its 1- or 2-hop
subgraph those nodes that have finite estimates. If none of the neighbors have a

Distributed Optimal Estimation from Relative Measurements 275

finite estimate, then a node keeps its estimate at ∞. In the beginning, only the
references have finite estimates. In the first iteration, only the neighbors of the
references compute finite estimates by looking at their 1-hop subgraphs. In the
next iteration, their neighbors do the same by looking at their 2 hop subgraphs
and so on until all nodes in the graph have finite estimates. In general, the time
it takes for all nodes to have finite estimates will depend on the radius of the
network (the minimum graphical distance between any node and the nearest
reference node). Since the flagged initialization only affects the initial stage of
the algorithms, it does not affect their convergence properties.

3.4 Asynchronous Updates and Link Failures

In the previous description of the OSE algorithm, we assumed that communica-
tion was essentially synchronous and that all nodes always received broadcasts
from all their neighbors. However, the OSE algorithm also works with link fail-
ures and lack of synchronization among nodes. To achieve this a node broadcasts
its most recent estimate and waits for a certain time-out period to receive data
from its neighbors. It proceeds with the estimate update after that period, even
if it does not receive data from all of its neighbors, by using the most recent
estimates that it received from its neighbors. A node may also receive multi-
ple estimates of another node’s variable. In that case, it uses the most recent
estimate, which can be deduced by the time stamps on the messages. The Ja-
cobi and the modified EPA algorithms can similarly be made robust to link
failures [5, 8].

In practice nodes and communication links may fail temporarily or perma-
nently. A node may simply remove from its subgraph those nodes and edges
that have failed permanently (assuming it can be detected) and carry on the
estimation updates on the new subgraph. However, if a node or link fails per-
manently, the measurement graph changes permanently, requiring redefinition
of the optimal estimator. To avoid this technical difficulty, in this paper we
only consider temporary link failures, which encompasses temporary node
failures.

3.5 Correctness

An iterative algorithm is said to be correct if the estimate produced by the
algorithm x(i) converges to the true solution x̂∗ as the number of iterations i
increase, i.e., ‖x(i) − x̂∗‖ → 0 as i → ∞. The assumption below is needed to
prove correctness of the OSE algorithm, which is stated in Theorem 1.

Assumption 1. At least one of the statements below holds:

1. All covariance matrices Pe, e ∈ E are diagonal.
2. All covariance matrices Pe, e ∈ E are equal. �

Theorem 1 (Correctness of OSE). When assumption 1 holds, the OSE al-
gorithm converges to the optimal estimate x̂∗ as long as there is a number �d

such that the number of consecutive failures of any link is less than �d. �

276 P. Barooah, N.M. da Silva, and J.P. Hespanha

We refer the interested reader to [2] for a proof of this result.

Remark 2. Assumption 1 is too restrictive in certain cases. In particular, the
simulations reported in Section 4 were done with covariance matrices that did
not satisfy this assumption, yet the algorithm was seen to converge in all the
simulations. The reason is that this assumption is needed so that sufficient con-
ditions for convergence are satisfied [2], and is not necessary in general.

3.6 Performance

Since minimizing energy consumption is critically important in sensor networks,
we choose as performance metric of the algorithms the total energy consumed
by a node before a given normalized error is achieved. The normalized error ε(i)

is defined as
ε(i) := ‖x̂(i) − x̂∗‖/‖x̂∗‖

and is a measure of how close the iterate x̂(i) is to the correct solution x̂∗ at the
end of iteration i. We assume that nodes use broadcast communication to send
data.

4

1

7

6
2

35

6

e1e2

e3e4

e5

e6 e7

e8

(a) G

4

2

35 1

6

(b) G4(2)
−0.5 0 0.5

−0.5

0

0.5

(c) A network of 200 sensor nodes.

Fig. 2. (a) A measurement graph G with node 1 as reference, and (b) a 2-hop subgraph
G4(2) centered at node 4. While running the OSE algorithm, node 4 treats 1, 5 and 2 as
reference nodes in the subgraph G4(2) and solves for the unknowns x3, x4 and x6. (c)
A sensor network with 200 nodes in a unit square area. The edges of the measurement
graph are shown as line segments connecting the true nodes positions, which are shown
as black circles. Two nodes with an edge between them have a noisy measurement of
their relative positions in the plane. The little squares are the positions estimated by
the (centralized) optimal estimator. A single reference node is placed at (0, 0).

As discussed in section 1.1, we take the number of packets transmitted and
received by a node as a measure of energy consumption. Let N

(i)
tx (u) be the

number of packets a node u transmits to its neighbors during the ith iteration.

Distributed Optimal Estimation from Relative Measurements 277

The energy E(i)(u) expended by u in sending and receiving data during the ith
iteration is computed by the following formula:

E(i)(u) = N
(i)
tx (u) +

3
4

∑
v∈Nu

N
(i)
tx (v), (5)

where Nu is the set of neighbors of u. The factor 3/4 is chosen to account for
the ratio between the power consumptions in the receive mode and the trans-
mit mode. Our choice is based on values reported in [10] and [14]. The average
energy consumption Ē(ε) is the average (over nodes) of the total of energy con-
sumed among all the nodes till the normalized error reduces to ε. For simplicity,
eq. (5) assumes synchronous updates and perfect communication (no retrans-
missions). When packet transmission is unsuccessful, multiple retransmissions
maybe result, making the resulting energy consumption a complex function of
the parameters involved [11, 10].

In one iteration of the Jacobi algorithm, a node needs to broadcast its own
estimate, which consists of k real numbers. Recall that k is the dimension of the
node variables. Assuming a 32 bit encoding, that amounts to 4k bytes of data. In
the OSE algorithm, a node with d neighbors has to broadcast data consisting of
4d bytes for its neighbors’ IP addresses, 4k(d+1) bytes for the previous estimates
of itself and its neighbors, and 3d bytes for time stamps of those estimates. This
leads to a total of (7 + 4k)d + 4k bytes of data, and consequently the number of
packets in a message becomes

Ntx(u) = � (7 + 4k)d + 4k

max databytes pkt
�, (6)

where max databytes pkt is the maximum number of bytes of data allowed in
the payload per packet. In this paper we assume that the maximum data per
packet is 118 bytes, as per IEEE 802.15.4 specifications [15]. For comparison,
we note that the number of bytes in a packet transmitted by MICA motes can
vary from 29 bytes to 250 bytes depending on whether B-MAC or S-MAC is
used [16]. If the number of data bytes allowed is quite small, OSE may require
multiple packet transmission in every iterations, making it more expensive.

4 Simulations

For simulations reported in this section, we consider location estimation as an
application of the problem described in this paper. The node variable xu is node
u’s position in 2-d Euclidean space. We present a case study with a network
with 200 nodes that were randomly placed in an area approximately 1 × 1 area
(Figure 2(c)). Some pairs of nodes u, v that were within a range of less than
rmax = 0.11 were allowed to have measurements of each others’ relative distance
ruv and bearing θuv. Node 1, placed at (0, 0) was the only reference node. Details
of the noise corrupting the measurements and the resulting covariances can be
found in [2]. The locations estimated by the (centralized) optimal estimator are
shown in Figure 2(c) together with the true locations.

278 P. Barooah, N.M. da Silva, and J.P. Hespanha

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

Iteration number, i

N
or

m
al

iz
ed

er
ro

r,
ε(

i)

Jacobi

EPA

OSE 2−hop

OSE 3−hop

OSE 2−hop, F.I.

(a) Normalized error vs. iteration num-
ber.

100 200 300 400 500

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Average energy Ē(ε)

N
or

m
al

iz
ed

er
ro

r,
ε

Jacobi
modified EPA
2−hop OSE

(b) Normalized error vs. average energy
consumed.

Fig. 3. Performance comparison of the three algorithms. (a) shows the reduction in
normalized error with iteration number for the three algorithms, and also the drastic
reduction in the error with flagged initialization for the 2-hop OSE (the legend “F.I.”
refers to flagged initialization). The simulations without flagged initialization were
done with all initial node position estimates set to (0, 0). (b) shows the Normalized
error vs. average energy consumption of 2-hop OSE, modified EPA and Jacobi with
broadcast communication. Flagged initialization was used in all the three algorithms.
All simulations shown in (a) and (b) were done in Matlab.

Simulations were done both in Matlab and in the network simulator pack-
age GTNetS [17]. The Matlab simulations were done in a synchronous man-
ner. The purpose of the synchronous simulations was to compare the perfor-
mance of the three algorithms – Jacobi, modified EPA and OSE – under ex-
actly the same conditions. Synchronous Matlab simulations with link failure
were conducted to study the effect of communication faults (in isolation from
the effect of asynchronism). The GTNetS simulations were done to study OSE’s
performance in a more realistic setting, with asynchronous updates and faulty
communication. For all OSE simulations, λ was chosen (somewhat arbitrarily)
as 0.9.

Figure 3(a) compares the normalized error as a function of iteration number
for the three algorithms discussed in this paper - Jacobi, EPA and the OSE.
Two versions of OSE were tested, 2-hop and 3-hop. It is clear from this figure
that the OSE outperforms both Jacobi and modified EPA. As the figure shows,
drastic improvement was achieved with the flagged initialization scheme. With
it, the 2-hop OSE was able to estimate the node positions within 3% of the
optimal estimate after 9 iterations. For the flagged OSE, the normalized error
is not defined till iteration number 8, since some nodes had no estimate of their
positions till that time.

The Performanceof the three algorithms - Jacobi,modified EPAand 2-hop OSE
are compared in terms of the average energy consumption Ē inFigure 3(b). Flagged
initialization was used in all three algorithms.To compute the energy consumption

Distributed Optimal Estimation from Relative Measurements 279

10 20 30 40

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Iteration number, i

N
or

m
al

iz
ed

er
ro

r,
ε

no link failure
p

f
 = 2%

p
f
 = 5%

(a) Synchronous simulation

10 20 30 40

0.008
0.009
0.01

0.02

0.03

0.04

0.05

Time (seconds)

N
or

m
al

iz
ed

er
ro

r,
ε

no link failure
p

f
 = 5%

(b) Async. GTNetS simulation

Fig. 4. (a)Normalized error as a function of iteration number in the presence of link
failures. Two different failure probabilities are compared with the case of no failure.
(b) Normalized error vs. Time (seconds) for asynchronous 2-hop OSE simulations con-
ducted in GTNetS, with and without link failure. As expected, performance in the
asynchronous case is slightly poorer than in the corresponding synchronous case.

for the 2-hop OSE, we apply (6) with k = 2 and max databytes pkt = 118 to
get Ntx(u) = �(15du + 8)/118�. The average node degree being 5, the number of
packets broadcasted per iteration in case of the OSE algorithm was 1 for almost all
the nodes. For Jacobi, the number of packets broadcasted at every iteration was 1
for every node. For the modified EPA algorithm, the number of packets in every
transmission was 1 but the total number of transmissions in every iteration were
larger (than Jacobi and OSE) due to the data exchange required in both the EPA
update and EPA solve steps (see [8] for details). The normalized error against the
average (among all the nodes) total energy consumed Ē is computed and plotted
in Figure 3(b). Comparing the plots one sees that for a normalized error of 1%, the
OSE consumes about 70% of the energy consumed by modified EPA and 60% of
that by Jacobi. For slightly lower error, the difference is more drastic: to achieve
a normalized error of 0.8%, OSE needs only 60% of the energy consumed by EPA
and about half of that by Jacobi.

Note that the energy consumption benefits of OSE become more pronounced
as one asks for higher accuracy, but less so for low accuracy. This is due to
flagged initialization, which accounts for almost all the error reduction in the
first few iterations.

To simulate faulty communication, we let every link fail independently with
a probability pf that is constant for all links during every iteration. Figure 4(a)
shows the normalized error as a function of iteration number (from three repre-
sentative runs) for two different failure-probabilities: pf = 0.025 and 0.05. In all
the cases, flagged initialization was used. The error trends show the algorithm
converging with link failures. As expected, though, higher failure rates resulted
in deteriorating performance.

280 P. Barooah, N.M. da Silva, and J.P. Hespanha

The OSE algorithm was also implemented in the GTNetS simulator [17], and
the results for the 200 node network are shown in Figure 4(b). Each node sleeps
until it receives the first packet from a neighbor, after which it updates its
estimate and sends data to its neighbors every second. Estimates are updated
in an asynchronous manner, without waiting to receive data from all neighbors.
Time history of the normalized error is shown in Figure 4(b). Both failure-free
and faulty communication (with pf = 0.05) cases were simulated. Even with
realistic asynchronous updates and link failures, the OSE algorithm converges
to the optimal estimate. Since the nodes updated their estimates every second,
the number of seconds (x-axis in Figure 4(b)) can be taken approximately as the
number of iterations. Comparing Figure 4(a) and (b), we see that the convergence
in the asynchronous case is slightly slower than in the synchronous case.

5 Conclusions

We have developed a distributed algorithm that iteratively computes the op-
timal estimate of vector valued node variables, when noisy difference of vari-
ables between certain pairs of nodes are available as measurements. This situ-
ation covers a range of problems relevant to sensor network applications, such
as localization and time synchronization. The optimal estimate produces the
minimum variance estimate of the node variables from the noisy measurements
among all linear unbiased estimates. The proposed Overlapping Subgraph Esti-
mator (OSE) algorithm computes the optimal estimate iteratively. The OSE
algorithm is distributed, asynchronous, robust to link failures and scalable.
The performance of the algorithm was compared to two other iterative al-
gorithms – Jacobi and modified EPA. The OSE outperformed both of these
algorithms, consuming much less energy for the same normalized error. Sim-
ulations with a simple energy model indicate that OSE can potentially cut
down energy consumption by a factor of two or more compared to Jacobi and
modified EPA.

There are many avenues of future research. Extending the algorithm to handle
correlated measurements and developing a distributed algorithm for computing
the covariance of the estimates are two challenging tasks that we leave for future
work.

[1] Mendel, J.M.: Lessons in Estimation Theory for Signal Processing, Communica-
tions and Control. Prentice Hall P T R (1995)

[2] Barooah, P., da Silva, N.M., Hespanha, J.P.: Distributed optimal estimation from
relative measurements: Applications to localizationa and time synchronization.
Technical report, Univ. of California, Santa Barbara (2006)

[3] Karp, R., Elson, J., Estrin, D., Shenker, S.: Optimal and global time synchro-
nization in sensornets. Technical report, Center for Embedded Networked Sens-
ing,Univ. of California, Los Angeles (2003)

Bibliography

Distributed Optimal Estimation from Relative Measurements 281

[4] Barooah, P., Hespanha, J.P.: Optimal estimation from relative measurements:
Electrical analogy and error bounds. Technical report, University of California,
Santa Barbara (2003)

[5] Barooah, P., Hespanha, J.P.: Distributed optimal estimation from relative mea-
surements. In: 3rd ICISIP, Bangalore, India (2005)

[6] Chintalapudi, K., Dhariwal, A., Govindan, R., Sukhatme, G.: Ad-hoc localization
using ranging and sectoring. In: IEEE Infocom. (2004)

[7] Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization
with noisy range measurements. In: Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems. (2004)

[8] Delouille, V., Neelamani, R., Baraniuk, R.: Robust distributed estimation in
sensor networks using the embedded polygon algorithms. In: IPSN. (2004)

[9] Min, R., Bhardwaj, M., Cho, S., Sinha, A., Shih, E., Sinha, A., Wang, A., Chan-
drakasan, A.: Low-power wireless sensor networks. In: Keynote Paper ESSCIRC,
Florence, Italy (2002)

[10] Bougard, B., Catthoor, F., Daly, D.C., Chandrakasan, A., Dehaene, W.: Energy
efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks:
Modeling and improvement perspectives. In: Design, Automation and Test in
Europe (DATE). (2005)

[11] Carvalho, M.M., Margi, C.B., Obraczka, K., Garcia-Luna-Aceves, J.: Modeling
energy consumption in single-hop IEEE 802.11 ad hoc networks. In: IEEE ICCCN.
(2004)

[12] Shih, E., Cho, S., Fred S. Lee, B.H.C., Chandrakasan, A.: Design considerations
for energy-efficient radios in wireless microsensor networks. Journal of VLSI Signal
Processing 37 (2004) 77–94

[13] Frommer, A., Schwandt, H., Szyld, D.B.: Asynchronous weighted additive Schwarz
methods. Electronic Transactions on Numerical Analysis 5 (1997) 48–61

[14] Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks. In: Proceedings of the IEEE Infocom. (2002)

[15] IEEE 802.15 TG4: IEEE 802.15.4 specifications (2003) http://
www.ieee802.org/15/pub/TG4.html .

[16] Ault, A., Zhong, X., Coyle, E.J.: K-nearest-neighbor analysis of received signal
strength distance estimation across environments. In: 1st workshop on Wireless
Network Measurements, Riva Del Garda, Italy (2005)

[17] Riley, G.F.: The Georgia Tech Network Simulator. In: Workshop on Models,
Methods and Tools for Reproducible Network Research (MoMeTools). (2003)

GIST: Group-Independent Spanning Tree for
Data Aggregation in Dense Sensor Networks

Lujun Jia, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram

College of Computer and Information Science
Northeastern University, Boston, MA 02115, USA
{lujunjia, noubir, rraj, koods}@ccs.neu.edu

Abstract. Today, there exist many algorithms and protocols for con-
structing agregation or dissemination trees for wireless sensor networks
that are optimal (for different notions of optimal, i.e. under different
cost metrics). However, all these schemes differ from one common failing
- they construct an optimal tree for a given fixed subset of the sensors.
In most practical scenarios, the sensor group is continuously and dy-
namically varying - consider for example the set of sensors scattered in
a forest that are sensing temperatures above some specified threshold,
during a wildfire. Given the limited computational and energy resources
of sensor nodes it is impossible to either prestore the optimal tree for
every conceivable group or to dynamically generate them on the fly.

In this paper we propose the novel approach of constructing a single
group-independent spanning tree (GIST) T for the network and then let-
ting any sensor group S use the subtree induced by S on T , TS as its group
aggregation tree. The important question is, how does the quality of the
subtree TS compare to the optimal tree, OPTS, across different groups S.
We consider two well-accepted measures - aggregation cost (sum over all
links) and delay (diameter). We show that in polynomial time we can con-
struct a GIST that simultaneously achieves O(log n)-approximate aggre-
gation cost and O(1)-approximate delay, for all groups S.

To the best of our knowledge GIST is the first construction with a
nontrivial and provable performance guarantee that works for all groups.
We provide a practical and distributed protocol for realizing GIST that
requires only local knowledge. We show an Ω(n) lower bound for com-
monly accepted solutions such as MST and SPT (i.e. there exists a group
for which the induced subtree performs poorly) and demonstrate by sim-
ulation that GIST is good not just in the worst case - it outperforms
SPT and MST by between 30 and 60 per cent in realistic random sce-
narios. GIST is an overlay construction and for the special case of grids
we present GRID-GIST, a physical tree that uses only grid edges and
achieves the same performance bounds.

1 Introduction

Wireless sensor networks have emerged at the forefront of applications involving
the measurement of physical phenomena, environmental monitoring, medical

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 282–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

GIST: Group-Independent Spanning Tree 283

r

Fig. 1. In the above network, a spanning tree T is depicted by solid edges. A subset S
consists of the two square nodes. A subtree of T induced by S is depicted by the thick
edges. Clearly, the subtree is far from optimal, which includes the two dotted edges.

instrumentation, and building monitoring in warehouses and homes. A wireless
sensor network is comprised of hundreds or thousands of sensor nodes networked
through wireless links for collecting and processing environmental data. Sensor
networks have stringent energy restrictions, and are typically deployed in high
density to ensure coverage and fault tolerance.

With the advent of large-scale sensor network applications, there is consid-
erable interest in a database abstraction for sensor networks, in which users
program the sensors using a high-level declarative language [31, 17, 38]. A user
issues a query to the network, and every sensor node that meets the criteria
defined in the query replies with the desired data reading. In the reply phase,
data can be aggregated in-network to reduce communication complexity, and
hence energy consumption [31, 28]. Data aggregation is usually performed us-
ing a reverse multicast tree, in which each intermediate node receives pack-
ets from its children, aggregates the information, and sends one packet to its
parent. As shown in multiple studies, this can lead to considerable savings in
energy consumption over an approach that does not use in-network aggrega-
tion [31, 17, 28].

Consider a sensor network deployed in a large forest for monitoring forest
fires. A user may issue the following query (written in a variant of SQL) to the
whole network:

SELECT MAX(temperature), location FROM sensors
WHERE temperature > threshold
DURATION (now,now+3600s)
EVERY 30s

In the above declarative query, the user asks for the maximum temperature
and its location, every 30 seconds for a duration of an hour, if this maximum
temperature is above a certain threshold. Due to temperature changes in different
areas of the forest, the group of sensors satisfying the threshold criteria may
change continually. Therefore, the aggregation group (the group of sensors that

284 L. Jia et al.

r

R

Fig. 2. An SPT for this network con-
sists of all the “spoke” edges. Let root
node r be the center node, and subset
S consist of all the nodes on the circle.
Clearly, the worst case stretch is Ω(n)
if the SPT is used as GIST.

r

1 1

1

Fig. 3. An MST for this network con-
sists of all the length 1 edges. Let root
node r be the bottom left node, and sub-
set S consist of only the bottom right
node. Clearly, the worst case stretch is
Ω(n) if the MST is used as GIST.

need to send readings to the user) changes in an unpredictable manner over time,
and the total number of such groups is large. In such a scenario, the following
dilemma seems unavoidable:

– Since the number of different groups is large – exponential in the number
of sensors, in the worst case – it is prohibitively expensive for the energy-
constrained, distributed and multi-hop sensor nodes to compute efficient
aggregation trees for each group.

– On the other hand, if a communication-optimized data aggregation structure
is not used, the aggregation itself can be expensive.

Most existing algorithms and protocols for constructing data aggregation trees
have drawbacks in that one aggregation tree has to be constructed and main-
tained for one group of sensors [4, 20, 27, 31]. Such aggregation protocols are
not suitable for large-scale sensor networks serving aggregation queries at high
frequencies. We refer to these protocols as group-dependent data aggregation
protocols. Group-dependence, or group-awareness, makes the optimization of
communication cost possible, however only for a single group. Therefore, in sen-
sor applications where the sensor groups of interest evolve constantly or different
queries are issued on a frequent basis, new solutions are desired to support ef-
fective in-network aggregation.

We propose GIST (Group-Independent Spanning Tree) for data aggregation
in sensor networks. A GIST, T is a single spanning tree that is “oblivious” to
any aggregation group in the sense that the aggregation structure adopted for
any group is simply the subtree of T induced by the group. The performance of
GIST for a given group is measured by comparing the cost of this induced subtree
with the cost of an optimal aggregation tree for that group. Figure 1 illustrates a
group-independent spanning tree and its subtree induced by a subset of nodes. It
is not clear a priori that it is possible to find such a group-independent tree with

GIST: Group-Independent Spanning Tree 285

good guarantee. Two natural candidates for GIST are the minimum spanning
tree (MST) and the shortest-paths tree (SPT). However as shown in Figure 2
and 3, they both have Ω(n) worst case performance.

1.1 Main Results

– We propose the group-independent tree paradigm for providing effective un-
derlying structures to support data aggregation in wireless sensor networks
that performs well in terms of aggregation cost and delay. The worst-case
performance of common tree structures such as MST and SPT is shown to
be Ω(n) times the optimal in terms of aggregation cost.

– We propose an algorithm for constructing GIST in sensor networks, such
that the cost of the tree induced by any group is within O(log n) factor of
the cost of the optimal cost for that group, and delay is within O(1) factor
of the optimal delay. We also present a distributed protocol for constructing
our GIST, performing data aggregation, and for maintaining GIST as nodes
join or leave the network.

– We prove that our upper bound of O(log n) is nearly tight by presenting a
lower bound of O(log n/ log log n) for aggregation cost, for any polynomial
time algorithm that approximates the problem.

– Through extensive simulations, we show that our GIST algorithm outper-
forms both MST and SPT by 30− 60% in terms of both the communication
cost as well as average delay.

Our GIST protocol reduces the tree construction overhead, and each node in
GIST only needs to memorize a single parent. Also, our GIST protocol has a
provable O(log n) performance guarantee for aggregation cost and the delay is
within a constant factor of all induced subtrees.

The remainder of this paper is organized as follows. In Section 2, we survey
related work. Section 3 presents our models and basic assumptions. In Section 4,
we give the formal definition of GIST and present the GIST algorithm. In Sec-
tion 5, we give a distributed implementation of our GIST algorithm. In Section 6,
we evaluate the performance of our GIST algorithm by simulations. In Section 7,
we discuss future work and some limitations of our scheme, and propose an al-
gorithm for constructing physical GIST on grid networks.

2 Related Work

A number of data aggregation algorithms and protocols have been proposed
for wireless sensor networks over the past several years. Directed diffusion [21]
is proposed as a data centric communication paradigm for sensor networks. In
directed diffusion, subscriptions use flooding to spread interest. Initially, the data
is sent to the sink along multiple paths; however, better aggregation paths are
gradually enforced. SAFE [25] uses geographically limited flooding to forward
query to nodes. Due to expensive flooding operations, it is not suitable for large
sensor networks. TTDD [39] exploits local flooding within a local cell of a grid to

286 L. Jia et al.

facilitate large scale data dissemination. However, when the sink moves out of the
cell, the dissemination path has to be reconstructed. In [19], a regional-flooding
based multicast scheme for the problem of mobicast is proposed, where high
sensor network density is exploited for delivery guarantee as well as satisfying
certain temporal requirements.

In [28], data-centric routing protocols were compared with traditional address-
centric protocols, and the authors showed that data-centric routing offers sig-
nificant performance gains in a wide range of operational scenarios. In [24, 3],
the authors consider the problem of data dissemination from a source node to
multiple mobile sinks. In their algorithm, a mobile sink is attached to a static
sensor access point close to it, and a multicast group consists of a set of such
access points that request the same information from a sensor region. Their al-
gorithm is based on the construction of minimum Steiner trees. In [27, 31],
data aggregation algorithms are designed to reduce the rounds of transmitted
data from sensors to sink. In-network data aggregation has also been considered
in [27, 31, 4]. We however note that none of the proposed schemes is able to
achieve a provable performance guarantee.

In [22], the authors developed a polynomial time algorithm for computing
a spanning tree with O(log4 n/ log log n) stretch on arbitrary metrics. For Eu-
clidean metrics, an O(log n)-stretch spanning tree is presented. The O(log n)-
stretch spanning tree construction of [22] requires the whole network to be known
a priori, and the algorithm is centralized and not suitable for a distributed net-
work. In addition, the algorithm only specifies the initial construction of the tree,
and does not consider the maintenance of the tree in presence of node failures.
Note that the scheme of dividing the Euclidean plane into recursively small re-
gions is a commonly used technique, and has been considered in [30]. Schemes
that take into account both edge cost and network diameter are also considered
in [32].

Multicast communication algorithms are also considered in the context of
ad hoc networks. The authors in [20] construct a publish/subscribe spanning
tree across the network. A location-aware Steiner tree based algorithm is pro-
posed in [11] for multicast in ad hoc networks. Geocasting [26], where multi-
cast algorithms are tailored for sending information to a geographical area, is
studied in [26]. In [15], hierarchical multicast routing protocols are proposed.
The authors adopted an overlay-driven approach for supporting hierarchical
routing.

A number of overlay multicast protocols have been proposed in the context of
IP multicast. In [37], a proactive approach is considered for reconstructing over-
lay multicast trees. In [5], the authors consider the trade-off between path length
and the load on nodes in overlay multicasting, and proposed an application-layer
mininum delay multicast algorithm. Related studies identify network structures
that optimize other metrics. In [9,10], the authors proposed algorithms for con-
structing routing structures that minimize network congestion at nodes. In [8],
the problem of routing for minimizing transmission energy under the relay model
is studied.

GIST: Group-Independent Spanning Tree 287

3 Models and Assumptions

3.1 Network Model

Unit disk graphs. We model a wireless sensor network as an undirected unit
disk graph G = (V, E) on the Euclidean plane, where V is the set of nodes, and
E is a set of edges on V . (We remark that our GIST algorithm can be easily
extended to 3-dimensional space.) A edge (u, v) exists between u, v ∈ V if both
nodes are capable of exchanging messages over the distance |uv|. We assume
that each node is aware of its own geographical location. This can be achieved
by either a GPS device, or a location service such as the position estimator
in [1, 6].

Node density. The focus of this paper is on large-scale dense sensor net-
works, where scalability is the main challenge for data aggregation. We as-
sume a deployment of n sensors randomly placed in the 2-D plane, with a
density of Ω(log n) nodes per unit area, assuming unit transmission range for
all nodes. It is well-known that an n-node network is disconnected (assum-
ing unit transmission range) with high probability if the density is O(log n)
[16, 33].

As discussed in Section 1, our main performance measures are the total com-
munication cost and the average delay. The total communication cost for an
aggregation is measured by total number of hops used in the aggregation, while
the delay is the number of hops between the root and the farthest node be-
ing aggregated. Through standard probabilistic analysis, it has been shown
that if the density is Ω(log n) (for a suitably chosen constant hidden in the
Ω notation), each cell of a sufficiently small constant area is occupied [16].
In such a dense network, the network hop distance is well-approximated by
the Euclidean distance (within a small constant factor). This correlation has
also been established by means of an in-depth experimental study in [19]. In
our performance analysis, we adopt the Euclidean distance as our measure of
the hop metric since these are equivalent up to small constant factors and the
Euclidean metric is more conducive to our analysis for establishing provable
bounds.

We emphasize that the correctness of our protocol does not rely on any as-
sumptions about the sensor node density; our protocol works for any connected
network.

Routing. Our general GIST algorithm constructs an overlay tree on the underly-
ing physical graph G = (V, E). An edge in the overlay tree corresponds to a path
in the underlying graph. Therefore, an underlying routing service from a source
to a destination is required. Note that the idea of using overlay trees for data
dissemination and aggregation is not new and has been considered in [24, 3, 7]
for wireless sensor networks and in [36, 14] in the context of ad hoc networks.
Such underlying paths can be shortest paths, or paths computed by geographic
routing protocols [23, 29], etc.

288 L. Jia et al.

In Section 7, we propose an algorithm, GRID GIST, which is not dependent
on any underlying routing service. In a GRID GIST, all edges are physical edges
in the underlying graph G. In location-based services, the deployment regions
can be divided into a number of small geographic areas such that two nodes in
neighboring areas can communicate with each other. In each area, a leader can
be selected, and a GRID GIST can be constructed for all the leaders. Whenever a
node want to participate in the data aggregation process, it first sends messages
to its leader in the area, then the GRID GIST is employed to transport and
aggregate data to the sink.

3.2 Aggregation Functions

In this study, we assume distributive aggregation functions [31, 28], where in-
termediate nodes compute and transmit one single output packet as the result
of aggregating over multiple input packets. In such aggregates, the size of the
partial state record is the same as the final aggregate. Thus, each transmitted
packet is of the same size. Computing maximum, minimum, average, sum, count
are examples of this class of aggregation functions. Assuming distributive aggre-
gates, it can be easily seen that given a group S of sensor nodes and a root node
(information sink), the minimum cost (total number of transmissions) data ag-
gregation tree is a minimum Steiner tree, where the Steiner set consists of the
information sink and all the data sources involved [24,3,11]. Therefore, the cost
of using an aggregation tree can be measured by simply counting the number of
edges on the tree, since each node transmits only once.

3.3 Simulation Model

In our simulation, we first evaluate our algorithm on dense sensor networks where
all nodes in the network are capable of sensing, aggregating and transmitting
data. We refer to this model as SNM (Sensor Network Model). We compare the
performance of GIST, MST and SPT under two metrics: aggregation cost and
aggregation delay. As discussed in the preceeding section, aggregation cost can
be measured by the number of edges on the tree, assuming distributive aggre-
gation functions. We measure aggregation delay by the maximum tree depth
rooted at the sink node, since this represents the maximum number of hops for
a packet to reach the sink. Note that delays caused by packet collision are not
considered.

In addition to the above model, we consider sensor networks consisting of regu-
lar sensor nodes, as well as a dense collection of cooperative “relay” nodes [18,34].
Relay nodes are only capable of routing and forwarding; they do not participate
in data aggregation and other higher-layer sensor network applications. In [18],
the authors show that given a certain energy budget, it is more efficient to deploy
additional relay nodes than increase energy in existing nodes in order to extend
the life time of the network. Our bound on the performance of GIST requires
a dense network of the combined sensor and relay deployment. We refer to this
model as SRNM (Sensor and Relay Network Model).

GIST: Group-Independent Spanning Tree 289

4 A Provably Near-Optimal Group-Independent
Spanning Tree

The optimal data aggregation tree problem can be reduced to the classic mini-
mum Steiner tree problem, assuming distributive aggregate functions. The min-
imum Steiner tree problem is NP-complete [13], but can be easily approximated
to within a constant factor in polynomial time, given the fixed group of vertices
that need to be connected [35]. As discussed in Section 1, however, in many
sensor network applications, the group of relevant sensors that needs to be ag-
gregated may evolve constantly. Thus, it is infeasible for the resource-constrained
sensor nodes to compute efficient multicast trees for the many groups (poten-
tially, exponential in the number of sensors) on-line. Motivated by this [22], one
can consider the following natural variation of the Steiner tree problem, univer-
sal Steiner tree problem: Given a root node r ∈ V , is there a spanning tree T
connecting r to all nodes in V − {r}, such that for any subset S of V the cost
of tree induced by S + {r} on T is “close” to that of an optimal Steiner tree for
the set S + {r}? If a “good” universal Steiner tree exists and can be computed
efficiently, it is an excellent candidate for group-independent data aggregation,
with the information sink as the root. We now present a formal definition of the
universal Steiner tree problem [22].

Definition 3.1. An instance of the universal Steiner tree problem is a triple
〈V, d, r〉 where (V, d) forms a metric space, and r is a distinguished vertex in
V that we refer to as the root. Let ||T || denote the cost of tree T . For any span-
ning tree T of V , define the stretch of T as maxS⊆V ||TS+{r}||/||OptS+{r}||,
where TS+{r} denote the tree induced by S + {r} on T and OptS+{r} is a min-
imum Steiner tree for subset S + {r}. The goal is to determine a spanning tree
with minimum stretch.

Two natural candidates for a universal Steiner tree are the minimum spanning
tree (MST) and the shortest-paths tree (SPT). In Section 4.1, we show that both
MST and SPT have Ω(n) stretch, thus making them poor choices for group-
independent aggregation in the worst-case. The main focus of this section is a
new algorithm for constructing GIST that achieves O(log n) stretch in Euclidean
metrics, and can be efficiently implemented in wireless sensor networks.

4.1 Lower Bounds for MST and SPT

MST and SPT [12] are polynomial time computable structures that are often
used for optimizing the overall tree cost or individual cost of each node com-
municating with the root. However, when used as a GIST, MST and SPT can
perform arbitrarily bad. We have the following,

Theorem 1. The worst-case stretch of both SPT and MST in Euclidean plane
is Ω(n), where n is the number of vertices in the metric.

Due to space constraints, the proof of the above theorem is included in Ap-
pendix A.

290 L. Jia et al.

4.2 GIST for Wireless Sensor Networks

Our GIST algorithm will adopt the following approaches to address the issues
discussed in the preceding section. First, we assume that each sensor node is
aware of its geographical location. This can be achieved by adopting a location
service such as the position estimators in [1, 6]. We also assume that each node
also knows the location of the root node (information sink). Given such location
information, our GIST algorithm divides the whole deployment region into re-
cursively small regions (levels), and tree construction computation is limited to
the subset of nodes in each such region. Second, our GIST algorithm constructs
an overlay tree, i.e., an edge in this overlay tree can be a path in the original
unit disk graph. Each node in the overlay tree represents a geographical region
it resides in, and is referred to as a leader of this region. This enables GIST to
be constructed without full knowledge of the network. Finally, leader election,
as well as node joining/leaving the tree will be implemented on the overlay tree
structure, which will also be the basis for handling communication failures in
unreliable sensor networks.

Algorithm 1. GIST (v, (x1, y1), (x2, y2))
1: if |x2 − x1| > R/

√
5 then

2: Divide the square region marked by (x1, y1) and (x2, y2) into 9 equally-sized
smaller square regions (Figure 4);

3: else
4: return;
5: end if
6: Within each square region, select any node not selected before to be a leader, except

for the square region where v resides (for which v shall still be the leader);
7: Output an edge between each selected leader 	 and v;
8: For each square region, invoke GIST (, (x′

1, y
′
1), (x′

2, y
′
2)), where 	 is the leader of

the square region, (x′
1, y

′
1) and (x′

2, y
′
2) are the coordinates marking the square

region;

The value
√

5 is used to ensure communication between two nodes at the op-
posite end of a 2 × 1 rectangle (consisting of two neighboring squares). Let R be
the transmission range of sensor nodes, and let D be the maximum distance be-
tween any node in V − {r} and r. (Recall that r is the root node.) Without loss
of generality, let the coordinate of r be (0, 0). Algorithm 1 presents the formal
definition of our GIST algorithm. It takes as input a root node and a square re-
gion specified by two diagonally-opposite locations, and computes a spanning tree
connecting the root node to nodes within the square. To compute a final GIST
tree, GIST (r, (−D,−D), (D, D)) is invoked. Our algorithm adopts a top-down
approach: In each recursion, a set of new leaders representing certain geograph-
ical regions are selected and connected to their parent; each new invocation of the
algorithm divides a square region into smaller pieces and repeats the same leader
selection process. Note that a selected leader for a square region will also be the

GIST: Group-Independent Spanning Tree 291

leader for one of the 9 smaller square regions. This applies to root node r. Let T be
the GIST computed by our algorithm. For any subset S ⊆ V , we use aggregation
cost to refer to the total edge distance of the tree induced by S + {r} on T , and use
aggregation delay to denote the length of the path from a node to the root. We have
the following theorem for the aggregation delay,

Theorem 2. (Aggregation Delay) Let T be a GIST generated by Algorithm 1.
The distance from any node v ∈ V to r on T is within a constant factor of the
Euclidean distance between v and r.

For the aggregation cost, we have the following.

Theorem 3. (Aggregation Cost) Under the Euclidean metric, Algorithm 1 com-
putes an GIST with stretch O(log n) in polynomial time.

The proof of the above two theorems is included in Appendix B.

(0.5,−0.5)

(0.5,0.5)(−0.5,0.5)

 (−0.5,−0.5)

Fig. 4. Algorithm 1 divides the net-
work into recursively small regions, and
constructs an overlay tree with stretch
O(log n)

4 5 6 7

1

2

3

5

6

7

1 2 3

4

r

Fig. 5. Algorithm 3 construct a
GRID GIST on grid networks. The
stretch is O(log n).

One interesting property of Algorithm 1 is that it eliminates dependence on
knowledge of the network topology, since each node in the overlay tree represents
a geographical region. Nodes can join (e.g., powered on) or leave (e.g., due to
failure) the network in a dynamic fashion, while geographical regions are rela-
tively stable. This forms the basis for our tree maintenance and fault tolerance
mechanisms (Section 5). Another property of Algorithm 1 is that the distance
between any node v ∈ V and root r on the computed GIST is within a constant
factor of the minimum distance between v and r. This implies that the aggre-
gation delay using the induced tree of GIST is within a constant factor of the
minimum aggregation delay.

292 L. Jia et al.

4.3 Lower Bound for GIST

Our bound on the aggregation cost of GIST is almost tight. We can establish
the following lower bound on GIST(please refer to Appendix C for the proof).

Theorem 4. No algorithm can build a GIST with stretch better than Ω(lg n
lg lg n)

for any sensor network on Euclidean plane.

5 A GIST Based Data Aggregation Protocol

In this section, we present a distributed implementation of Algorithm 1 for con-
structing GIST. Our protocol proceeds in rounds by selecting leader among
nodes in small regions in the first round, and electing leaders among leaders
selected in the previous round in larger regions, and so on. We also define tree
maintenance and fault tolerance mechanisms, as well as a brief description on
data aggregation using GIST. Our protocol is a bottom-up implementation of
Algorithm 1.

5.1 A Distributed Protocol for Constructing GIST

Let (xv , yv) be the coordinate of v ∈ V . Without loss of generality, root node r
has coordinate (0, 0). Let c = R/

√
5 be the smallest square size (side length of

the square). As discussed in Section 4, the output of Algorithm 1 is a hierarchical
overlay tree, and a selected leader � of a larger square region (higher level) is also
the leader for the smaller region (lower level) in which � resides in. Each node
running the distributed protocol maintains a variable Cur Level indicating the
largest square region for which it currently is a leader. The size of a square where
v is a leader is equal to 3Cur Level−1c, i.e., a leader for the square with size c has
Cur Level = 1, a leader for squares with size 3c has Cur Level = 2, and so on.
By default, each node is a leader of level 0.

The protocol for constructing GIST proceeds in rounds. In each round, a leader
is elected by exchanging LEADER ELECTION packets. The LEADER ELECTION
packet contains the following information: [L, SQ X, SQ Y, id], where id is an inte-
ger uniquely identifying a node who is participating in the leader election process.
The first field, L, represents the level (also the size of the square region) for which a
leader is to be elected. The level number L, together with SQ X, SQ Y , defines the
geographical region where a leader is elected. SQ X and SQ Y are integers that
are defined as follows,

SQ X = xv/(3L−1 · c)!,
SQ Y = yv/(3L−1 · c)!,

where (xv , yv) is the coordinate of node v. Thus, a node is able to compose a
packet by filling in the leader selection level, SQ X, SQ Y , and its id number.

Upon receiving a LEADER ELECTION packet, a node u can decide whether it
is contained in the square region defined by the packet’s L, SQ X and SQ Y : if

GIST: Group-Independent Spanning Tree 293

SQ X · 3L−1c ≤ xu < (SQ X + 1) · 3L−1c,

SQ Y · 3L−1c ≤ yu < (SQ Y + 1) · 3L−1c,

then u is in the region; otherwise, u is not.
In each round, each node v broadcasts its own LEADER ELECTION packet

with [Cur Level + 1, SQ X, SQ Y, id], if v has not heard of any Cur Level + 1
LEADER ELECTION packet with lower node id, or any Cur Level+2 or higher
level LEADER ELECTION packet. When v broadcasts a packet, it also records
the level number and its own id in a local database. The root node r can fill in
a negative id number in r’s broadcast packet to ensure that it is elected a leader
in each round. Since by default a node is a level 0 leader, the leader election
starts with level 1. A node u upon receiving a LEADER ELECTION packet pkt
will invoke Algorithm 2.

Algorithm 2. A distributed protocol for constructing GIST
1: if u is not contained in pkt’s region then
2: u discards pkt;
3: end if
4: if u is contained in pkt’s region, and u’s Cur Level is equal to L − 1 then
5: if u’s database has a record indexed by pkt’s L and pkt’s id field is lower than

the record’s id field, or u does not have such a record yet then
6: Record pkt’s L and id, and re-broadcast pkt;
7: else
8: u discards pkt;
9: end if

10: else if u is contained in pkt’s region, and u’s Cur Level is smaller than L − 1
then

11: if u’s database does not have a record indexed by pkt’s L, or u has such a record
and pkt’s id field is lower than the record’s id field then

12: u re-broadcast pkt and record L and id;
13: else
14: u discards pkt;
15: end if
16: else if u is contained in pkt’s region, and u’s Cur Level is larger than L−1 then
17: u broadcasts a LEADER ELECTION packet with [Cur Level +

1, SQ X, SQ Y, id];
18: end if

The if-block of Line 4 handles the case where v actively participates in the
leader selection process, since Cur Level = L − 1. The if-block of Line 10
is only for forwarding leader selection packets for higher level election, since
Cur Level < L − 1 and v is aware of the fact that it cannot participate in
this leader election. The if-block of Line 17 handles the case where v is already
a leader for a certain region while another node is attempting leader election.
Combined with Line 10 in Algorithm 2, the purpose of Line 17 is to suppress
such leader election requests. However, different policies can be considered here:

294 L. Jia et al.

e.g., an old leader can allow a new leader to be elected if it decides that its
residual energy is not sufficient for reliable communication any more. The lo-
cal database used for recording level number and node id helps in reducing the
broadcast traffic in the network.

Each node u keeps a timer with time out value τ . When u sends out a
LEADER ELECTION packet attempting to be a level Cur Level + 1 leader, u
starts the timer. When the timer fires after τ , if no better leader is detected, u
increment its Cur Level variable by 1, indicating that it is now a leader; oth-
erwise, u picks the node id indexed by Cur Level + 1 in its database to be its
parent. After a node u has picked its parent, u sends a register packet to the
parent.

Algorithm 2 ensures that at least one leader is elected within the contended
region in each level. Note that there are several cases in which multiple leaders
may be elected for the same region and same level:

– The timeout value τ is too small for the broadcast packets to reach all
destined nodes; or some broadcast packets are destroyed due to collision
while they are being forwarded. The value τ is thus a adjustable protocol
parameter.

– If there are multiple connected network components within the region for
which a leader is to be elected, multiple leaders will be elected.

Note that the presence of multiple leaders within the same region on the same
level, though it may have impact on the performance of the GIST, does not affect
the correctness of Algorithm 2. This is because 1) each level i leader is able to
promote itself to a level i+1 leader (possibly after timeout) and compete in the
next round for a level i+2 leader, which eventually leads to root r; 2) each node
will have one and only one parent, due to Line 5 of Algorithm 2.

The tie-breaking scheme in the above process is based on node ID. However,
other tie-breaking schemes can easily be adopted by putting extension fields in the
LEADER ELECTION packet. For example, to elect leaders with higher residual en-
ergy, an extension field containing the residual energy reading can be used.

5.2 Data Aggregation with GIST

After a GIST T is constructed, the information sink r can broadcast queries
and collect data readings using T . This process is similar to most other data
aggregation schemes, e.g., [31]. Due to space constraints, we only give a brief de-
scription of the query distribution and data aggregation phase, and omit detailed
discussions of protocol parameters.

In the query distribution phase, the root can send a query to its direct chil-
dren. Each direct child sets a timer of τw (a function of the Epoch time) for
awaiting replies from its children, and includes this information in the query
passing down the tree. The next level children will set their own timer (smaller
than their parent) and pass down the query, and so on. The choice of timer τw

is related to the hop distance between a child and its parent. In our scheme,
the region is divided into 9 smaller regions in each recursion. Consequently, the

GIST: Group-Independent Spanning Tree 295

parent-child distance decreases by a factor of 3 each time. Thus, the timeout
values for the leaders along a query distribution path can be approximated by
a geometric series by τchild

w = c · τparent
w , where 0 < c < 1. We omit the details

for selecting c here, and consider it in our future study. In the data aggregation
phase, each intermediate node waits for the timeout, aggregates all the received
data readings, and sends the packet to its parent.

5.3 Tree Maintenance and Fault Tolerance

We now consider the maintenance of a GIST in case of node failures. We assume
an independent protocol for failure detection. For example, each child can check
the status of its parent using periodic ping messages. If a node u concludes that its
parent has failed, it sends out a LEADER ELECTION packet with [Cur Level +
1, SQ X, SQ Y, id] to be a level Cur Level + 1 leader. At the same time, other
children of the failed parent may also broadcast such LEADER ELECTION pack-
ets. Such operations can easily be handled by the same procedure as in Algorithm 2.
This is because Algorithm 2, though presented in a synchronous fashion, is in fact
an asynchronous protocol. Multiple leaders can appear in this process. However as
we have discussed in preceeding sections, the correctness of the protocol is not af-
fected. Note that if a level i leader u failed, only the several level i−1 leaders in the
region where u resides will initiate LEADER ELECTION packets. Other nodes in
that region only forward suchpackets (Line 10 inAlgorithm 2). In a similarmanner,
the operations for new nodes joining the tree can also be handled by Algorithm 2.
This way, our scheme can potentially be combined with activity scheduling proto-
cols [7] to achieve more energy savings.

In the data aggregation phase, fault tolerance can be achieved by constructing
two independent trees. Each time a node sends its data reading, it sends two
copies. For fault tolerance in the data aggregation phase, we can adopt the
techniques of [31].

6 Experimental Evaluation

In this section, we compare the performance of our GIST algorithm with MST and
SPT under the aggregation cost and aggregationdelay metrics as discussed in Sec-
tion 3. We simulate under two different settings: SNM (sensor network model) and
SRNM (sensor relay network model). Recall that SNM models the situation where
each sensor node in the network is capable of sensing, aggregating and transmit-
ting; while in the SRNM model, the relay node is only capable of forwarding traffic.

6.1 SNM Performance Evaluation

In our simulations, the network topology is generated by randomly distribut-
ing nodes in the deployment region. The density (average number of neighbors
within a node’s transmission range), is around 10 in each experiment. In our first
experiments, we study the aggregation cost when the event sources are picked
within a strip close to the border of the sensor deployment region. This is useful

296 L. Jia et al.

20

40

60

80

100

120

140

160

100 150 200 250 300 350 400 450 500 550 600

A
gg

re
ga

tio
n

C
os

t

Number of Nodes

GIST
SPT
MST

Fig. 6. Aggregation cost with in-
creasing network size under SNM
model. Event sources are picked
within a strip.

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600

A
gg

re
ga

tio
n

D
el

ay

Number of Nodes

GIST
SPT
MST

Fig. 7. Aggregation delay with in-
creasing network size under SNM
model. Event sources are picked
within a strip.

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80

A
gg

re
ga

tio
n

C
os

t

Number of Sources

GIST
SPT
MST

Fig. 8. Aggregation cost with in-
creasing number of random sources
under the SRNM model. 200 sensor
nodes.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

10 20 30 40 50 60 70 80

A
gg

re
ga

tio
n

D
el

ay

Number of Sources

GIST
SPT
MST

Fig. 9. Aggregation delay with in-
creasing number of random sources
under the SRNM model. 200 sensor
nodes.

in applications where the sensor nodes observing common phenomena are along
a line, for example when a group of intruders approaching the border in a battle
field trigger the sensors. Figure 6 demonstrates the result. In this simulation,
GIST performs better than SPT, which is better than MST. The reason that
GIST is better than SPT is because when the event sources are picked along a
line strip, a large number of event sources may traverse non-overlapping paths to
the sink, thus reducing the chance for data aggregation in intermediate nodes.
Figure 7 illustrates the aggregation delay in this experiment, in which GIST
demonstrates close to optimal (SPT) delay.

6.2 SRNM Performance Evaluation

In this section, we evaluate the performance of GIST, MST and SPT under the
SRNM model, where the network consists of sensor nodes as well as relay nodes.

GIST: Group-Independent Spanning Tree 297

We simulate a network that consists of 200 sensor nodes, and a dense network of
relay nodes. The density is such that the probability that a underlying routing
path between two sensor nodes containing another sensor node is small. This case
can be thought of as the opposite of the SNM model, where the relay density is
0. In this model, the SPT overlay tree from the sensor nodes to the sink exhibits
a star-like structure. Therefore, the aggregation in intermediate sensor nodes is
minimal.

Figure 8 and Figure 9 illustrate the aggregation cost and delay in the experi-
ments with 10, 20, . . . , or 80 random event sources. Note that the values in the
figures are calculated by normalizing the network deployment region to a 1 × 1
region. The aggregation cost (induced tree cost) of SPT is the worst among the
3 algorithms as expected, due to the lack of aggregation. MST and GIST both
have much better performance than SPT. When the number of sources is small,
an induced aggregation tree of MST costs more than that of GIST, because some
event sources may traverse long routes to the root, as can be observed in the
aggregation delay in Figure 9. When the number of random sources increases,
such long paths may contain more and more other sources so that aggregation
can be performed.

7 Conclusion and Future Work

In this paper, we proposed a novel approach to data aggregation based on the
concept of group-independent spanning tree GIST, and show that such a tree
can be found in polynomial time with O(log n) performance guarantee. Specifi-
cally, we have designed an algorithm for constructing an GIST for dense sensor
networks such that for any group, the cost of the induced subtree of our GIST is
within a logarithmic factor of the optimal solution for the group. We have also
shown that traditional spanning tree algorithms MST and SPT are extremely
poor in the worst case. An important aspect of our GIST algorithm is its simplic-
ity and amenability to distributed implementation. We have presented a protocol
for constructing and maintaining GIST and for performing data aggregation over
the tree.

Our algorithm for constructing GIST yields an overlay tree and assumes an
underlying routing mechanism. This assumption can limit the application of our
protocol. We propose an algorithm (Appendix D) for constructing GRID GIST
for grid sensor networks that does not require an underlying routing service. In
this algorithm, each edge selected into the physical GRID GIST tree has to be
an existing edge in grid networks. Routing from any node in G to the root is
specified during tree contruction phase, thus eliminating the dependence on an
underlying routing service as required by GIST. Such physical trees on grids
can be useful for densely deployed sensor networks. Due to space constraints,
we present our algorithm GRID GIST in Appendix D. One limitation to the
GRID GIST scheme is that it assumes regularity of the network. An impor-
tant direction for future research is to determine the best “physical” GIST for
arbitrary network topologies.

298 L. Jia et al.

In our simulations, we have studied two variants of the sensor network model,
one consisting purely of sensor nodes, and the other consisting of sensors placed
in a dense relay field. Our simulations validate our theoretical work by demon-
strating that our GIST outperforms both MST and SPT. As part of our future
work, we will compare our scheme with other data aggregation schems in this
literature in addition to MST and SPT.

References

1. J. Albowicz, A. Chen, and L. Zhang. Recursive position estimation in sensor
networks. In IEEE ICNP, November 2001.

2. N. Alon and Y. Azar. On-line steiner trees in euclidean plane. In Proceedings of the
8th Annual ACM Symposium on Computational Geometry, pages 337–343, 1992.

3. S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher. Energy-conserving data
placement and asynchronous multicast in wireless sensor networks. In International
Conference on Mobile Systems, Applications, and Services (MobiSys), May 2003.

4. B. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for
in-network query processing. In Proceedings of Information Processing in Sensor
Networks, April 2003.

5. E. Brosh and Yuval Shavitt. Approximation and heuristic algorithms for minimum
delay application-layer multicast trees. In INFOCOM, March 2004.

6. N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization
for very small devices. In IEEE Personal Communications, Special Issue on Smart
Space and Environments, October 2000.

7. U. Cetintemel, A. Flinders, and Y. Sun. Power-efficient data dissemination in
wireless sensor networks. In ACM MobiDE, September 2003.

8. J. Chen, L. Jia, X. Liu, G. Noubir, and R. Sundaram. Minimum energy accumu-
lative routing in wireless networks. In In Proceedings of IEEE INFOCOM 2005,
The 24th Annual Joint Conference of the IEEE Computer and Communications
Societies, 2005.

9. J. Chen, R. Kleinberg, L. Lovász, R. Rajaraman, R. Sundaram, and A. Vetta.
(Almost) tight bounds and existence theorems for confluent flows. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
529–538, June 2004.

10. J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: Approximation algo-
rithms for confluent flows. In Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 373–382, June 2003. This paper has been ac-
cepted for publication in the special issue of the Journal of Computer and System
Sciences (JCSS).

11. K. Chen and K. Nahrstedt. Effective location-guided tree construction algorithm
for small group multicast in manet. In IEEE INFOCOM, June 2002.

12. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York, 1979.

14. C. Gui and P. Mohapatra. Efficient overlay multicast for mobile ad hoc networks.
In IEEE WCNC, April 2003.

15. C. Gui and P. Mohapatra. Scalable multicasting in mobile ad hoc networks. In
INFOCOM, March 2004.

GIST: Group-Independent Spanning Tree 299

16. P. Gupta and P. Kumar. Capacity of wireless networks. IEEE Transactions on
Information Theory, IT-46:388–404, 2000.

17. J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Towards
sophisticated sensing with queries. In Intl Workshop on Information Processing in
Sensor Networks (IPSN), 2003.

18. Y.T. Hou, Y. Shi, H. Sherali, and S. Midkiff. On energy provisioning and re-
lay node placement for wireless sensor networks. IEEE Transactions on Wireless
Communications, 4, 2005.

19. Q. Huang, C. Lu, and R. Gruia-Catalin. Spatiotemporal multicast in sensor net-
works. In SenSys, November 2003.

20. Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in wireless
ad-hoc networks. In Proceedings of the 4th International Conference on Mobile
Data Management, January 2003.

21. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In ACM MobiCom, August
2000.

22. L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram. Universal approxi-
mations for TSP, Steiner tree, and set cover. In Proceedings of the Thirty-Seventh
ACM Symposium on Theory of Computing (STOC), May 2005.

23. B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In Proceedings of ACM Symposium on Mobile Computing and Network-
ing, pages 243–254, August 2000.

24. H. Kim, T. Abdelzaher, and W. Kwon. Minimum-energy asynchronous dissem-
ination to mobile sinks in wireless sensor networks. In ACM SenSys, November
2003.

25. S. Kim, S.H. Son, J.A. Stankovic, S. Li, and Y. Choi. Safe: A data dissemination
protocol for periodic updates in sensor networks. In Workshop on Data Distribution
for Real-Time Systems (DDRTS), May 2003.

26. Y.B. Ko and N.H. Vaidya. Geocasting in mobile ad hoc networks: Location-based
multicast algorithms. In WMCSA, Feburary 1999.

27. B. Krishnamachari, d. Estrin, and S. Wicker. The impact of data aggregation in
wireless sensor networks. In Proceedings of the 22nd International Conference on
Distributed Computing Systems Worshops, July 2002.

28. B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in
wireless sensor networks. In IEEE INFOCOM, June 2002.

29. F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-case
efficient geometric ad-hoc routing. In ACM Mobihoc, June 2003.

30. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In Proceedings of the 6th ACM International
Conference on Mobile Computing and Networking (MobiCom ’00), pages 120–130,
August 2000.

31. S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad hoc sensor networks. In OSDI, December 2002.

32. Madhav V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and
Harry B. Hunt III. Bicriteria network design problems. In Automata, Languages
and Programming, pages 487–498, 1995.

33. M. Penrose. On fk-connectivity for a geometric random graph. Random Structures
and Algorithms, 15:145–164, 1999.

34. B. Sirkeci-Mergen and A. Scaglione. A continuum approach to dense wireless
networks with cooperation. In INFOCOM, March 2005.

300 L. Jia et al.

35. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003.
36. J. Xie and R. Talpade. AMRoute: Ad hoc multicast routing protocol. ACM Mobile

Networks and Applications, 7, December 2002.
37. M. Yang and Z. Fei. A proactive approach to reconstructing overlay multicast

trees. In INFOCOM, March 2004.
38. Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in

sensor networks. Sigmod Record, 31(3), September 2002.
39. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model

for large-scale wireless sensor networks. In MOBICOM, September 2002.

A Proof of Lower Bounds for MST and SPT

Proof of Theorem 1 (SPT): Consider Figure 2, which depicts a Euclidean
metric consisting of a center node (the root), and n−1 nodes evenly distributed
on a circle. Let R be the radius. The cost of an optimal Steiner for a subset S of
the n − 1 peripheral nodes (plus the root) is at most R + 2πR = (1 + 2π)R, as
shown in Figure 2. The SPT for this metric consists of all the “spoke edges”, i.e.,
the n − 1 edges from the peripheral nodes to the center. If we use SPT as GIST
for the corresponding network, the induced tree cost for subset S is (n − 1)R.
Therefore, SPT has a worst case stretch of Ω(n).

Proof of Theorem 1 (MST): Consider the Euclidean metric in Figure 3. We
have two lines of nodes, each node in a line is separated from its neighbors in
the line by a distance of 1, and the two lines are separated by a distance of at
least 2. At the top end of the line, we have an additional node between the two
end-points of the line, at distance of 1 from each of two end-points. We fix the
root to be an end-point at the bottom-end of a line. It is easy to see that the
unique MST consists of all the distance 1 edges. If the group consists of just the
opposite bottom end-point, then the induced subtree of the MST has a cost of
n − 1, while the optimal Steiner tree cost is just 2.

B Proof of Aggregation Delay and Aggregation Cost

Proof of Theorem 2: Consider Figure 4, and assume that the side length of
the square region is equal to 1. We first consider the case where v is not in the
1
6 × 1

6 square where r resides. Let |rv| denote the Euclidean distance between
r and node v. Let {e1, e2, . . . , ek} be the set of edges on the path from r to v.
By our algorithm, it can be shown that |e1| ≤ 6

√
2|rv|. This is because r is in

the center of the topology, therefore |rv| is at least 1
6 . Since 6

√
2|rv| ≥ √

2, the
length of the diagonal of the 1× 1 square, e1 is at most 6

√
2|rv|. The algorithm

divide a square into 9 equally sized smaller squares in each recursion. Therefore,
|e2| ≤ 1

3 · 6√2|rv|, |e3| ≤ 1
3
26

√
2|rv|, and so on. The length of the path of r to v

on T is thus
∑k

j=1 |ej| ≤
∑k

j=1
1
3

k−1 · 6√2|rv| ≤ 3
2 · 6√2|rv| = 9

√
2|rv|.

The argument is similar for the case where v is in the 1
6 × 1

6 square where
r resides. Since Algorithm 1 is a recursive construction, the smaller |rv| is, the
smaller |e1| will be. This completes the proof.

GIST: Group-Independent Spanning Tree 301

Proof of Theorem 3: It can be easily seen that the number of iterations
in dividing the square region into smaller ones are bounded by O(log3(D/R)),
where an iteration denotes all the invocations of Algorithm 1 in which the square
size are the same. Since D ≤ R ·n (assuming the network is connected), we have
that the number of steps is bounded O(log n). We now show that for any subset
of nodes S, the total length of the edges selected in each iteration of the algorithm
on the induced subtree is within a constant factor of the optimal Steiner tree
cost of for S.

Consider any iteration, and let H denote the square edge length in this itera-
tion. Let t denote the number of leaders selected in this iteration that are also on
the induced subtree of S. It can be easily seen that the cost of the edges on the
induced subtree of S that are selected in this iteration is bounded by O(t · H),
since each edge is within a constant factor of H . We now place a lower bound
on the optimal Steiner tree cost of the subset S. Clearly, each one of the t lead-
ers selected in the iteration corresponds to a distinct leaf node on the induced
subtree, all of which are in subset S. It can also be seen that each leaf node is
contained in a distinct square with edge length H . Therefore, there exists at least
t/9 leaf nodes (assuming t > 9), where the distance between any two of them is
at least H . This is because on the Euclidean plane, each square is surrounded
by 8 other squares of the same size. Therefore, the optimal Steiner tree cost to
connect the t/9 leaf nodes and the root r is at least (t

9 ·H). Combined with the
upper bound of O(t · H), we showed that the cost of the selected edges in any
iteration that are on the induced subtree of S is within a constant factor of the
optimal Steiner tree cost of subset S.

For the case where t ≤ 9, the total cost of the selected edges in this iteration is
bounded by O(9H). An lower bound for the Steiner tree cost of the corresponding
t leaf nodes (and root r) can be easily established since each leaf node has at
least a distance of H/2 to r. This is because r is always selected as a leader in
each iteration, and all the other t leaf nodes are in different squares than the one
r resides in. Therefore, the cost of the selected edges in this iteration is again
bounded by a constant factor of the optimal Steiner tree cost of subset S. Since
we have show that the number of iterations is at most O(log n), the proof of the
theorem is completed.

C Proof of Lower Bound of GIST

Proof of Theorem 4: The O(log n) bound for our GIST algorithm is almost
tight since no spanning tree can achieve a stretch better than the lower bound of
Ω(log n/ log log n). This is due to the lower bound for on-line Steiner tree problem
in [2], where nodes are exposed one at a time to be connected instead of being
given all at once. The lower bound of Ω(log n/ log log n) is established for the
on-line Steiner tree problem on a n×n grid. If there is an algorithm A that can
construct a UST with stretch s, we then can obtain an online algorithm for the
online Steiner tree problem that has approximation ratio s. This is because an
UST can be built without even knowing the sequence of nodes that are exposed

302 L. Jia et al.

except for the first one, and such UST can be used as a solution for any subset
(as an on-line Steiner tree node sequence) and the approximation ratio is s.
According to [2], the stretch s is at least Ω(log n/ log log n).

D GRID GIST

Let G be an n × n grid, and r be a root node on G, as illustrated in Figure 5.
We show that the stretch on the computed GRID GIST on G is O(log n). The
problem for constructing GRID GIST on general unit disk graphs is still open.
Each node on G has coordinate (i, j) (i, j ∈ I can be negative). Without loss of
generality, the root node r has coordinate (0, 0). We use (i, j) to denote both
the node and its coordinate, and use ((i1, j1), (i2, j2)) to denote an edge between
node (i1, j1) and (i2, j2). We assume that each edge e ∈ G has a unit cost of 1.

Our algorithm computes a GRID GIST T that is a union of four distinct trees
TTR, TTL, TBL and TBR, where TTR connects all the nodes in {(i, j)|i ≥ 0, j ≥ 0} to
r, and similarly, TTL for {(i, j)|i < 0, j ≥ 0}, TBL for {(i, j)|i < 0, j < 0}, and TBR

for {(i, j)|i ≥ 0, j < 0}. The algorithm for constructing TTR can be used to obtain
TTL, TBL and TBR by simply rotating and shifting TTR, i.e., TTL, TBL, or TBR can be
obtained by rotating TTR by 90◦, 180◦ or 270◦, then shifting to (-1, 0), (-1, -1), or
(0, -1) respectively. Note that root r can be any node on the grid, which implies
that size of the top right region can be different from other regions.

Algorithm 3. GRID GIST for constructing TTR

1: TTR ← Φ; k ← 0;
2: repeat
3: for all (i, j) such that i mod 2k == 0 and j mod 2k == 0 do
4: if (i mod 2k+1 == 0 and j mod 2k+1 == 2k) then
5: TTR ← TTR + ((i, j), (i, j-1))
6: else if (i mod 2k+1 == 2k and j mod 2k+1 == 2k) then
7: TTR ← TTR + ((i, j), (i, j-1))
8: else if (i mod 2k+1 == 2k and j mod 2k+1 == 0) then
9: TTR ← TTR + ((i, j), (i-1, j))

10: end if
11: end for
12: k ← k + 1;
13: until (no edge is picked in this round)

We now describe our algorithm for TTR. Let BSQk = {(i, j)|i′2k ≤ i < (i′ +
1)2k, j′2k ≤ j < (j′ + 1)2k} denote a level k bounding square, where 0 ≤ k ≤
�log n�. The number k is refered to as the level number of BSQk. Clearly, larger
level number k indicates larger square region, which contains smaller regions
with level number smaller than k. The bottom left node of each bounding square
BSQ is selected as the leader for BSQ. In the special case of k = 0, each BSQ0
is a single node, and its leader is the node itself. If �k is the leader of BSQk,

GIST: Group-Independent Spanning Tree 303

then the leader node �k+1 of BSQk+1 containing BSQk is the parent node of �k,
and �k is connected to �k+1 using a shortest path on the grid. Note that in the
GRID GIST, �k does not connect to �k+1 using a dedicated link, as in the GIST
tree. Instead, �k connects to a single node in �k+1’s BSQk region using a single
edge (�k+1 is a leader bounding squares in level k + 1 as well as k, k − 1, . . .).

Among the bounding squares that a node v acts as a leader at different lev-
els, we use MaxLevelv to denote the maximum level number of these bound-
ing squares. Our Algorithm D proceeds by linking leader �k with its parent
leader �k+1 , first walking down then walking left till �k+1 is met, exclusing
edges on this path that is already selected. Formal definition of the algorithm is
presented in Algorithm D. Finally, our algorithm GRID GIST for computing a
GRID GIST on G is as follows: Output each of the four subtree; output three ad-
ditional edges ((-1, 0), (0, 0)), ((-1, -1), (-1, 0)), and((0, -1), (0, 0)), if such edges
exist (subtree is not empty). Figure 5 is illustration of Algorithm D for com-
puting TTR, where the thickness of an edge e indicates the level of the bounding
squares e connectes. For example, ((1, 1), (1, 0)) and ((1, 0), (0, 0)) connect BSQ0
squares; ((2, 2), (2, 1)) and ((2, 0), (1, 0)) connects BSQ1 squares; ((4, 4), (4, 3))
and ((4, 0), (3, 0)) connectes BSQ2 squares. For Algorithm D, we have the fol-
lowing theorem,

Theorem 5. Algorithm GRID GIST computes a universal Steiner tree with
O(log n) stretch in polynomial time.

To prove Theorem 5, we first establish the following two lemmas.

Lemma D1. Algorithm GRID GIST finishes in polynomial time, and it com-
putes a spanning tree on G.

Proof: It can be easily seen that the algorithm terminates in polynomial time.
Since in each for-loop, at least one edge is picked; otherwise, the outer repeat-
loop would stop.

We now show that TTR is a tree connected to root r, and TTR spans all the
nodes in {(i, j)|i ≥ 0, j ≥ 0}. The proofs for other sub-trees are similar, except
that each sub-tree is connected to r through one of the three additional edges. In
Algorithm D, when k increases from 0, any combination of integers i and j will
satisfy the condition in Line 3 at least once. If one of the contitions in Lines 4, 6
or 8 is further satisfied by (i, j), an edge is added for the node (i, j); furthermore,
(i, j) will not satisfy Line 3 any more after k increases. If none of the conditions
in Line 4, 6 or 8 is satisfied, (i, j) will satisfy Line 3 again when k increases. For
example, (4, 4) satisfies Line 3 when k = 1, but does not satisfy either Line 4, 6
or 8; however, (4, 4) will satisfy Line 3 again when k = 2, and will further satisfy
Line 6, which leads to the addition of edge ((4, 4), (4, 3)). Thus, each node in
{(i, j)|i ≥ 0, j ≥ 0} is connected to exactly one other node, which eventually
leads to the root, and there no loop is formed (k is increasing).

Lemma D2. Let T be a GRID GIST tree computed by Algorithm D. Given
S ⊆ V , the inducted tree TS+{r} of S +{r} on T has a cost of at most O(log n) ·
OptS+{r}.

304 L. Jia et al.

Proof: We first place a bound on the length of the path between two leaders on
T . Let � be the leader of bounding square BSQk, and �′ be the leader of bounding
square BSQk′ , where BSQk contains BSQk′ . Therefore, � is an ancester of �′

on T . We have the following

dT(�, �′) =
∑
e∈P

|e| ≤
k∑

i=1

(2 · 2i−1) ≤ 2 · 2k. (1)

Let {v1, v2, . . . , vt} be the set of leaders on TS+{r}, such that ∀1 ≤ i ≤
t, MaxLevelvi = k. As described in our algorithm, the path from any node
v to r on T consists of at most �log n� sub-paths, each of which is a path from
the leader of a smaller bounding square to its parent leader of a larger bounding
square. Therefore in order to show TS+{r} ≤ O(log n)·OptS+{r}, we only need to
prove that the cost of connecting the set of nodes {v1, v2, . . . , vt} to their parent
leaders is bounded by O(OptS+{r}). Since TS+{r} is the induced tree of S on
T , each node vi in {v1, v2, . . . , vt} can identify a node ui ∈ S such that the set
of nodes {u1, u2, . . . , ut} are distinct and are all leaf nodes of TS+{r}. Since the
path connecting vi to its parent leader on T is at most 2 · 2k, we have an upper
bound of 2t · 2k on the total cost of connecting the set of nodes {v1, v2, . . . , vt}
to their parent leaders.

We now place a lower bound on OptS+{r}. Let q > 4 be any constant,
and let H ⊆ {v1, v2, . . . , vt} be any maximal subset such that: 1) ∀v, v′ ∈ H ,
dG(v, v′) ≥ q · 2k, and 2) ∀u ∈ {v1, v2, . . . , vt}−H , u can find a node v ∈ H with
dG(u, v) < q ·2k. Since ∀1 ≤ i, j ≤ t, dG(vi, vj) is at least 2k, we have that for any
v ∈ {v1, v2, . . . , vt}, the number of other nodes in {v1, v2, . . . , vt} that is within
distance q · 2k of v is at most q2. Therefore, the cardinality of H is at least t/q2.
From Equation 1, we have that dG(ui, vi) ≤ 2 · 2k, since dG(ui, vi) ≤ dT(ui, vi)
and MaxLevelvi = k. This directly leads to the fact that dG(ui, uj) is at least
(q − 2 · 2) · 2k, for any vi, vj ∈ H . Combined with the cardinality lower bound of
H , we established a lower bound of (t/q2) · (q − 4) · 2k for OptS+{r}.

Given the upper bound 2t · 2k on the total cost of connecting the set of nodes
{v1, v2, . . . , vt} to their parent leaders, the lower bound of (t/q2) · (q − 4) · 2k

on OptS+{r}, and the fact that there are at most �log n� level numbers, we
completed the proof of this lemma. However, we note that the approximation
factor is not optimized in this proof.

Theorem 5 follows as a direct corollary of Lemma D1 and Lemma D2.

Distributed User Access Control
in Sensor Networks�

Haodong Wang and Qun Li

Department of Computer Science
College of William and Mary

Williamsburg, VA 23187-8795, USA
{wanghd, liqun}@cs.wm.edu

Abstract. User access control in sensor networks defines a process of
granting user the access right to the information and resources. It is es-
sential for the future real sensor network deployment in which sensors
may provide users with different services in terms of data and resource
access. A centralized access control mechanism requires base station to
be involved whenever a user requests to get authenticated and access the
information stored in the sensor node, which is inefficient, not scalable,
and is exposed to many potential attacks along the long communica-
tion path. In this paper, we propose a distributed user access control
under a realistic adversary model in which sensors can be compromised
and user may collude. We split the access control into local authen-
tication conducted by the sensors physically close to the user, and a
light remote authentication based on the endorsement of the local sen-
sors. Elliptic Curve Cryptography (ECC), a public key cryptography
scheme, is used for local authentication. We implement the access con-
trol protocols on a testbed of TelosB motes. Our analysis and experi-
mental results show that our scheme is feasible for real access control
requirement.

1 Introduction

Access control defines a process of identifying user and granting user the access
right to information or resources. Sensor network is a computing platform for
users to collect data, transmit data, and process data. The access control per-
taining to sensor network predominantly aims to protect the network usage and
collected data. Unauthorized user should not be allowed to use the network since
network bandwidth is very limited and, more importantly, the battery power of
each node may be depleted after malicious users aggressively effuse messages to
the network. The data collected or processed, many times, is classified so that
data of different classifications requires security clearance for authorized access.
For example, a high rank officer may need to know more information about the

� This work was partially supported by the U.S. National Science Foundation under
grant CCF-0514985.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 305–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

306 H. Wang and Q. Li

field deployment than a soldier. In another scenario, information may be sensi-
tive compartmented so that users have to be denied of access to the data that
is beyond his access right. An example would be a user is authorized to access
the data from the sensors in his office, but not other people’s offices.

To achieve access control, it is essential for sensor nodes to authenticate the
identities of the requesters. This paper aims to explore an efficient and secure
authentication scheme for the sensor nodes. A natural way for the authentication
check is to use a centralized mechanism. After receiving a request, the sensor
node sends the user information to the base station. Then the base station de-
cides whether the access is granted or not and replies the result to the sensor
node. This solution may yield a good security result because of the fact that
the base station is considered secure, and the communication channels between
sensors and the base station are assumed secure. However, this scheme suffers
two major problems. First, the centralized authentication requires at least one
round-trip communication between the sensor and the base station. If a num-
ber of users are accessing the network at the same time, the authentication
traffic may easily cause network congestion. Second, this authentication pattern
is vulnerable to adversary’s DoS attacks. The sensor nodes have no knowledge
about user access right until they get replies from the base station. The adver-
sary can easily launch DoS attacks by forging a large number of user access re-
quests, which will in-turn trigger the same amount of authentication traffic. The
consequence will severely saturate the network and quickly deplete the sensor
node power.

This paper gives a thorough exploration for sensor network data access con-
trol problem in a general setting. We consider a data access scenario that a user
can access in-network stored data at any location from anywhere in the net-
work, which includes local data access from user’s nearby sensors and remote
data access. Moreover, we consider access control problem in a much harsher
environment in which the users may collude and sensors may be compromised.
Compromised sensors can get the information from the user authentication pro-
cess and may disclose this information to an adversary, which may potentially
help the adversary to gain more access privileges. Colluding users may analyze
their information and design a scheme to counteract the access control system.
Besides, we also addresses node duplication attack and DoS attack by inundating
authentication messages to the network.

It is our belief that our more general data access model and realistic adversary
threat model define a very realistic problem for future sensor deployment. Our
work has following four contributions. First, we propose a practical and scalable
certificate-based local authentication based on ECC. Public key cryptography
eliminates the complicated key management and pre-distribution required by
symmetric key schemes, and provides a very clean interface between the user
and sensors. The advantage of certificate-based authentication is that sensors do
not need the storage for user’s public keys or a third party for public key verifi-
cation. User public keys can be constructed from user certificates and published
system information. Second, we propose a novel group endorsement scheme to

Distributed User Access Control in Sensor Networks 307

authenticate a user locally by a group of sensors and transfer the endorsement
to the remote sensor. This scheme is resilient to limited number of compromised
sensors and the DoS attack launched in the form of remote authentication. Third,
our scheme eliminates the possibility of user collusion attack. The polynomial
based secret sharing scheme proposed in [18] suffers user collusion attack. The
collusion by a number of users can easily reconstruct the secret polynomial and
reveal the system secrecy. Our certificate-based authentication is resilient to any
user collusion attack. Fourth, we show our scheme is feasible in real sensor net-
work deployment. We have implemented both local authentication and remote
authentication on TelosB motes, which are based on our implementation of 160-
bit ECC security primitives. Since the TelosB hardware multiplier is disabled in
TinyOS, the computation is longer that it should be. It takes 3.1s to generate a
public key and 10.8s to conduct local authentication.

2 Related Work

We believe that, with fast expanding sensor network technologies, more services
will be available to allow direct interactions between users and sensor nodes.
Obviously, the new communication paradigm poses more security challenges for
small and power constrained sensor nodes. Different from the security problem
in user access control we address in this paper, most related researches focus on
secure and resilient communication links and resource management inside the
networks.

Perrig et al. [12] construct μTesla and introduce the asymmetric mechanism
through a delayed symmetric keys disclosure: the base station broadcasts an
encrypted message first, and then releases the secret key in scheduled time frame.
Although KDC-based schemes suffer the scalability problem, broadcasting is still
the basic, efficient to distribute or revoke secret keys in sensor networks.

Eschenauer and Gligor propose a random graph based key pre-distribution
scheme [7]. The scheme assigns each sensor a random subset of keys from a
large key pool, and allows any two nodes to find one common key and use
that key as their shared symmetric key. Based on their contribution, a number
of researches [3, 5] have delivered to strengthen the security and improve the
efficiency. Since each sensor node only needs to store a small number of keys, the
random graph based schemes have the advantage of scalability. However, in a
sparse network or non-uniform distributed network, the key establishment could
be difficult because a number of sensor pairs may not successfully finish pairwise
key establishment.

Besides the above two types of security schemes, a number of research teams
focus on the group key and authentication problems [17, 15, 1, 14, 6, 2]. Ye et
al. [17] design a Statistical En-Route Filtering (SEF) mechanism to detect and
drop false reports. The idea is to use probabilistic key sharing to authenticate
the legitimate messages on the routing path. However, SEF cannot be used to
authenticate the message sender because the remote sensor does not have enough
knowledge (as the sink) to verify the message source.

308 H. Wang and Q. Li

Zhang et al. [18] propose several schemes to restrict and revoke the access
privilege of a mobile sink. Their approaches are based on Blundo’s scheme to
establish secret key between the mobile sink and sensor nodes, and then use
Merkle tree technique to reduce the overhead. The limitation of the scheme is
that the mobile sink’s moving track has to be predetermined by the base station.
Compared with our scheme, we address a more general user/sensor communica-
tion problem. The mobile sink can be regarded as one type of special users in
our scheme.

3 System Model

We consider a large scale wireless sensor network deployed in a variety of en-
vironments, e.g., at a hostile battlefield, in an office building, or in a national
park. Data access to the stored data on each node is protected according to
the attributes of the data, e.g., data type (temperature, light, noise, etc.), data
location, data collection time, and so on. For a certain data, only authorized
user can access the data from the storing node. Since the data is distributed
in the entire network instead of in a central position, data protection by re-
lying on a powerful sink node with all data access authorization information
and computational power is not possible. Instead, data access authorization
should be done in a distributed fashion accordingly. After the data access has
been authorized, data access is granted to the user and data is transfered to
the user.

A user equipped with a powerful computing device, such as a PDA, interacts
with the sensor network for data query and retrieval and maybe network control
such as network reconfiguration or sensing mode change. The PDA is the inter-
face for the user to talk to the sensor network. The computing device is more
powerful than the sensor nodes, so it is capable of more computationally inten-
sive tasks. User can query data at any location of the network through sensor
node relay. The data access capability, however, must be granted by a central
authorization center before data access. A data access list is associated with the
user about the types, locations, and the durations of the authorized data access.
This information is encrypted in a way that the user is unable to forge and can
be authenticated by the sensor holding the requested data.

The sensor network is managed by a Key Distribution Center (KDC), which is
responsible for generating all security primitives (i.e., random numbers, one-way
hash function, message authentication code (MAC), access list) and revoking
users’ access privilege if necessary. KDC distributes secret keys through the
base stations. To access the sensor network, users need to apply for the access
permission from KDC. KDC maintains a user access list pool and associated user
identifications. The access list defines the user’s access privilege. A typical access
list is composed of uid and user access privilege mask. uid is a unique number to
identify the user. user access privilege mask is a number of binary bits; each bit
represents a specific information or service. An access list example is shown in
Fig 1. The information stored at the sensor nodes is divided into multiple access
privilege levels. The user with a lower access privilege is not allowed to get the

Distributed User Access Control in Sensor Networks 309

64 : 23 : 00 : 07 : E9 : 26 : F1 : A5

privilege mask timestampuid

Fig. 1. An example of user access list. The access list is composed of three parts: uid,
access privilege mask, and timestamp. uid is a unique number assigned to each user.
access privilege mask is to define the user’s access privilege to the system information.
timestamp specifies the access list is only valid in a certain time frame.

information that requires the higher privilege. We assume the users can securely
acquire their access lists from KDC through out-of-band secure communication
channels. Once a user passes the authentication check, the sensor nodes provide
their local information to the user. If the required information is not available
locally, for the reason we will discuss later, a group of sensor nodes have to
collaborate and request the information from the remote sensor which holds the
information.

An adversary is assumed to use all possible means to access the data that is not
authorized to him. He can eavesdrop message transmission to extract transmitted
information or carry out message replay. Message eavesdrop and replay are easy
to handle, as discussed by many papers, by using regular message encryption
and including message sequence or time information. More hazard is created
when nodes are compromised by the adversary who is able to garner all the
information stored in the sensors. It is even worse that the adversary may inject
his own program to the compromised sensors, which, under the control of the
adversary, pretend to be trustworthy gaining as much information as possible.
A user may also collude with the adversary for mutual benefit by attacking the
access control system. The base station and the central authorization center
cannot be compromised, however.

We mainly consider the following two potential attacks. First, Compromised
sensors may capture much information and give to an unauthorized user so that
that user may access data by impersonating another user. Second, user collusion
may help users to subvert the system and gain more access right than that
of anyone among the colluding users. We assume that at most t sensors can
be compromised. The assumption is reasonable because compromising sensors
takes time and effort. On the other hand, we assume unbounded number of users
can collude since it is not hard for mischievous users to share information and
orchestrate an aggregated analysis to the collected information. The fact that
a compromised sensor is hard to identify prevents a user from trusting any of
the sensors. A user may have to disclose information for authentication, but the
revealed information has to be specific to the sensor in contact and should not
be used for authentication at another sensor.

We do not explicitly address the introduction of duplicated compromised sen-
sors. However, since the duplicated compromised sensors do not introduce more
information to the adversary, our carefully designed protocols do not enable the
adversary to access the data from an uncompromised sensor.

310 H. Wang and Q. Li

4 Proposed Access Control Schemes

The user may request data stored locally or in a distant sensor. We first define
following two types of sensor nodes. The sensor nodes which are directly within
the contact range of the user are called local sensor nodes. The sensor nodes
which cannot establish direct communication link with the user but hold the
requested information are called remote sensor nodes.

In this section, we first propose a public-key cryptography based local access
control scheme. Then we develop a remote access control approach (we assume
that the ID of the remote sensor for data access is known by some scheme that is
beyond the scope of this paper, e.g., resource discovery or geographic or location-
based routing). Finally, we provide the security analysis for both schemes.

4.1 PKC Based Local Authentication

Public-key cryptography has been used extensively in data encryption, digital
signature, user authentication, etc. Compared with the popular symmetric key
cryptography widely used in sensor network, public-key cryptography provides a
more flexible and simple interface requiring no complicated key pre-distribution
and management as in symmetric-key schemes. It is a popular belief, however,
in sensor network research community that public-key cryptography is not prac-
tical because the required computational intensity is not suitable for resource
constrained sensor nodes. The nascent exploration seems to disabuse of the mis-
conception. The recent progress in 160-bit Elliptic Curve Cryptography (ECC)
implementation [9] on Atmel ATmega128, a CPU of 8Hz and 8 bits, shows that
an ECC point multiplication takes less than one second, which proves public-key
cryptography is feasible for sensor network security related applications.

We present our ECC based local authentication scheme as follows. KDC
selects a particular elliptic curve over a finite field GF (p) (where p is a prime),
and publishes base point P with order q (where q is also a large prime). KDC
picks a random number x ∈ GF (q) as the system private key, and publishes its
corresponding public key Q = x×P . Given point P and Q, it is computationally
infeasible to get system secret x.

A straightforward user authentication scheme can be described as follows.
The user uses her private key to sign her access list and sends to the sensors.
The sensors just verify the signature by using user’s public key. However, it is
difficult for the sensors to find an authorized third party to certify that the
user is who she claims to be. To solve this problem, we adopt the certificate-
based authentication in our local authentication scheme. To access the sensor
network, the user has to present her certificate first. Based on the certificate,
the sensors generate user’s public key, and then use the derived public key to
encrypt a random number as the challenge. If the user can successfully decrypt
the message, then the local sensors are convinced that the user’s certificate is
legitimate.

Initially, the user comes to KDC to apply for an access list to visit the sensor
network. KDC picks a random number cA ∈ GF (p), and then calculates the

Distributed User Access Control in Sensor Networks 311

user’s public key constructor CA = cA × P . Based on the user’s request, KDC
issues a proper access control list acA, and attaches it to public constructor
CA as the certificate, denoted as TA. Meanwhile, a digest eA is generated for
TA, where eA = H(TA) (H is a {0, 1}∗ → {0, 1}q hash function). Then, KDC
constructs Alice’s private key qA = eAcA +x and public key QA = eA ×CA +Q.
Note qA and QA satisfy QA = qA × P . Finally, Alice holds qA, QA and TA. We
assume above procedure is conducted at an out-of-band secure channel.

The user authentication protocol is illustrated in Fig. 2. We denote sl as a
local sensor. When the user approaches a sensor node sl, she sends her access
request with certificate TA. Given certificate TA, sl constructs user’s public key
QA = eA × CA + Q. To verify the user indeed holds private key qA, node sl

uses the challenge as follows. sl selects a random number r ∈ GF (p) (to be
used as the session key with the user), and calculate its hash H(r) over GF(p).
Node sl then generates temporary public key Yr = H(r) × P , and computes
Zr = H(r) × QA. Next, sl encrypts the session key by doing r ⊕ X(Zr), where
X(Zr) is the X coordinate of point Zr. Finally, sl sends ciphertext 〈zr, Yr〉 to
the user, attached with the MAC of a nonce (NA), MAC(r, NA).

With private key qA, the user can regenerate Zr because qA × Yr = qA ×
H(r) × P = H(r) × QA = Zr. She then decrypts session key r = zr ⊕ X(Zr),
and verifies if Yr = H(r) × P . If yes, She uses r as the session key to generate
MAC for nonce NA concatenated with her access privilege acA, and sends to sl.

Local sensor sl decrypts the MAC message and verifies NA and acA. A suc-
cessful verification proves that the user is the owner of certificate TA. Finally,
sl replies the information requested by the user, which again is encrypted by
session key r.

user → sl : TA = (CA|acA)

sl computes : QA = eA × CA + Q

: picks a random r ∈ GF (p)

: Zr = H(r) × QA,

: Yr = H(r) × P,

: zr = r ⊕ X(Zr),

: MAC(r, NA).

sl → usesr : zr, Yr, MAC(r, NA)

user computes : qA × Yr = qA × H(r) × P = Zr

: X(Zr) ⊕ zr = r

: decrypts MAC(r, NA)

user → sl : MAC(r, NA|acA)

sl → user : MAC(r, reply)

Fig. 2. User access list authentication protocol. We let sl be the local sensor, TA be
the user certificate, which includes a public-key constructor CA and an access list acA.

312 H. Wang and Q. Li

4.2 Remote Access Control

In remote access control, the remote sensor node cannot directly contact the user
due to the limitation of radio transmission range. Therefore, the user queries
have to travel multiple hops to reach the remote sensor. With this communi-
cation pattern, the authentication schemes used in local access control cannot
be applied on remote access control. In other words, it is improper for the user
to directly contact the remote sensor. Otherwise the adversary can easily take
the advantage and launch the bogus data injection attack to deplete the sensor
network. With the above security concern in mind, we develop a remote access
scheme that uses local sensors to endorse the user query to the remote sensor.
Since it is widely accepted [11, 12] that a single sensor node cannot be trusted,
the user’s remote access request has to be endorsed by k local sensor nodes,
where k is a system parameter. We assume the adversary cannot compromise k
sensors at a time. Any user remote access query without k local endorsements
will be dropped immediately by either forwarding sensor nodes or the remote
sensor. A caveat is that some sensors may be compromised if a valid user can-
not be authenticated by a group of sensors. In that case, the user can move to
find another group of sensors for authentication or report the failure to the base
station for analysis.

The requirement of local sensor endorsement raises a new security challenge:
how does the remote sensor verify that the user is indeed endorsed by k local
sensors? If each local endorsing sensor can share a secret with the remote sen-
sor, then the endorsement can be easily verified by the remote sensor. We use
polynomial-based scheme for secret sharing between the local and remote sen-
sors. More specifically, the KDC randomly generates a bivariate t-degree poly-
nomial f(x, y) =

∑t
i,j=0 aijx

iyj over a finite field GF (q), where q is a prime
number and aij = aji. The polynomial has the symmetric property such that
f(x, y) = f(y, x). In practice, we select t = k − 1 so that the polynomial can
not be reconstructed by the adversary with the assumption that the adversary
cannot compromise up to k sensors. To endorse a user access list, each local
sensor can encrypt the access list with the key shared with the remote sensor,
computed by substituting x and y with the sensor IDs. This scheme, however,
has to provide the remote sensor with the IDs of the local sensors for verification,
which leads to a long message. In order to reduce the message size, before the
deployment, sensor nodes are divided into k groups {g1, g2, · · · , gk}, where gj

(1 ≤ j ≤ k) is a group ID. Besides the group ID, each sensor i has its unique
sensor ID si. From now on, we also denote a sensor node as sj

i , where si is the
sensor ID, and j means it is belong to group gj . During configuration procedure,
each sensor sj

i is pre-loaded with two shares of polynomial, f(x, si) and f(x, gj).
Given the remote sensor ID sr, a local sensor sj1

i1
can establish a pairwise key

with the remote sensor by plugging sjr
r in f(x, gj1). And, the remote sensor can

also generate the pairwise key by plugging group ID gj1 in its f(x, sr). To use
group ID instead of sensor ID, we can achieve a shorter message due to a small
number of groups. For the remote sensor to check the authentication list, we
attach a bitmap for the groups in the message showing which group IDs are

Distributed User Access Control in Sensor Networks 313

user finds k local sensors sj
i with different j

user → s1, · · · , sk′(k′ ≥ k) : bcast. request

s1, · · · , sk′ → user : group id

user → sp1 , · · · , spk : confirm request

for (each sensor sgi
pi

, i = 1, 2, · · · , k)

sgi
pi

authenticate user access list TA

sgi
pi

→ user : maci = MAC(f(sr, gi), acA)

user computes: mac = H(mac1|| · · · ||mack)

user → sr : MAC(mac, acA||NA)||acA|| group list

sr : compute f(g1, sr), · · · , f(gk, sr)

sr : reconstruct mac = Hash(mac1|| · · · ||mack)

sr : decrypt and verify acA

sr → user : MAC(mac, reply||NA||NB)

Fig. 3. The polynomial based remote access control protocol

used for authentication. We incorporate the remote sensor ID in the polynomial
computation rather than the group ID of the remote sensor to avoid the attack
due to the scenario that a compromised sensor has the same group ID with the
remote sensor and then can decode the shared keys between the local sensors
and the remote sensor.

The remote access control protocol is described in Fig. 3. To start a remote
access procedure, the user has to find k endorsing sensors sj

i such that no two
sensors have the same group ID. The user first broadcasts the remote access
request, and the local sensors receiving the request reply with their group ID.
The user then select k local sensors with different group ID to form an en-
dorsing sensor group. Note the user may have to broadcast the request several
times due to the possible transmission collisions. Then, each endorsing sensor
conducts the local authentication as described previously. After the user has
been authenticated, sensor sj

i computes the pairwise key f(sr, gi) with the re-
mote sensor, and uses the key to encrypt user’s access list acA. Note only the
access list part of certificate TA is encrypted because the remote sensor does not
need user’s public key constructor CA. The user collects k MACs from the en-
dorsing sensors and generates a hash digest, mac = H(mac1|| · · · ||mack), where
g1 < g2 < · · · < gk.

After computing the hash digest, the user encrypts her access list acA and
NA with mac. Again, NA is a nonce to guarantee the message freshness. Then,
the user sends it along with her access list acA and the local endorsing sensor
group list, to the remote sensor.

When a remote sensor (denoted as sr) receives the access request from the
user, sr retrieves the information in the group list and user access list to recon-
struct the MAC digest as shown in the protocol, and then decrypts the user’s
access list acA. If the decrypted access list matches the one provided by the

314 H. Wang and Q. Li

user, it proves that the user has already been authenticated by k local sensors.
Sensor sr replies the user with the requested information, along with nonce NB

randomly picked by sr. Again, all data is encrypted by mac.

4.3 Security Analysis

In both access control schemes, the authentication messages are encrypted by
MAC algorithm in the access control protocol, except the user certificate. As
long as the MAC algorithm is secure (such as RC5[13]), and the secret key is
large enough (at least 64 bits), any number of compromised sensors cannot break
the ciphertext in the messages.

In the local authentication, the sensor nodes can not capture any secret
from the user, nor can the user gain more access privilege than granted due
to the nice security features of public-key cryptography. The 160-bit elliptic-
curve crypto-system is considered to have the same security level as 1024-bit
RSA. Given an elliptic curve E over finite field F , to find system secret x
from the relation Q = xP (where P, Q are published system parameters) is
equivalent to solve the discrete logarithm problem, which is considered com-
putationally infeasible. During the local authentication procedure, user’s cer-
tificate TA including access list caA is transmitted in plaintext. The malicious
sensors may duplicate the user certificate, or the adversary may capture the
certificate by eavesdropping. The certificate information, however, can not help
the adversary to impersonate the user and get the data service. The reason
is that the local sensors use user’s public key to encrypt the challenge (ran-
dom number r). It is easy for the adversary to calculate the public key given
the stolen certificate, but it is computationally infeasible to acquire the associ-
ated private key. As the result, the adversary is not able to correctly respond
the challenge, so her access request will be rejected by any local sensor. Due
to the same reason, the user cannot forge or alter her access list to acquire
higher level access privileges or to extend the allowed access time period. Oth-
erwise, the user will not be able to decrypt the challenge message from the local
sensor because she does not have the private key associated to the certificate
she claims. More importantly, the certificate-based local authentication effec-
tively defends against user collusion attacks. The collusion among any num-
ber of users does not jeopardize the system secret for the reason explained
above.

The security features of our remote access scheme lie on the local sensor group
endorsement. The combination of our local endorsement scheme with existing
false report filtering schemes, such as SEF [17] and IHA [14], can effectively
prevent the potential DoS attacks. In our scheme, users are not allowed to send
requests directly to the remote sensor. Any remote access request has to be
endorsed by k local sensors. Since the adversary can not compromise up to k
sensors (the system assumption), there is no way for an illegitimate user to
get k genuine MACs to access the remote sensor. If the adversary attempts to
forge k MACs, the bogus request will be immediately dropped by forwarding
sensors in false report filtering. Again, the user still can not alter or forge her

Distributed User Access Control in Sensor Networks 315

access list in the remote access request. The local endorsing sensors generate the
MACs using authenticated user access list. If the user forges her access list in
the remote access request, the MAC verification at the remote sensor will fail,
and the remote request will be rejected.

5 Experimental Results

To evaluate the proposed access control schemes, we have implemented both lo-
cal access control and remote access control scheme on TelosB (TPR2420) motes,
the latest research oriented mote developed by UC Berkeley. TelosB is powered
by MSP430 microcontroller. MSP430 incorporates an 8MHz, 16-bit RISC CPU,
48K bytes flash memory (ROM) and 10K RAM. The RF transceiver on TelosB
is IEEE 802.15.4/ZigBee compliant, and can have 250kbps data rate. To simplify
the experiments, we have implemented the user module on TelosB motes instead
of PDAs.

5.1 Metrics and Methodology

We use four metrics: authentication time, computation cost, communication cost,
and power consumption, to evaluate the performance of access control protocols.
The authentication time measures user perceived waiting time from sending out
the access request to receiving the authentication confirmation. Computation
cost is the amount of energy consumed in data processing. Similarly, communi-
cation cost is the energy used by RF transceiver. The power consumption is the
total amount of energy used by all participating sensor nodes to assist one user
access request.

Table 1. The amount of current draw on different operations for TelosB motes

Operation Normal Max
MCU On, Radio Off 1.8mA 2.4mA

MCU On, Radio Rx 21.8mA 23mA

MCU On, Radio Tx 19.5mA 21mA

The energy consumption E can be calculated by E = U · I · t, where U is the
voltage, I is the current and t is the time duration. TelosB motes are powered
by two AA batteries, so U is approximately equal to 3 volts. The current value
varies in different operations as shown in Table 1 (abstracted from [4]). We
use authentication time as the time duration for MCU data processing. And
communication time can be estimated by following way. Given 250kbps radio
transmission rate, and 38 bytes in each packet, it takes one sensor node 38 ×
8bits/250kbps = 1.2ms to transmit or receive a data packet. Without considering
message loss and retransmission, the total transmission time is the product of
1.2ms with the number of packets.

316 H. Wang and Q. Li

5.2 Experiment of Local Access Control

We have implemented 160-bit ECC cryptosystem on TelosB motes. We choose
SECG recommended 160-bit elliptic curve, secp160r1, in our ECC implemen-
tation because large integer multiplication and reduction over prime number
finite field can be more effectively optimized than those over binary finite field.
The most expensive operation in ECC exponentiation is point multiplication. To
achieve the better performance as possible, we have adopted a number of tech-
niques including hybrid multiplication, modular reduction over pseudo-Mersenne
prime field, Great Division and mixed Jacobian Coordinate. Due to the space
limit, we omit the detail implementation and corresponding optimization of our
ECC implementation on TelosB motes. Interested readers may refer to [16] for
detail explanation. On average, it takes 3.1 seconds for a TelosB sensor mote to
do a fixed point multiplication, and 3.5 seconds to do a random point multipli-
cation. Note this performance is achieved under the circumstance that TelosB
micro-controller’s hardware multiplier is disabled in TinyOS.

Our local access control implementation strictly follows the protocol presented
in section IV except that the data encryption/decryption part is not implemented
due to the reason that TinySec (which provides block-cipher module) does not
work with CC2420 radio module on TelosB, but it does not affect our perfor-
mance evaluation because encryption/decryption overhead is negligible (e.g., in
RC5, the most expensive step (key setup) only costs 4ms on ATmega128 [8])
compared with ECC exponentiation.

The user certificate TA has 48 bytes, including 40-byte public key constructor
and 8-byte access list. The challenge from sensor nodes has 80 bytes, including
a 40 byte ECC point, 20 byte zr and a 20 byte ciphertext. Since one TelosB
packet only has 28 byte payload, the user has to use multiple packets to deliver
the certificate. In total, user needs to send four messages (three messages to
deliver user certificate, the forth one to response sensor’s challenge). Similarly,
the local sensor also needs to send four messages to deliver the challenge. We use
challenge generation time as our authentication delay. The challenge generation
time is user perceived delay from sending out the access request to receive the
challenge from the sensor. We exclude the user response time from the authen-
ticate delay because the user usually carry much more powerful devices in the
real world, so the response time is negligible compared with sensor processing
time.

Our experiment results show that a challenge generation costs 10.8 seconds
on average. Obviously, computation delay dominates communication delay in
this procedure. Recall that a sensor node needs to perform two ECC random
point multiplications and one fixed point multiplication to generate a challenge.
The three point multiplications combined already contribute 10.1 second delay.
The communication delay to send/receive 8 packets only has 8 × 1.2ms = 9.6
milliseconds. The power consumption for the computation is 58.3mJ, while the
energy cost for the communication is 0.59mJ.

Distributed User Access Control in Sensor Networks 317

10 20 30 40 50 60 70

5

10

15

20

25

30

35

40

The polynomial degree t

T
im

e
co

m
su

m
pt

io
n

(m
s)

10 20 30 40 50 60 70
20

40

60

80

100

120

140

160

180

200

The polynomial degree t

T
he

 C
om

pu
ta

tio
n

C
os

t (
uJ

)

(a) (b)

Fig. 4. (a). The time consumption to generate a pairwise key from the polynomial.
(b). The power consumption to generate a pairwise key.

5.3 Experiment of Remote Access Control

The essential part of the experiment of remote access control is the polynomial
based local endorsement scheme and MAC recovery at the remote sensor. We
are particularly interested in the performance of the t-degree polynomial com-
putation in sensors. Given a share of the polynomial f(x) = a0 +a1x+ · · ·+atx

t

over GF (q), the computation of f(x) requires t modular multiplications and t
modular additions, plus the computation of values x2, · · · , xt. A typical cryp-
tosystem (e.g., RC5) suggests q should be at least 64 bits. Therefore, t 64-
bit × 64-bit modular multiplications are required to compute the polynomial.
On TelosB’s 16-bit CPU platform, each 64-bit × 64-bit multiplication costs 16
word multiplications. To reduce the computational cost, we adopt the simpli-
fication proposed in [10]. The simplification is based on the fact that variable
x is either sensor ID or group ID, which is normally a 16-bit integer. We can
use another finite field GF (q′) for x, x2, · · · , xt. Therefore, the modular mul-
tiplication in polynomial f(x) is always performed between a 64-bit integer
and 16-bit integer. As the result, the cost of multiplication is reduced by four
times.

The modular reduction operation is as important as multiplication. Each mul-
tiplication must be followed by a reduction operation. To further reduce the
computational cost, we pick a pseudo-Mersenne prime as q because modular
reduction cost on field of a pseudo-Mersenne prime can be optimized to a neg-
ligible amount. A pseudo-Mersenne prime can be represented as q = 2m − ω,
where ω << 2m. Given a 2m-bit multiplication result B = (b1, b0), (b1, b0 are two
m-bit halves), the reduction can be computed based on the congruence 2m ≡ ω:
(b1, b0) = b1 ∗ ω + b0 → (b′1, b

′
0). Repeat this process until b′1 = 0, the result is

B = b′0 mod q.
In our experiment, we choose q = 264 − 28 − 1, q′ = 216 − 24 − 1. We test the

average time delay and power consumption for computing the polynomial with
different t values. In each test, we randomly generate t+1 64-bit coefficients and
a 16-bit variable x, we repeat 20 times to get the average time delay. The test
results are shown in Fig. 4.

The test results show the polynomial computation is efficient in low-power
sensor nodes. The figure shows that the time consumption for generating a pair-

318 H. Wang and Q. Li

wise key is only 8.8ms, 17.1ms, and 36.8ms, given the polynomial degree of 16,
32, and 64, respectively.

To evaluate the remote access control procedure, we divide the experiment
into two parts. The first part includes local sensor discovery, local sensor au-
thentication and MAC collecting. In the second part, we perform the MAC re-
construction and verification at the remote sensor. The message routing between
the user and the remote sensor is a typical communication process that has been
investigated extensively and the time delay is very small, so in our experiment
we omit the message routing between the user and the remote sensor.

During the experiment, we assume the sensor field is dense enough so that
the user can reach local sensors from different groups without moving. To ac-
quire the endorsements from local sensors, the user first broadcasts a remote
access request. Each local sensor replies the user with its group ID. The user
picks those sensors from different groups to fill in her endorse list. Due to the
message collision, some replying messages are corrupted, so the user may not
find enough endorsing sensors with one broadcast. As the result, the user may
have to broadcast several times to find all k endorsing nodes. Our experiments
show the user has to broadcast at least twice if k ≥ 6. After successfully finding
k endorsing sensors, the user unicasts an endorse acknowledge to each of the k
sensors. The endorsing sensors processes the user authentication in parallel. The
user first broadcasts her certificate, and then sequentially receives and responses
each local sensor’s challenge. A simple scheduling algorithm can be used for the
endorsing sensors to send challenges without packet collision. In our implemen-
tation, we arrange the endorsing sensors to send the challenge in ascending order
of their group IDs. If the user is successfully authenticated, then each endorsing
sensor generates the MAC and returns it to the user. After collecting all k MACs
from endorsing sensors, the user finally generates a MAC digest and sends the
access request to the remote sensor. We perform the experiment with k changing
from 2 to 16. The result of endorsing time consumption is shown in Fig. 5(a).
Note that the time duration includes the time for user’s broadcasts for request,
receiving the group ID reply from sensors, unicasts to sensors for acknowledging
receiving their group IDs, and sensor nodes’ data processing time to generate
the MACs.

We first perform a separate experiment just to test the time delay to find k
sensors only (without local authentication and MAC generation). The result is
shown as the dotted line in the same Fig. 5(a). It is interesting to find that it
takes 105ms to find just 2 endorsing sensors and considerable time for discover-
ing 4, 8, and 16 sensors, which is surprisingly slow, considering 1ms transmit-
ting/receiving delay. Two factors contribute to the long delay. First, as discussed
in previous section, the user may not get all information from local endorsing
sensors after the first broadcast. The user may have to broadcast the request
more than twice. Second, more importantly, a timer is set between any two
broadcasts in our implementation to regulate the packet transmission and re-
ception. Every time the timer fires, the user checks whether the endorsing list
is complete. If not complete, the user will do broadcast again. The time delay

Distributed User Access Control in Sensor Networks 319

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

The Number of Endorsing Sensors

T
h

e
 A

u
th

e
n

tic
a

tio
n

 T
im

e
 D

u
ra

tio
n

(s
)

Local authentication time
Time to find k sensors

4 6 8 10 12 14 16
50

100

150

200

250

300

The number of endorsing sensors

T
im

e
 d

u
ra

tio
n

 t
o

 v
e

ri
fy

 k
 e

n
d

o
rs

in
g

 s
e

n
so

r
(m

s)

4 6 8 10 12 14 16

200

400

600

800

1000

1200

1400

1600

The number of endorsing sensors

T
h

e
 c

o
m

p
u

ta
tio

n
 c

o
st

 t
o

 v
e

ri
fy

 t
h

e
 M

A
C

s
(u

J)

(a) (b) (c)

Fig. 5. (a). The solid line shows the time duration for the user to get authenticated
by k local sensor, k is changing from 1 to 16. The dotted line reveals the time delay
for the user to find k endorsing sensors; (b). The time duration for remote sensor to
verify k endorsing local sensors; (c). The energy cost for the remote sensor to verify k
endorsing local sensors.

between the fires of the timer predominantly accounts for the sensor discovery
delay. We can reduce this time duration by setting a higher timer frequency.

The total endorsing time is presented in Fig. 5(a) (solid line). Apparently, the
expensive local authentication dominates other delays. However, because k local
sensor authenticate the user in parallel, the total endorsing time is practical and
not much longer than the local authentication delay. When k = 16, it only takes
16.7 seconds for the user to get all endorsements.

Once receiving user’s remote access request, the remote sensor has to verify
whether the user is endorsed by k local sensors. To do so, the remote sensor
reconstructs k MACs by plugging the group ID into its own share of polynomial.
After k MACs are reconstructed, the remote sensor then generates and verifies
the digest. In the experiment, we measure the time duration for the remote sensor
to do the verification with k = 4, 5, · · · , 16 endorsing sensors. The experiment
results are shown in Fig. 5(b)(c).

Finally, we estimate the total time for a user to be authenticated for remote
data access. Suppose the network requires the user to get 16 endorsing sensors
to access a remote sensor. First, the user has to get local authentication by all 16
local sensors and receive corresponding MACs. This procedure costs 16.7 seconds
according to Fig. 5(a). Then, the remote sensor needs 283ms to reconstruct and
verify 16 MACs. In total, a remote access with 16 local sensor endorsement will
cost around 17 seconds. Note that our estimation does not include the message
traveling time from the user to the remote sensor and then back to the user.

6 Conclusion

In this paper, we show our effort in designing access control scheme for sensor net-
works. We describe our local access control and remote access control under a very
realistic adversary model. We implement the protocols on a TelosB mote testbed.
The security and performance analysis and the experimental results show that our
access control is feasible for realapplication.We are currently in theprocessofdoing
more experiments and designing more schemes for access control for comparison.

320 H. Wang and Q. Li

References

1. D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong. Secret
handshakes from pairing-based key agreements. In 2003 IEEE Symposium on
Security and Privacy, Berkeley, CA, May 2003.

2. H. Chan and A. Perrig. Pike: Peer intermediaries for key establishment in sensor
networks. In INFOCOM 2005, Miami, FL, March 2005.

3. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sen-
sor networks. In In IEEE Symposium on Security and Privacy, pages 197–213,
Berkeley, California, May 2003.

4. Moteiv Co. Telos datasheet. http://www.moteiv.com /products/docs /tmote-sky-
datasheet.pdf.

5. W. Du and J. Deng. A pairwise key pre-distribution scheme for wireless sensor
networks. In ACM CCS 2003, 2003.

6. Wenliang Du, Jing Deng, Yunghsiang S. Han, Shigang Chen, and Pramod Varsh-
ney. A key management scheme for wireless sensor networks using deployment
knowledge. In IEEE INFOCOM’04, Hong Kong, March 2004.

7. L. Eschenauer and V.D. Gligor. A key-management scheme for distributed sensor
networks. In In Proceedings of the 9th ACM conference on Computer and Com-
munication Security, November 2002.

8. Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari, Alexander
Dean, Frank Mueller, and Mihail Sichitiu. Analyzing and modeling encryption
overhead for sensor network nodes. In WSNA03, San Diego, CA, Sept 2003.

9. Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang
Shantz. Comparing elliptic curve cryptography and rsa on 8-bit cpus. In CHES,
Boston, Aug. 2004.

10. D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In
CCS’03, Washington, DC, October 2003.

11. A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks.
Communications of The ACM, 47(6):53–57, June 2004.

12. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar. Spins: Security pro-
tocols for sensor networks. ACM/Kluwer Wireless Networks Journal (WINET),
September 2002.

13. Ronald L. Rivest. The rc5 encryption algorithm. In Proceedings of the 1994 Leuven
Workshop on Fast Software Encryption (Springer 1995), pages 86–96, Springer,
1995.

14. S. Jajodia S. Zhu, S. Setia and P. Ning. An interleaved hop-by-hop authentication
scheme for filtering of injected false data in sensor networks. In In Proc. IEEE
Symposium on Security and Privacy, Oakland, CA, May 2004.

15. Harald Vogt. Exploring message authentication in sensor networks. In 1st European
Workshop on Security in Ad-Hoc and Sensor Networks (ESAS 2004), Heidelberg,
Germany, August 2004.

16. H. Wang, B. Sheng, and Q. Li. Telosb implementation of elliptic curve cryptography
over primary field. In Technical Report, Dec 2005.

17. F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false
data in sensor networks. In INFOCOM 2004, 2004.

18. W. Zhang, H. Song, S. Zhu, and G. Cao. Least privilege and privilege depriva-
tion: Towards tolerating mobile sink compromises in wireless sensor networks. In
MobiHoc’05, Chicago, IL, May 2005.

Locating Compromised Sensor Nodes Through
Incremental Hashing Authentication

Youtao Zhang1, Jun Yang2, Lingling Jin2, and Weijia Li1

1 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260
2 Computer Science and Engineering Department,

University of California at Riverside, Riverside, CA 92507

Abstract. While sensor networks have recently emerged as a promising com-
puting model, they are vulnerable to various node compromising attacks. In this
paper, we propose COOL, a COmpromised nOde Locating protocol for detect-
ing and locating compromised nodes once they misbehave in the sensor network.
We exploit a proven collision-resilient incremental hashing algorithm and design
secure steps to confidently locate compromised nodes. The scheme can also be
combined with existing en-route false report filtering schemes to achieve both
early false report dropping and accurate compromised nodes isolation.

1 Introduction

The sensor network has recently emerged as a promising computing model for many
applications e.g. patient status monitoring in a hospital, and target tracking in a battle-
field. However, its unattended nature makes the network vulnerable to varying forms of
security attacks such as a compromised node dropping true data reports [9] or injecting
false reports [18, 22]. Without being detected, compromised nodes may prevent the sink
from reaching a correct or optimal decision. In addition, routing false reports wastes the
energy of relay nodes, which reduces the lifetime of the network.

The previous work proposed either to locate compromised nodes through en-network
detection [12, 15] or to filter false reports early in routing [18, 22]. While they are ef-
fective in many cases, both approaches have limitations — the former suffers from low
accuracy due to possible collusion attacks and the latter cannot exclude the compro-
mised nodes. In this paper we propose COOL, a COmpromised nOde Locator for locat-
ing malicious nodes if they send out false data reports or drop real reports. Our design
is based on an intuitive observation — for any well-behaved node in the sensor net-
work, the set of outgoing messages should be equal to the set of incoming and locally
generated or dropped messages 1. We exploit a proven collision-resilient incremental
hashing scheme — AdHASH [1] and show how to securely collect the AdHASH val-
ues and confidently locate compromised nodes. We incrementally extend the testing so
as to capture an inconsistency when a bad link is included. A bad link is a hop between

1 Some messages may be lost due to weak connection in the sensor network. It is also considered
as one type of fault. We detect such links and let the sink decide if the involved nodes should
be excluded.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 321–337, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 Y. Zhang et al.

two nodes in which at least one is compromised. For such links, we drop both nodes
achieving an upper bound of 2m excluded nodes if there are m malicious ones.

The remainder of the paper is organized as follows. We describe the problem, and
the network and attack models in Section 2. The COOL protocol is then presented in
Section 3 with optimizations presented in Section 4. We evaluate proposed schemes and
show the results in Section 5. Section 6 discusses the related work. Section 7 concludes
the paper.

2 Problem Statement

2.1 The Network Model

We assume that the sink assign a unique ID and a unique secret key to each sensor
before deployment. Sensors are left unattended after deployment and monitor events
of interests. While some may be compromised, we assume that the majority of sensing
nodes for any single event are trustworthy.

We adopt a cluster-based multi-hop routing scheme due to its energy efficiency
[6, 19]. Sensing readings (including the timestamps [18]) are first sent to the cluster
head (CH) at which the are aggregated to a data report. By taking the majority of the
readings, the CH includes the selected sensing node IDs and their MACs (message au-
thentication code, discussed next) in the content of the aggregated report. The CH also
appends its own ID and MAC to the report. After generating the report, the CH forwards
it along the routing path to the sink. Messages from the sink are first sent to CH and
then broadcasted within the cluster.

At the cluster head level, the routing graph is built using directed diffusion protocol
[2]. Paths are set up to monitor different interests. We assume reports are forwarded
according to the routing path in one epoch. Each node checks the received report and
drops it if not for a cached interest.

2.2 The Attack Model

After compromising a sensor node, the adversary can retrieve all security information
including the secret key. (S)He can then inject false reports ([22, 18]), or drop some of
its received reports ([9]). The adversary knows the COOL or other security enhance-
ment algorithms, and may strive to send back data targeting at defeating the protection.

The injection attack or the dropping attack may occur at a sensing node; at a source
CH; or at a relay CH. In this paper we address all these types except the dropping
attack at a source CH node. Dropping at a source CH is more difficult to defend since
a compromised CH may refuse to form a report even after receiving several sensing
readings. On the other hand, a CH is usually granted the power to legally drop some
readings when constructing the report (to shield random erroneous readings). If it is a
concern, then each sensing reading could be sent to more than one source CH nodes
resulting in increased routing overhead as we will discuss later.

A compromised node is located if and only if its node id is known to the sink who can
then securely notify other sensors (using broadcast authentication [13]). Without being
located, the compromised node can be elected as a CH node and continuously inject or

Locating Compromised Sensor Nodes 323

drop reports. After being located, the network is free from its injection and dropping
attacks since others know it is excluded. Of course additional mechanism might be
needed to prevent it from malicious signal collision or changing its id.

Reports may be lost due to weak connections. This is one type of faults that should
also be identified. Identifying a weak connection is beneficial since it gives the accurate
location where a problem occurs. Based on the frequency of a faulty link, the sink can
always make the decision whether or not to exclude the involved nodes. Since it is
straightforward to detect/eliminate such links, we will focus on the report loss due to
security attacks in the rest of the paper.

2.3 The Design Objectives

For a sensor network with above settings and models, our design goal is to effectively
identify those compromised nodes and then exclude them from the network. The pro-
posed algorithm meets the following requirements.

– The sink has the ability to discriminate the false reports;
– The scheme can defend both true report dropping at the relay nodes and all types

of injection attacks;
– The algorithm can locate compromised nodes;
– The algorithm is effective with small overhead introduced to existing clustering and

routing algorithms.

3 The COOL Protocol

In this section we present the basic design of the COOL protocol. We first discuss
the incremental hash function, and then describe the high-level idea of malicious node
detection using a simple example. The details of the systematic protocol operations are
then discussed, followed by security analyses of the protocol.

3.1 The Incremental Hash Function

Fig. 1 illustrates the concept of the incremental hash [1]. It computes a cryptographic
hash value for a finite set of elements. Each element is first concatenated with a unique
id and then hashed by a standard cryptographic hash function e.g. MD5 or SHA [14].
Those intermediate hash values are then combined by a combining operator to get the
incremental hash value.

In this paper, we use the AdHASH introduced in [1] (abbreviated as AH(...)):

AHh
M(x1,x2, ..,xn) = ∑n

i=1 h(〈i〉.xi) mod M

where h is a standard cryptographic hash function and M is a very large integer value
with k bits. The 〈i〉 is an id assigned to each message such that the concatenation of them
is unique in the entire set. When we apply the AdHASH in our sensor network, each
report is assigned with the sensor’s ID and a local report sequence number. Therefore,
each report received by the forwarding cluster head is unique. As we can see, the AH
computed by the cluster head is independent of the order at which reports are received.
This incremental hash function has the following properties that are useful in our design.

324 Y. Zhang et al.

– Compression. It compresses inputs of larger size into k bits such that each incre-
mental hash value can be stored using small number of bits in each node.

– Incrementality. The AH of a larger set can be computed incrementally from the
AH of its subset. In particular, when a new item is inserted to the set, the new
AH can be computed from the old value and the h() value of the new item. i.e.
AHh

M(x1, ...,xn+1) = (AHh
M(x1, ..,xn)+ h(〈n + 1〉.xn+1)) mod M

– Efficiency. The computation of an AH hash value just needs several additions and
one modulation in addition to the standard hashing. Particularly, for the inser-
tion of a new item, the computation overhead is one addition and one modula-
tion only (the width of the h and AH is of the same order). This is important as
most hash values are to be maintained by resource constrained relay nodes in our
design.

– Proven collision-resilience. It is computationally infeasible to forge another set of
items that can result in a same hash value [1]. This gives us a solid security ground
for designing security enhancement schemes for sensor networks.

We selected h to be MD5 [14] and k to be 128 in the design. The selection of MD5
is independent and can be substituted if for example security is a concern [17, 16]. The
security of AdHASH requires that the number of reports should be greater than k [1].
This is generally not a restriction — the protocol can start after the network has been
warmed up.

<1>.x1 <2>.x2 … <n>.xn

h h … h

Hash Value

A standard
Cryptographic hash

func.

the combining operator

Fig. 1. An incremental hash function

a

b

s4

a

c

Sink: s0

d

b

X

e

s1

cs2

s3

X

faked X
(from s4)

d

e

Fig. 2. Locate compromised nodes using
incremental hashing

3.2 The Basic Design — A Simple Example

We next show how an incremental hash function can be applied to authenticate mes-
sages and in particular how to locate malicious nodes in a sensor network.

The design is based on an intuitive observation, i.e. the set of outgoing (forwarded)
messages of a well-behaved node equals the set of the incoming (received) and locally
generated/dropped messages. Unfortunately, these message sets are maintained on dif-
ferent sensor nodes across the network making it impractical to pass them around and
compare. Luckily with the incremental hash function, we only need to compare the
hash values of different sets while keeping sufficient confidence to claim that their hash
values match indicates that the message sets also match, i.e. Fig. 2(a).

Locating Compromised Sensor Nodes 325

No node being compromised
⇔

{msgout} = {msgin} ∪ {msglocal}
⇔ (with sufficient confidence)

AH({msgout}) = (AH({msgin}) + AH({msglocal})) mod M

To see how this principle is applied in our sensor network, let us look at a simple
example (Fig. 2). Here we show four cluster head sensors (s1-s4) and one sink (s0).
The messages are labeled in letter a,b etc. Suppose the compromised node s2 injects a
false message X and pretends that X is sent by s4 (in this section, we will also discuss
what if X is forged as if it is sent by s2). All messages are forwarded to the sink, but the
AH values are calculated and kept locally. Specifically, s4/s3 calculates outgoing AHs
for (a,b)/(d,e); s1 calculates two incoming AHs for (d,e) and (a,b,X) respectively,
and one outgoing AH for (a,b,c,d,e,X); s2, as a compromised node, can fake the
incoming or outgoing AHs for either (a,b) or (a,b,X). Note that s2 will not produce
another incoming AH for X as s2 tries to hide itself from being detected immediately
(X is “originated” from s4). As we will elaborate later that the AHs for locally generated
legitimate messages are computed at the sink.

The sink receives all messages including X . It can immediately identify that X is
false since s2 does not have the secret key of s4 and cannot generate the consistent
MAC for X . Next, the sink tries to locate the sender of X , i.e., the node that has been
compromised. At this time, the sink collects all the AHs. We can assume that they all
arrive correctly as simple endorsement using secret keys can assure this, and there are
fixed number of them for a given routing so that no AHs are dropped. The sink then
starts to check the “node consistency”, i.e., if

AH(incoming∪generated)= AH(outgoing∪dropped) (1)

holds for every node. Note that due to the additivity of the AH function, AH(incoming∪
generated) = (AH(incoming)+ AH(generated))mod M (and the same for the right
hand side). It is easy to see those conditions for s1, s3 and s4 satisfy. For s2, as we
mentioned, there are two options —AH(a,b) or AH(a,b,X)— for both the incoming
and outgoing AH values, forming four possibilities. If s2 choses the different values
for incoming and outgoing AHs, it would immediately be identified as compromised
as equality (1) would not satisfy. Let us assume s2 is intelligent enough not to expose
itself too easily, and thus chose a consistent incoming and outgoing AH pair. Thus, it
will pass at least the “node consistency” check.

Next the sink starts a “link consistency” check in which the AH of the outgoing mes-
sage on a link should equal the AH of the upstream incoming message. This can be
easily checked for links without the node s2. Let us assume that the s2’s incoming and
outgoing hashes are both AH(a,b,X). Then, as an outgoing AH, AH(a,b,X) is consis-
tent with one of the incoming AHs for s1. However, as an incoming AH, AH(a,b,X) is
inconsistent with the outgoing AH for s4 which is AH(a,b). In other words, s2 chose
that value to lie that s4 had given it a false incoming message. The sink now cannot
distinguish who is the real compromised node, but can at least conclude that one of
them is flawed. A new routing graph will be generated excluding both s4 and s2 after
detecting the link inconsistency.

326 Y. Zhang et al.

Notice that node s2 can destroy s1 in the same way by producing AH(a,b) for link
consistency checking, or even destroy all the adjacent nodes by forging an arbitrary
AH making none of the links consistent. It would be unnecessarily conservative if all
involved nodes in such a scenario are eliminated since the faults are due to only one evil
axial node. Instead, our protocol removes one link at a time, removing the axial node in
the first place and saving the other nodes being circumvented.

Let us discuss what if X is forged as if it is sent by s2. The sink can still identify
X as a false report since each legal one should have multiple sensing node MACs —
s2 cannot construct these sensing node MACs as it does not have their secret keys. Old
readings cannot be replayed since a timestamp is included in the reading. Notice that the
sink computes local AH values only from legitimate reports, that is, it excludes X from
generating the local AH value for s2. Hence, no matter which incoming or outgoing
AH values s2 chooses (either AH(a,b) or AH(a,b,X)), there bounds to be a node or
link inconsistency.

Before presenting the COOL protocol, we summarize the benefits from excluding
compromised nodes from the network.

– Communication energy savings. Once the compromised nodes have been excluded,
no false reports can be injected into the network. As a result, the energy drained
by forwarding false reports can be saved. This is different from en-route filtering
schemes in which false reports are still forwarded several hops ([18, 22]) before
being detected and dropped.

– Computation energy savings. In the basic COOL scheme, we do not perform en-
route packet authentication but rather only update incremental hash values. We can
afford less frequent authentication by excluding compromised nodes and form a
network with trustworthy nodes.

3.3 The COOL Protocol

The goal of the COOL protocol is straightforward: we securely collect AH hash values
from the network and send them to the sink; we drop the identified node if a node
inconsistency is found, and drop both nodes if an inconsistent link is found. The detailed
protocol contains the following phases.

(1) In the initialization phase, we assign a unique ID and a secret symmetric key to
each sensor node. The sensor nodes are deployed thereafter.

(2) In the routing graph discovery phase, we broadcast hello messages along the down-
stream routing path and collect the current routing graph from replies.

(3) In the report forwarding phase, we endorse each report by the secret key of the
sender and have it forward along the routing path. Each node maintains the AH
hash values for each of its incoming and outgoing links.

(4) In the hash value collection phase, the sink sends out a request to collect hash values
from the path where the false message belongs to.

(5) In the compromised node detection phase, the sink finds inconsistent nodes and
links using the incremental hash function AH.

(6) In the routing graph fix phase, the sink replaces the excluded cluster heads with
newly selected ones.

Locating Compromised Sensor Nodes 327

Next, we elaborate each of the phases with more details.

Phase 1: Initialization. Each sensor is assigned a unique integer ID and a secret
symmetric key before being deployed into the field. Both the ID and the key are known
to the sink. This is similar to [22] but we do not request any key sharing among sensor
nodes. The node ID occupies two bytes (16 bits) which can distinguish 64K sensors in
a network. Larger networks can adaptively adjust this bit width to accommodate their
needs. The key is used to generate a MAC by a sensing node for the sensing reading
sent to the source CH node, and by a source CH node for the report sent to the sink.
By checking the MACs using the secret keys, the sink can detect tampered reports or
injected false reports from compromised source CH or relay CH nodes.

Phase 2: Routing graph discovery. The discovery starts at the beginning of an
epoch, e.g. cluster heads are reselected and a new routing graph is constructed accord-
ing to [2]. The sink forms an entire routing graph through collecting information from
distributed cluster heads. It sends out a timestamped “hello” message to all its adja-
cent cluster heads who then forward this message downstream until it reaches the leaf
nodes. All the nodes then respond with their node IDs as well as their adjacent node
IDs. For those messages, a MAC using the local secret key is also attached to ensure
their integrity.

Each node only collect replies from its downstream nodes. To prevent malicious
report dropping, the reply is collected in order — each node first collects the replies
from all its children nodes and then sends out its own reply. The sink finally assembles
the complete routing graph from all replies.

To ensure “hello” messages are not abused, a broadcast authentication [13] is applied.
In addition, a selected cluster head may try to find a different routing path if it does not
receive a “hello” message within a certain time interval after its election to avoid being
isolated from the network.

Phase 3: Report endorsement and forwarding. Fig. 3 illustrates the report genera-
tion, endorsement and forwarding in the network. We also list the related authentication
actions and discuss why injected false reports and dropped legitimate reports can be
detected.

To check equation 1, each node maintains its incoming AHs and outgoing AHs. The
local AH (generated from locally generated reports) is computed at the sink rather than
the individual node. This is because false reports should not be used to compute the
local AH (otherwise there is no inconsistency) and the sink knows what those false
reports are. The sink generates a local AH for each node using only the legitimate
reports whose source IDs are that node, discarding all false reports discriminated. For
example, a node m may forge a false report using its own ID as the source ID. This
false report can be identified by the sink since it does not have enough legal sensing
node MACs. After identifying X as a false report, the sink will exclude it from updating
the local AH of m, which creates a node inconsistency if node m updated the false report
into its outgoing AH, or a link inconsistency otherwise.

The drop AH (generated from locally dropped reports) is not used in the basic
scheme i.e. we assume a non-compromised node does not drop reports intentionally.

328 Y. Zhang et al.

Sensing node Cluster head (CH) node
Data aggregation Report relay

Report
gen-
era-
tion
and
en-
dorse-
ment

An event is detected
by at least M sur-
rounding sensing
nodes. Each of
them e.g. m sends
the sensing reading
and the MAC (gen-
erated using m’s
secret key) to C CH
nodes.

By taking the majority of re-
ceived readings, the source CH
constructs a report containing
the sensing value and received
MACs. It also appends its ID
and a unique sequence number.
A unique MAC is generated for
the report using its own secret
key. Both the report and the MAC
are forwarded along a multi-hop
route to the sink.

Since the keys to attached MACs
are only known to the sink, re-
lay nodes do not perform any en-
route checks in the basic scheme.
A relay node receives the report
from one downstream link and
forwards it along one upstream
link.

Auth-
enti-
cation

An AH value is
maintained for the
outgoing link of
m. The value is
updated with the
sensing reading and
the MAC each time
when m sends them
out.

A source CH maintains one out-
going AH and in the case it is also
a relay node, it maintains sev-
eral AH values with one for each
of its incoming/outgoing links re-
spectively. After sending the re-
port generated by itself, it up-
dates the outgoing AH value with
the report and the MAC.

A relay CH node maintains a dif-
ferent AH value for each of its
incoming and outgoing links re-
spectively. For the forwarded re-
port, it updates two AH values
— the incoming AH value for
the link from which the report
is received and the outgoing AH
value for the outgoing link.

Detect-
ing
injec-
tion
attack

A source CH should
receive readings
from at least M
sensing nodes. If
some (< M/2) are
compromised and
send back false
readings, these
readings will not
affect the report
generation at the
CH node.

A compromised source CH may
forge false reports. It cannot ac-
cumulate M/2 legal MACs for
the false reading. A report with
such a value can be detected
at the sink. Old readings and
MACs cannot be replayed since
the sensing reading has a times-
tamp indicating when the event
happens [18]. Different sensing
node MACs are expected even
for the same sensing reading but
at a different time.

If a relay node forges a report
with the source node as itself, the
false report can be detected as
the data aggregation case. If a re-
lay node forges a report with the
source node id as one of its down-
stream nodes, it does not have the
secret key of the faked sender to
generate a matching MAC. The
report will be detected by the
sink. The compromised node is
then located using our algorithm.

Detect-
ing
drop-
ping
attack

Dropping readings
at some (< M/2)
compromised sens-
ing nodes does not
affect the genera-
tion of the legit-
imate report at a
source CH node.

[Discussion only: not the focus
in the paper] We can elect more
than one CH to perform data ag-
gregation. If some but not ma-
jority of them refuse to gener-
ate reports from received read-
ings, the sink can still receive the
legitimate report and thus detect
packet dropping in the network.
In the rest of the paper we assume
that for each event one CH node
is elected for data aggregation.

If a relay node drops some re-
ports, the sink can check the se-
quence number from a source
CH and reveal the dropping from
non-contiguous numbers. If the
compromised relay node chooses
to drop all following reports from
a CH, the sink can periodically
collects all AH values to detect
the dropping attack.

Fig. 3. Actions taken by different nodes

Locating Compromised Sensor Nodes 329

A report is dropped only by compromised nodes who always try to conceal themselves
as much as possible. Consequently, the AHs for dropped reports are never created.

Either false report injection or legitimate report dropping creates AH inconsistency
for some nodes or links. The difficulty is how to expose the inconsistency. The technique
presented in phase 4 handles this problem.

Phase 4: Hash value collection. Hash value collection is triggered by any of the
following two conditions: (i) the sink has detected one or multiple false reports; (ii)
a preset timer has elapsed. The former is to detect injected false report attack while
the latter is to detect report dropping attack. In the first case, AH values are collected
only from the path where the erroneous report belongs to. Such a path can be identified
correctly as we explained earlier that a spoofed report can reach the sink only if it
is generated from a downstream node. Collecting the hash values along a path greatly
reduces the number of messages introduced to the network. In the second case, however,
all the hash values in the network are queried as the sink has no clue of where reports
could be dropped. Next we show how to collect AHs from the erroneous path. It is
trivial to extend the scheme to all nodes.

To collect the hash values, the sink sends out an inquiry message onto the erroneous
path. For example, in Fig. 2, to detect the compromised node on path s4-s2-s1-s0, we
only collect hash values on this path but not from the link s1-s3 (but in phase 5 the sink
still needs to compute the AH values for these reports injecting to the path from s3). We
must be very careful in this collection process as the forwarded AHs may be altered by
compromised nodes as well. Thus, we treat all the AH values as normal data reports
and send them upstream starting from the leaf cluster nodes. The only constraint is:
the outgoing AH on a link does not update the incoming AH on the same link since
this would result in link inconsistency and make the hash collection process and later
checking too convoluted. As a result, the node consistency checking would be adjusted
to accommodate this exception. We will give formal derivation later.

Phase 5: Identify compromised nodes. The sink performs two types of tests: the
node consistency and the link consistency test. The first is to test the matching of in-
coming and outgoing AH values for each node on the erroneous paths. The AHs for
the incoming links not on erroneous paths, e.g, the s1-s3 path in our example, and for
locally generated reports are calculated by the sink directly; other AHs are from the
returned AH reports. If there is a mismatch, the node is tagged as a compromised node.
For example, in Fig. 2, the sink tests s1 using

(AH2→1︸ ︷︷ ︸
collected

+AH(c)+ AH(d,e)︸ ︷︷ ︸
calculated by the sink

) mod M =?AH1→0︸ ︷︷ ︸
collected

The second type is to test if the outgoing and incoming AHs are consistent on all
links. Each hash value should match with the one reported by the other end of the link.
If any inconsistency is found, the sink tags both nodes as problematic as it is now hard
to flag one node with 100% confidence. e.g. we test

(AH1→0︸ ︷︷ ︸
collected

=? AH0←1︸ ︷︷ ︸
computed at the sink

) and (AH1→2︸ ︷︷ ︸
collected

=?AH2←1︸ ︷︷ ︸
collected

)

330 Y. Zhang et al.

Phase 6: Excluding compromised nodes and routing graph fix. Once any nodes
are tagged as suspicious, they should be excluded from the sensor network immediately.
To do so, the sink broadcasts the IDs of the tagged nodes across the network, particu-
larly to those nodes around the compromised ones. This can be done using broadcast
authentication algorithms e.g. μTESLA [13]. This packet also initiates the selection of
new cluster heads to replace the excluded ones, and then incorporates new heads into the
routing graph. The newly joined nodes send back their IDs to the sink to check if they
are allowed to join the network. The sink acknowledges back with the most up-to-date
AH values for the new cluster heads.

3.4 The Security Analyses

In this section we give the major security analysis results. Their proof details can be
found in [20].

Theorem 1. Any injection attacks can be detected by the COOL protocol.

Corollary 1. The report dropping attack at the relay nodes can also be detected by the
COOL protocol.

Corollary 2. If there are m compromised nodes, our scheme removes at most 2m nodes
including those m compromised nodes.

Theorem 2. The AH value collection process is secure: correct AH values can be re-
trieved from the received AH report; no AH value may be compromised or dropped
without being detected.

4 Optimizations

In this section, we discussion two optimizations to the basic design.

4.1 Drop-COOL: Combining En-route Filtering Schemes

In the basic COOL protocol false reports are forwarded all the way to the sink. While
the sink can detect these false reports, it is just too late since the energy has already been
consumed along the routing paths. It may become even worse if a lot of false reports are
injected before the COOL protocol is activated to collect AH values. We therefore propose
Drop-COOL, a hybrid scheme that integrates an en-routing filtering scheme [18, 22].

The Drop-COOL scheme works as follows. The system initializes according to both
the basic COOL and the SEF [18] protocols. In addition, each node is assigned an in-
teger threshold which is the maximal number of false reports that the node can forward
in one round. In the packet forwarding phase, detected false reports up to this thresh-
old are forwarded while following ones are discarded. An additional AH hash value
— drop hash value, is maintained on each node that drops false reports. It is updated
incrementally each time when a false report is detected and dropped. To improve the ef-
fectiveness of Drop-COOL, a node may try to forward these false reports with different
source CH IDs, which can trigger collecting and detecting more paths and thus expose
more compromised nodes in one round.

Locating Compromised Sensor Nodes 331

The Drop-COOL protocol combines the advantages of both COOL and SEF proto-
cols. It detects and excludes compromised nodes while saves the energy from routing
less false reports. The energy spent to route a small number of false reports is small
compared to the savings after excluding compromised nodes. It removes the worst case
overhead that the basic COOL protocol has on routing false reports.

We next illustrate that the Drop-COOL does not affect the ability to locate com-
promised nodes although random false reports are dropped in the middle. Due to the
introduction of the drop hash value, we have for a well-behaved node in the routing
graph, the set of forwarded and dropped messages should be the same as the set of
received and locally generated messages. By collecting and comparing the AH hash
values of these message sets, we can adjust the node test to

(AH(MESSAGE f orwarded + AH(MESSAGEdropped) mod M = (AH(MESSAGEreceived

+ AH(MESSAGElocal) mode M

The link test is unaffected and an inconsistent node or link test result exposes at least
one compromised node.

4.2 Hi-COOL: A Hierarchical Authentication Scheme

To further reduce the overhead, we propose Hi-COOL, a hierarchical approach which
groups multiple adjacent nodes in the routing graph as a super node. We only collect
hash values with respect to this super node, and refine the collection if a super node is
found problematic.

The Hi-COOL scheme works as follows. First the sink picks up an integer number
l and forwards this integer with the “hello” message (for collecting the routing graph).
The integer value is decremented for each hop downstream along the routing path and
reset after reaching zero. A node sets itself to be the head of a super node if it receives
l and be the leaf of a super node if it receives zero. If a node receives two values from
two upstream nodes, it picks up the smallest one. In Fig. 5 nodes s1 to s5 form a super
node in which s2, s4, and s5 are leaf nodes while s1 is the head node. In the phase
to collect the AdHASH values, only the incoming hash values to this super node and
the outgoing hash values from this super node are collected. For example hash values
AH23, AH32 are omitted. The link test at the super node level is processed the same as
the basic COOL — a failed link test removes two involved nodes. However an incon-
sistent (super) node test results in one additional round of hash value collection such
that we can determine the exact location of the compromised node within the super
node. In the second round, we only collect hash values from these inconsistent super
nodes.

To ensure high level security, in the routing graph collection phase, each node should
reply with its received integer number. In addition, the head of each super node may
need to collect all internal hash values. More details can be found in [20].

5 Limitations of the COOL Protocols

The limitations of the COOL protocol are: (1) It is possible that a subregion is isolated
from the sink. Without having the information about a cluster head in the routing graph

332 Y. Zhang et al.

DM (dropped
Messages)

FM (forwarded
messages)

RM (received
Messages)

S3 S0: Sink

LM (messages
from S3)

(AH({RM}) + AH({LM})) mod M = (AH({FM}) + AH({DM})) mod M

Fig. 4. Reducing routing energy through combined en-
route filtering

sink
super

node 1

super
node 2s1s2

s4
s5s3

Fig. 5. Hierarchical authentication
with super nodes

collection phase, the sink cannot identify its status and decide if it is compromised or
not. (2) Signal blocking or collision is another source of attack, if normal communica-
tion cannot be ensured between two nodes. Both of two involved nodes are excluded
while the nodes themselves may not be hacked.

6 Performance Evaluation

6.1 Settings

To evaluate the effectiveness of the proposed COOL protocols, we simulate a sensor
network with 450 cluster head nodes uniformly distributed in a field of 400x400m2

area. Each sensor node is Mica2 running TinyOS [7] operating at 19.2Kbps data rate,
with battery voltage 3V. It takes 16.25/12.5 μJ to transmit/receive a byte [18]. This will
be referred as the baseline setting in the rest of the paper. The sink is located at (20,20)
and the communication range of each node is 40m. These sensor nodes form a multihop
routing network using the directed diffusion routing algorithm [2]. A normal packet is
of 24 bytes long, a MAC is of 8 bytes (64 bits), and an incremental hash value is of 16
bytes (128 bits). The evaluation is based on false report injection attacks. All results are
averaged from 100 different runs.

6.2 The Overhead

The protocol overhead comes from four sources: (i) AH hash value computation over-
head; (ii) hash value collection overhead; (iii) routing graph discovery overhead; and
(iv) routing false reports overhead. Next we study them in more detail.

(i) Computation overhead. The computation overhead is for updating incremental
hash values at each sensor node. As the incremental hash is maintained per link based,
a received report updates two AH values on the relay node. The updates are done in-
crementally with the overhead mainly from computing the standard hashing MD5() on
the input report. MD5() intermediate result is used to update both AH values. Our sim-
ulation results show that the incremental hash computation overhead is about twice of
the overhead of one RC5 [14] computation (used in [18, 7]), that is, 30μJ per node. It is
small and thus omitted in the rest of the discussion.

(ii) Hash value collection overhead. The main overhead of the COOL protocol comes
from collecting hash values across the network. We first induce a theoretical formula

Locating Compromised Sensor Nodes 333

about this overhead. Assume the routing graph is a b-nary balanced routing tree with
height O(logb(N)) where N is the total number of nodes in the graph. Since the hash
value collection is per problematic routing path based, the number of node-to-node
transmission T for one path is,

T = (1+2+3+ ...+H) · (2 · k +M) =
H · (H +1)

2
· (2 · k +M) (2)

H = logb(N)

where H is the height of the b-nary tree, N is total number of sensor in the field, k is the
length of the incremental hash value, and M is the length of the MAC value. From the
equation, T is in the range of O((logN)2). Since we need to exclude all m compromised
nodes, we may need to collect from m disjoint paths or detect in m rounds. Therefore
the worst case hash value collection cost is O(m·(logN)2).

We next present the average number of rounds to exclude all compromised nodes in
Fig. 6. In the experiment, false reports are randomly injected from the compromised
nodes and we start a new detection round if 30 false reports are received. As expected
it requires more rounds when there are a larger number of compromised nodes. On
average we can detect and exclude more than 10 nodes in one round when more than
30 nodes are compromised.

Fig. 7 illustrates the total energy overhead for collecting hash values in multiple
rounds. From equation 3, the AH collection cost is proportional to the number of com-
promised nodes and to the square of the tree height, these two factors are used as the x
and y axes respectively. To change the tree height, we deploy in a different square field
with the same node density, e.g. 1000 nodes are distributed in a field of 600x600 m2.
The tree height varies from 9.2 to 28.5.

The trend confirms what we observed from equation 3. For example, the energy over-
head is about 0.87J with 20 compromised nodes and the tree height 13.6. It increases
about 2 times to 1.56J if the number of compromised nodes increases 2 times to 40; It
increases about 4 times to 3.89J if the tree height increases about 2 times to 28.4.

We also present the results using the Hi-COOL scheme. It effectively reduces the
hash value collection cost. For example, when 20 nodes are compromised, the Hi-
COOL overhead is 0.99J or 61% of the baseline setting (1.61J).

In collecting the results, we perform a simple optimization. For the two nodes of
each link, they may report the same AH() value e.g. both nodes are healthy nodes. We
therefore only need to transmit one AH hash value with two MACs to the sink.

(iii) Routing graph overhead. Fig. 7 also illustrates the energy overhead to collect
the routing graph. Compared to the hash value collection overhead, it is usually small
ranging from 0.5J when the tree height is 9.2 to 2.0J when the tree height is 28.5.

(iv) The overhead to route false reports. Fig. 8 illustrates the wasted routing energy in
forwarding false reports. As we discussed, the sink has the option to start the hash value
collection phase after accumulating a number of false reports. Clearly if we increase
the threshold, the routing overhead increases as well. The benefit of accumulating a
reasonable larger number of false reports is that we increase the chance that these false
reports are from more problematic paths. They can then detect multiple paths and reduce
the total number of rounds. For example, if we detect after receiving one false report,
we may need m rounds to exclude all m compromised nodes; on the other hand, we

334 Y. Zhang et al.

number of compromised nodes
10 20 30 40 50 60 70 80

Rounds 2.1 2.4 3.5 4.0 4.5 5.3 6.1 6.5

Fig. 6. The number of rounds to exclude all
compromised nodes

200*200(H=9.2)

300*300(H=13.6)

400*400(H=18.4)

500*500(H=23.5)

600*600(H=28.5)

10
20

30
40

50
60

70
80

2

4

6

8

10

12

Area and Tree Height

Error Node Number

E
ne

rg
y

(J
)

Base COOL

HI−COOL

Routing Graph

Fig. 7. Hash value collection overhead

may need only m/2 round if we set the threshold to be 2 and these two false reports
are always from 2 different compromised nodes on different routing paths. However,
our experiments show that the difference is not significant (with one or two rounds
difference). In addition, if the threshold is set larger than 30, the number of rounds
does not change much but the wasted energy increases drastically. Therefore we set the
threshold to 30 in the paper.

6.3 The Savings

We next study the benefits from applying COOL protocols and compare it with an
en-route false report filtering scheme [18]. As discussed, the savings comes from two
sources: the communication savings and the computation savings. The latter is omitted
as it is usual very small.

10
20

30
40

50
60

70
80

10
20

30
40

50
60

70
80

0

1

2

3

4

5

Error Node NumberAccumulated Error Pkg Number

R
ou

tin
g

E
ne

rg
y

(J
)

Fig. 8. The overhead to route false reports

10
20

30
40

50
60

70
80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

Error Node NumberAccumulated Error Pkg Number

T
ra

ns
m

itt
ed

 E
rr

or
 P

kg
 N

um
be

r
P

er
 N

od
e

Base COOL

Hi−COOL

Fig. 9. Comparing the overhead to en-route fil-
tering schemes

Let us compare the overhead from different protocols. The overhead in the COOL
protocol contains the energy to collect hash values, to discover routing graph, and to
route false reports to the sink. The overhead in the SEF protocol is from routing false

Locating Compromised Sensor Nodes 335

reports before detecting and dropping them. The exact number of hops varies with the
key sharing scheme and the number of compromised nodes. For comparison purpose,
we assume on average each false report is dropped after 5 hops in the paper.

In Figure 9, x and y axes are the detection trigger threshold and the number of com-
promised nodes in the network respectively. Each point in the figure is a number of
false reports averaged to each compromised node. It is a break even point at which the
overhead to route and drop this amount of false reports in SEF equals the overhead in
the COOL protocol. For example, with 20 compromised nodes and trigger threshold set
at 30, the number is 25 reports meanings that, if SEF routes and drops 500 reports (=25
reports/node×20node) in 5 hops, the energy it wastes is the same as all of the overhead
in the COOL protocol.

In addition, consider that the scheme needs to spend 3.3 rounds and a round is trig-
gered at 30 false reports, there are another 100 injected false reports (=30 reports/round
× 3.3 rounds). Therefore the COOL protocol outperforms the SEF if each compro-
mised node injects more than 30 reports (=25 reports/node + 100 reports/20 nodes).
This is very small. For example, as suggested in [21], a compromised node may in-
ject a faked report every 10 seconds. At this rate, we outperform SEF in 300 sec-
onds or 5 minutes. With the Hi-COOL optimization, it is further reduced to 4 min-
utes, a 20% reduction. Of course, depending on the pattern that the false reports are
injected, this number may vary but the results show that the COOL overhead is very
modest.

7 Related Work

Extensive research has been done on sensor network security. Karlof et al. [9] identified
several attacks for a multihop routing based sensor network.

Marti et al. proposed to monitor each node by a neighboring watchdog node. Wang et
al. [15] improves the scheme through the collaborative decision of neighbors around a
suspicious node. Both schemes have limitations [12] as the watchdog node may be com-
promised as well and multiple compromised nodes can collude to attack. The schemes
to locate compromised nodes share some similarity with the approaches to detect faults
in sensor networks [8, 11, 4]. However the significant difference lies in that a faulty
node always returns a wrong report while a compromised node is smarter e.g. it may
inject false reports but communicate normally with the sink.

En-route false data filtering schemes [18, 22] are proposed to actively detect and
drop false reports early in the routing minimizing the impact of false report. In these
schemes, each data report is attached with several MACs generated from different keys
that are distributed probabilistically [18], set up before routing [22], or refreshed peri-
odically [21]. However, those schemes also have limitations as compromised nodes are
left undetected, which causes severe consequences in the long run.

Algorithms have been proposed to securely manage keys in sensor network. Es-
chenauer and Gligor [5] proposed a key pre-distribution scheme in which each sensor
randomly selects a subset of all keys before deployment; Protocols were then devel-
oped for shared key discovery and path-key establishment. Improvements were later
proposed for enhancing security [3] and achieving higher probability of key establish-
ment [10]. Zhang and Cao [21] proposed to represent keys as group key polynomials

336 Y. Zhang et al.

whose shares are distributed around neighbors. New keys can be re-generated collabo-
ratively by neighbors from these shares achieving better security and resilience.

8 Conclusion

In this paper we introduced the COOL protocol and its optimizations based on the
provably secure incremental hash function AdHASH to detect and locate compromised
nodes effectively. We first discussed how to securely maintain and collect AdHASH val-
ues on sensor nodes, and then use these values to perform node and link tests to expose
the compromised nodes. Our experimental results showed that the COOL protocols are
very effective and introduce very small overhead to the network.

Acknowledgment

This work is partially supported by the U.S. National Science Foundation under grants
CCF CAREER 0447934 and CCF 0430021.

References

1. M. Bellare and D. Micciancio, “A New Paradigm for Collision-free Hashing: Incrementality
at reduced cost,” In Eurocrypt’97, LNCS 1233, 1997.

2. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: a Scalable and Robust
Communication in Wireless Sensor Networks,” In 5th IEEE/ACM Mobicom, pages 174-185,
1999.

3. H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor Net-
works,” In IEEE Symposium on Security and Privacy”, 2003.

4. P. Chew and K. Marzullo, “Masking Failures of Multidimensional Sensors,” In Proc. of the
10th Symposium on Reliable Distributed Systems, pages 32-41, 1991.

5. L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for Distributed Sensor Net-
works,” In Proc. of the 9th ACM Conference on Computer and Communication Security,
pages 41-47, November 2002.

6. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An Application-Specific Proto-
col Architecture for Wireless Microsensor Networks,” IEEE Transactions on Wireless Com-
munications, vol 1:4, pages 660-670, 2002.

7. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System Architecture Directions
for Networked Sensors,” In ASPLOS IX, 2000.

8. C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Diagnosis of Sensor Networks,” In IEEE
international Conference on Communications, June 2001.

9. C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and Coun-
termeasures,” In IEEE international workshop on Sensor Network Protocols and Applica-
tions, pages 113-127, 2003.

10. D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” In Proc.
ACM CCS, 2003.

11. K. Marzullo, “Tolerating Failures of Continuous-valued Sensors,” In ACM Transactions on
Computer Systems, November 1990.

12. S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad
Hoc Networks,”, In MOBICOM, 2000.

Locating Compromised Sensor Nodes 337

13. A. Perrig, R. Szewczyk, V. Wen, D.E. Culler, and J.D. Tygar, “SPINS: security protocols for
sensor networks,” In Proc. of Seventh Annual International Conference on Mobile Computing
and Networks, 2001.

14. B. Schneier, “Applied Cryptography,” 2nd Edition, John Wiley & Sons, 1996.
15. G. Wang, W. Zhang, G. Cao, and T.L. Porta, “On Supporting Distributed Collaboration in

Sensor Networks,” In IEEE MILCOM, 2003.
16. X. Wang, Y. Yin, H. Yu, “Finding Collisions in the Full SHA-1 Collision Search Attacks on

SHA1,” In Crypto’05, 2005.
17. X. Wang, D. Feng, X. Lai, H. Yu, “Collisions for Some Hash Functions MD4, MD5, HAVAL-

128, RIPEMD,” In Crypto’04, 2004.
18. F. Ye, H. Luo, S. Lu and L. Zhang, “Statistical En-route Detection and Filtering of Injected

False Data in Sensor Networks,” In IEEE INFOCOM 2004, 2004.
19. O. Younis, and S. Fahmy, “Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid,

Energy-Efficient Approach,” In INFOCOM, 2004.
20. Y. Zhang, J. Yang, L. Jin, and W. Li, “Locating Compromised Sensor Nodes through Incre-

mental Hashing Authentication,” Technical Report, University of Pittsburgh, 2006.
21. W. Zhang and G. Cao, “Group Rekeying for Filtering False Data in Sensor Networks: A

Predistribution and Local Collaboration-Based Approach,” In INFOCOM, 2005.
22. S. Zhu, S. Setia, S. Jajodia, P. Ning, “An Interleaved Hop-by-Hop Authentication Scheme for

Filtering of Injected False Data in Sensor Networks,” In Proceedings of IEEE Symposium on
Security and Privacy, Oakland, California, May 2004.

COTA: A Robust Multi-hop Localization
Scheme in Wireless Sensor Networks

Yawen Wei, Zhen Yu, and Yong Guan

Department of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011, USA

{weiyawen, yuzhen, yguan}@iastate.edu

Abstract. In wireless sensor networks, multi-hop localization schemes
are very vulnerable to various attacks such as wormholes and range modi-
fication attacks. In this paper, we propose a robust multi-hop localization
scheme, namely COTA, to mitigate various attacks in wireless sensor net-
works. In this scheme, each localized sensor generates a COnfidence TAg
to quantify the quality of its estimated location and broadcasts both the
confidence tag and the estimated location in reference messages. When
receiving sufficient number of references, an unlocalized sensor filters out
bad references and weighs the remaining ones according to their tags.
Once location determination is done, the sensor generates its own confi-
dence tag from the indicator of its localization error. By properly setting
the filtering metrics and computing the confidence tags, COTA can pre-
vent the proliferation of location errors and achieves accurate location
estimations and high localized percentage for sensor networks. To our
knowledge, ours is the first work to address the security-aware multi-hop
localization problem. We finally present security analysis and simulations
to evaluate the effectiveness of COTA.

1 Introduction

Localization in wireless sensor network is very important for many applications
such as environment monitoring, target tracking, and geographic routing. The
traditional localization approaches require to equip sensor nodes with expensive
GPS devices, which are not affordable in most cases. Hence, many localization
schemes [1], [3], [7], [10], [11], [15], [18], [19], [20], [21], [27] assume that there
exists some special nodes called anchors who know their positions through GPS
devices or manual configuration. These schemes can be classified into one-hop
and multi-hop ones. In one-hop schemes, anchor density is high, thus each sen-
sor can use anchors’ positions as location references to localize. In Multi-hop
schemes, anchor density is low and many sensors have to determine their loca-
tions depending on other localized sensors.

Multi-hop localization schemes have the following advantages: (1) they are
very economical, especially for the large-scale outdoor networks, because they
require very small number of anchors; (2) they can be used in special environment
such as indoor fire-fighting system [8], because neither GPS devices nor manual

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 338–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

COTA: A Robust Multi-hop Localization Scheme 339

configuration is feasible in such situations. However, the multi-hop schemes are
more vulnerable than the one-hop ones because they rely on location propagation
of sensor nodes, thus a small number of wrongly localized sensors will affect the
localization of a large number of sensors. Current secure localization schemes
mainly [4], [15], [16], [17] focus on securing one-hop localization, and no research
has been done about security-aware multi-hop localization schemes.

In this paper we propose a robust multi-hop localization scheme COTA.
In COTA, each localized sensor bears a confidence tag that indicates the ac-
curacy of its estimated position. The confidence tag and the estimated loca-
tion will be combined and sent as location references to other unlocalized sen-
sors, who will filter out bad references and weigh the remaining ones to com-
pute optimal solutions for their locations. Finally, they calculate some indi-
cators to estimate their localization errors and translate the errors to proper
confidence tags using the tag-generation function. COTA is a complete tag-
based localization system and consists of two main phases: the localization
phase and the tag-generation phase. We did comprehensive experiments and
prove that COTA can achieve low localization errors and high localized per-
centage in sensor networks. In non-adversary scenarios, COTA can also ef-
fectively mitigate the error accumulation problem caused by noisy range
measurements.

The rest of this paper is organized as follows. The next section describes the
related work. Section 3 provides the system model and threat model. Section 4
describes the COTA scheme in details. Section 5 is the security analysis. Section
6 presents our simulation results. Finally, we conclude and lay out some future
work in Section 7.

2 Related Work

A large number of localization schemes have been proposed for sensor net-
work. Most of them assume that some special sensor nodes called anchors know
their positions via GPS or manual configuration, while other sensors use an-
chors’ positions and the connectivity/distance information between sensors to
localize. We can classify them into one-hop scheme and multi-hope scheme
(Table 1):

– Definition 1 (one-hop scheme). In one-hop schemes, anchors are densely
deployed and each sensor can receive enough number of beacon messages
from anchors to localize.

– Definition 2 (multi-hop scheme). In multi-hop schemes, some sensors
cannot receive enough number of or even no beacon messages from anchors,
such that they refer to the locations of other localized sensors to localize.

Because localization in sensor network is vulnerable to many malicious at-
tacks, some secure localization schemes have been proposed. To defend against
wormhole attacks [13], L. Hu et al. proposed a scheme [12] in which each sensor
is equipped with directional antennas, thus the messages from innocent neigh-
boring nodes should be sent and received in opposite antenna sectors but the

340 Y. Wei, Z. Yu, and Y. Guan

Table 1. Classification of Localization Schemes

One-hop Scheme Multi-hop Scheme
Range- RADAR[1] APS-Euclidean [20], AHLos [22]
based Active Bat [10] Trilateration Graph[7], Quad [18]
Range- Active Badge [27], Centroid [3] DV-hop [21]

free APIT [11], Serloc[15] Amorphous [19]

wormholed messages do not have this property in most cases. Lazos et al. pro-
posed SeRLoc [15], in which anchors send beacon messages through directional
antennas, and sensors can detect wormholes when messages from far-apart an-
chors or from different sectors of one anchor are received simultaneously. Capkun
and Hubaux proposed verifiable multilateration to verify sensors’ locations that
are inside the verifier triangles. Their work is based on the distance-bounding
protocol and requires RF signal to obtain the upper bounds of the distances be-
tween sensors and verifiers. Liu [17] suggested a greedy algorithm to find out the
maximum subset of consistent references by checking if the mean square error
drops below a reasonable threshold. Zhang [16] introduced Least Median Square
(LMS) estimation to improve the filtering capacity, especially when the outliers
take up a large percentage (e.g. 50%) among all the references.

3 System Model and Threat Model

3.1 System Model

In COTA system, there are a small number of anchors who broadcast their loca-
tions in beacon messages. The sensors who can directly receive sufficient beacon
messages localize themselves and serve as references points to other sensors.
We assume that anchors are densely deployed within a local area, thus some
sensors can firstly localize themselves and the location propagation process can
get started. Current propagation techniques include DV-based method [19], [21],
APS-Euclidean method [20], and Distributed Trilateration method [7], [22]. We
use distributed trilateration as the location propagation method of COTA in this
paper, leaving the study of other methods to our future work. We assume the
communications between sensors are bidirectional and are protected by pairwise
secret keys, thus the compromised nodes can not impersonate others and send
multiple wrong position messages. The key distribution can be achieved through
probabilistic or online algorithms.

3.2 Threat Model

Localization in sensor network is subject to various attacks [4], [13], [16], includ-
ing cheating report, wormhole, range reduction, and range enlargement attacks.
The attackers can be classified into (1) internal attackers who compromise sen-
sors’ key materials and can authenticate themselves to other nodes, and (2)
external attackers who do not compromise nodes and cannot authenticate them-
selves. Traditional security mechanisms such as encryption and authentication
are not sufficient to defend against external attackers.

COTA: A Robust Multi-hop Localization Scheme 341

– Cheating reports: Attackers send wrong position messages to other sensors.
– Wormholes: Attackers record the position messages received at one location,

transmit and replay them at another location.
– Range enlargement: Attackers jam the signals between sensors and reply

them at a later time if using Time of Arrival (TOA) for ranging, or they
attenuate the signal strength if using the signal strength for ranging.

– Range reduction: Attackers speedup the signals if using Time of Arrival
(TOA) for ranging, or they jam and replay the signal with higher power if
using signal strength for ranging.

The cheating reports can only be sent by internal attackers; wormholes are
generally launched by external attackers; the range modifications can be per-
formed by either internal or external attackers. According to their impacts on
localization, we consider them as false position and false range attacks (as shown
in Table. 2). Note that wormhole attack belong to false position attack, since the
end-point transmitter of the wormhole replays the location of the source-point
node. All these attacks can produce false position references and mislead sen-
sors to estimate wrong locations. COTA is designed to defend against all above
attacks, and can achieve satisfiable localization performance for sensor networks.

Table 2. Classification of Threat Models

False Position False Range
Cheating Reports Wormholes Range Enlargement Range Reduction

Internal • • •
Attacker
External • • •
Attacker

4 Proposed Robust Multi-hop Localization Scheme

4.1 Overview

In this paper, we propose a robust multi-hop localization scheme COTA. As
shown in Fig. 1, during the localization process, each sensor stays in one of the
states including waiting state, localizing state, and transmitting state. A sensor
initially stays in waiting state and receives reference messages from its neighbors.
As soon as the adequate number (which is three if using trilateration technique)
of references are received, it enters the localizing state and performs COTA
scheme. COTA consists of a localization phase and a tag-generation phase. In
the first phase, a sensor filters out bad references according to the absolute and
relative metrics, then checks if the remaining references are more than the mini-
mum number. If no, it goes back to waiting state for more references; otherwise,
it calculates its position through weighed optimization mechanism. In the sec-
ond phase, the sensor firstly computes the statistical or geographical indictors,
then derives its localization error and translates it into a confidence tag. Finally
the sensor enters transmitting state, combines its estimated position and the
confidence tag into a reference message and sends it to others.

342 Y. Wei, Z. Yu, and Y. Guan

Reference Filtering
(Absolute/Relative Metric)

Weighed
Optimization

Estimated Error

Tag-generation
Function

(1) Localization Phase

(2) Tag-Generation Phase

Can Localize?

Localizing State (COTA Scheme)

Waiting State

Transmitting State

Y

N

Received References

Reference Message

Location Error Estimation
(Stat/Geog Indicator) Acceptable Refs

Estimated
Position Confidence Tag

Fig. 1. Sensor States & COTA Scheme

4.2 Confidence Tag

Confidence Tag indicates the reliability of a sensor’s estimated position, thus we
provide the following definitions.

Definition 3 (Tag-Generation Function). Let pe and pt be a sensor’s esti-
mated position and true position, thus e = |pe − pt| is its localization error. We
call function t = ft(e) the tag-generation function, and call t the confidence tag
of the sensor. t ≤ T is a nonnegative integer, where T is the highest confidence
tag, e.g., T = 8.

Definition 4 (Inverse-tag Function). Let e and t be the localization error
and the confidence tag of a sensor, and ê is an upper bound of e, we call function
ê = fe(t) the inverse-tag function.

We note that function fe is not the exact inverse function of ft, because instead
of returning a sensor’s localization error e from its tag t, fe returns an upper
bound ê. The coefficients of these functions can be computed (section 4.4) and
stored in sensors memories, and they are used through COTA scheme.

4.3 Localization Phase

The localization phase of COTA consists of two function blocks: reference fil-
tering and weighed optimization. We use the tuple (pi, ti, dij) to denote the
location reference sent by node i and received by node j, where pi and ti are the
claimed position and the confidence tag of node i, and dij is the mutual distance
measured by sensor j.

Filtering Metrics. We provide two filtering metrics: the absolute metric and
the relative metric. When using the absolute metric, sensor simply filters out

COTA: A Robust Multi-hop Localization Scheme 343

Fig. 2. COTA Filtering Metric: Relative Metric

bad reference whose confidence tag t < t0. The threshold t0 can be obtained
through training. Let emax be the maximum localization error of sensors in
non-adversary scenarios, then t0 = ft(emax) is the minimum reasonable confi-
dence tag. If t0 is set very high, then most references will be filtered out and
a sensor may not acquire adequate number of references to localize. Therefore,
we need to consider the tradeoff between sensors’ localization error and the
localized percentage. Actually, how to set a reasonable threshold is application-
specific.

The relative metric is computed by u = fe(t)/d. A sensor filters out bad ref-
erence if u > u0, where u0 is a preset threshold. We use a figure to illustrate the
underlying idea. In Fig. 2, sensor s has a reference message (pa, ta, das). We can
compute an upper bound of node a’s localization error by function êa = fe(ta).
Namely, a’s claimed position pa should be within distance êa of its true position.
Hence, the distance from position pa to sensor s should be no larger than das+ êa

and no smaller than das − êa. The relative metric u = fe(t)/d = ê/d = Δd/d es-
sentially indicates the relative accuracy of the mutual distance, and the references
with higher uncertainties than the threshold will be dropped. We can obtain u0
through training. If sensors’ maximum localization error in non-adversary sce-
narios is emax and the communication range between sensors is R, then we set
the threshold by u0 = emax/R.

The two filtering metrics can be used separately or together. In our simula-
tion, it shows that the absolute metric outperforms the relative one in providing
stronger filtering capacity, but realizes less localized percentage. However, when
both metrics are applied, sensors can be localized with better performance than
that when using a single metric.

Weighed Optimization. After filtering out the bad references, each sensor
uses the remaining references and performs the trilateration technique to com-
pute its position. Because of the noisy rang measurements and various attacks
to the location references, the unique solution may not exist to satisfy all the
constraints. In COTA, we use Weighed Least Square Estimation (WLSE) mech-
anism to compute the optimal solution for each sensor.

Assume sensor s has n references (pi, ti, dis), where pi = (xi, yi), 0 ≤ i ≤ n.
Sensor s weighs the references by their confidence tags and computes the optimal
solution (x0, y0) by minimizing the following equation:

M in

n∑
i=1

t2i · (
√

(xi − x0)2 + (yi − y0)2 − dis)2 (1)

344 Y. Wei, Z. Yu, and Y. Guan

This nonlinear LSE optimization problem can be solved by many standard
methods, e.g., the MMSE matrix solution [9] or Kalman filter method [2], [23].
In COTA, we adopt the MMSE technique and transmit the nonlinear problem
into linear equations:

t1 ·
√

((x1 − x0)2 + (y1 − y0)2) = t1 · d1s

t2 ·
√

((x2 − x0)2 + (y2 − y0)2) = t2 · d2s

· · · · · · (2)

tn ·
√

((xn − x0)2 + (yn − y0)2) = tn · dns

After squaring and rearranging terms on each side of equations 2, we obtain:

2t21x1x0 + 2t21y1y0 = t21(x
2
1 + y2

1 − d2
1s − x2

0 − y2
0)

2t22x2x0 + 2t22y2y0 = t22(x
2
2 + y2

2 − d2
2s − x2

0 − y2
0)

· · · · · · (3)
2t2nxnx0 + 2t2nyny0 = t2n(x2

n + y2
n − d2

ns − x2
0 − y2

0)

Then we compute the average of above equations:

Cx · x0 + Cy · y0 = Cd − x2
0 − y2

0 , (4)

Cx = 2
n∑

i=1
t2i · x2

i /
n∑

i=1
t2i ,

Cy = 2
n∑

i=1
t2i · y2

i /
n∑

i=1
t2i ,

Cd =
n∑

i=1
t2i · (x2

i + y2
i − d2

is)/
n∑

i=1
t2i

We multiply equation (4) by t2i and subtract it from equations in (3). Finally,
we get following standard linear least square equation:

A · [x0 y0]T = B, (5)

A =

⎡⎢⎢⎢⎣
2t21 · (x1 − Cx) 2t21 · (y1 − Cy)
2t22 · (x2 − Cx) 2t22 · (y2 − Cy)

...
...

2t2n · (xn − Cx) 2t2n · (yn − Cy)

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
t21(x2

1 + y2
1 − d2

1s − Cd)
t22(x

2
2 + y2

2 − d2
1s − Cd)

...
t2n(x2

n + y2
n − d2

ns − Cd)

⎤⎥⎥⎥⎦
Then the optimal matrix solution can be given by:

[x0 y0]T = (AT A)−1AT B (6)

4.4 Tag-Generation Phase

In the tag-generation phase, a sensor estimates its localization error then gener-
ates a confidence tag. Since sensor has no knowledge of its true position, it needs
some indicators to derive its localization error. In this subsection, we firstly pro-
pose two indicators: the statistical indicator and geographical indicator, then
discuss the construction of the tag-generation function and inverse-tag function.

COTA: A Robust Multi-hop Localization Scheme 345

Statistical Indicator. We use the weighed sum of error squares, called residual
r, as the statistical indicator of sensor’s localization error:

r =
n∑

i=1

t2i · (
√

(xi − x0)2 + (yi − y0)2 − dis)2/
n∑

i=1

t2i (7)

Consider that all the references are correct and accurate, namely, both the
references’ positions and mutual distances are correct, then the residual r will be
minimized to zero and the sensor will be localized at its true position. It suggests
that small residuals may imply consistent references and accurate location esti-
mations for sensors. Thus, we intend to obtain an increasing function fs which
can map the residual r to sensor’s localization error ẽ by ẽ = fs(r).

We do experiments in non-adversary scenarios to explore the relationship
between residual r and sensor’s localization error e. However, we notice that
small residuals sometimes lead to large localization errors. Such results are
caused by the noisy distance measurements. In presence of measuring errors,
incorrect solution may sometimes better minimize the residual than the true
one. This flex ambiguity problem in localization is studied by David Moore
et al. in [18], in which the authors also proposed a geographical constraint
called Robust quadrilateral to the location propagation process. Localized sen-
sors and one unlocalized sensor form several triangles. If all triangles satisfy
b · sin2θ > dmin (where b is the length of the shortest side, θ is the smallest
angle, dmin is a preset threshold), this quadrilateral is considered to be robust
and can be used for location propagation. We add this constraint to the sim-
ple trilateration technique and find that the relationship turns more regular.
In our simulation setup, we calculate the function coefficients as ẽ = fs(r) =
2.5 ∗ r + 1.5.

Geographical Indicator. The statistical indicator requires the coefficients of
function fs computed offline and stored in sensors’ memories. In this subsection,
we propose a geographical indicator dmax computed online.

As shown in Fig. 3, sensor s has three references: (pa, ta, das), (pb, tb, dbs),
(pc, tc, dcs). The location error of each reference node can be estimated by êi =
fe(ti), and the location uncertainty êa, êb, êc can be translated into the uncer-
tainty of the mutual distance, given that the claimed positions pa, pb, pc are
correct. Also consider the distance measurement error δdis, we can obtain the
overall distance error by Δdis = êi + δdis. Therefore, sensor s should reside
inside several rings, each of which centers pi and whose inside/ouside radiuses
are dis − Δdis/dis + Δdis. We call the overlapping region of all these rings
as residing area (the shadow area). Since s’s true position is within this area,
thus the maximum distance dmax from its estimated position ps to this area
is an upper bound of its localization error, which we take as the geographical
indicator.

In what follows, we discuss how to obtain the geographical indicator dmax

efficiently. Since the computation is expensive to determine residing area based
on the intersection of rings, we replace each ring with a ”frame” and simplify
the computation process in following three steps (Fig. 4).

346 Y. Wei, Z. Yu, and Y. Guan

Pa

Pb

Pc

das
das

Psdmax

Residing area

Fig. 3. COTA Localization Error Indicator: Geographical Indicator

Step 1: Replace each ring with a frame, whose outer/inner squares are tan-
gent with the outer/inner circles of the ring.

Step 2: Obtain the overlapping region of all the outer squares, called pre-area.
Its lower-left and upper-right coordinates are (Xl, Yl) and (Xr, Yu):

(Xl, Yl) = (max
i=1···n

{xi − Δdis}, max
i=1···n

{yi − Δdis})
(Xr, Yu) = (min

i=1···n
{xi + Δdis}, min

i=1···n
{yi + Δdis})

However, because of the noisy distance measurements and attacks, we may
have Xl > Xr or Yl > Yu in above equations. Thus, we make following relaxations
to the coordinates:

If Xl > Xr, X ′
l = min

i=1···n
{xi − Δdis}, X ′

r = max
i=1···n

{xi + Δdis}
If Yl > Yu, Y ′

l = min
i=1···n

{yi − Δdis}, Y ′
u = max

i=1···n
{yi + Δdis}

Step 3: Exclude from the pre-area any parts inside the inner squares, result-
ing in the residing area. Since the maximum distance from a point to a convex

Fig. 4. COTA Geographical Localization Error Indicator: Computation Steps

COTA: A Robust Multi-hop Localization Scheme 347

polygon is between the point and one of the polygon’s points, we only record
the points’ coordinates. When the pre-area intersects with an inner square,
their overlapping region should be excluded (Fig. 4(c)), thus some points will
be deleted and some new points will be introduced. On comparing the
distances from ps to each of the points, we can obtain the maximum
distance dmax.

Tag-generation function. Each sensor uses the tag-generation function ft(e)
to translate its estimated localization error into a proper confidence tag. ft(e)
should have the following properties:

– Decreasing function: if x1 > x2, then ft(x1) < ft(x2). This guarantees high
localization errors will generate low confidence tags.

– The domain of ft(e) are sensors’ localization errors, namely an infinite ra-
tional range (0, +∞).

– The range of ft(e) are sensors’ confidence tags, namely a set of discrete
nonnegative integers {0, 1, · · · , T }.

Since decreasing function ft(e) maps an infinite interval to a finite set of
nonnegative integers, thus when e > e0, the function should output the lowest
confidence tag zero. We can construct a linear function as following:

t = ft(e) = max(0, − T

e0
· e! + T), (8)

where e0 is the boundary value that ft(e0) = 0, T is the highest confidence tag.
We perform simulations in non-adversary scenarios to obtain a reasonable

boundary value e0. Since more than 90% sensors can be localized with e < 10m,
we set e0 = 10m and believe that a sensor with localization error larger than
that has a high probability to be attacked. We set T = 8 in our experiments. The
value of T is application-specific, and higher T generally leads to more delicate
differentiation between localization accuracies. The inverse-tag function fe(t) is
closely related to ft(e). We provide the following construction:

ê = fe(t) = −e0

T
· (t − T), (9)

where ê is an upper bound of localization error e.

5 Security Analysis

Besides launching the known attacks to COTA as to other localization schemes,
the adversaries may crab COTA scheme especially by manipulating sensors’
confidence tags. We must consider the situation that compromised nodes or
wormholes provide some references whose tags can not correctly represent the
reliability of the location information. There are four types of attacks that an
adversary can perform, and we list them from simple ones to sophisticated
ones:

348 Y. Wei, Z. Yu, and Y. Guan

– Decrease-tag Attack: A compromised sensor can broadcast its location ref-
erence with a smaller tag than the true one. Since it’s worth nothing to
decrease the confidence tag of a false reference, which may cause it to be
filtered out or bear small weight during localization, the adversary probably
launch this attack to the correct location references.

– Remain-tag Attack: A compromised sensor or wormhole transmitter can pro-
duce incorrect location references whose confidence tags are kept unchanged.

– Increase-tag Attack: This attack is the opposite to the decrease-tag attack,
in which the adversary broadcasts location references with higher confidence
tags. Besides compromised nodes, wormholes can also perform this attack.
They replay the location reference of the source-point node, namely, the false
reference will bear the source-point node’s tag.

– Invert-tag Attack: Sophisticated adversaries can invert tags: set low tags to
correctly localized sensors and high tags to wrongly localized sensors.

For the decrease-tag attack, the resulting small-tag references will probably
be filtered out before participating in localization, thus a sensor may fail to
localize itself for lack of enough valid references. The adversary performs this
attack to launch the denial of service (DOS). However, since they can simply
jam the communication between sensors or destroy sensor nodes to launch DOS,
delicately tampering the confidence tags cannot achieve any extra benefit.

In the remain-tag and increase-tag attacks, a sensor may estimate a false
position, because incorrect references are not filtered out and may be high-tag
attached. However, if the sensor being attacked can generate a low confidence
tag to its location reference, it will be dropped by its neighbors and will not af-
fect many other nodes. Therefore, COTA is robust in the sense that it prevents
local damage from proliferating to other areas. The reason why wrongly local-
ized sensors can generate low confidence tags relies in the effective indicators:
as long as there are some benign references inconsistent with the incorrect ones,
the statistical indicator (residual) will produce big values, and the geographi-
cal indicator will result in large residing area and a long distance dmax. Then
the tag-generation function (decreasing function) can compute low tags from
the large indicators. The increase-tag attack is more severe than the remain-
tag attack, thus we simulate it in our simulations. We further assume that the
adversaries always generate the highest confidence tag to the false references.
Experiment results show that COTA can survive through various attacks and
provide accurate location estimations.

The invert-tag attack is the most sophisticated, in which the adversary not
only contaminate correct references by attaching low tags, but also disguise false
references with high tags. The impact is that the victim sensor not only wrongly
localizes itself but also computes a high confidence tag to its reference. However,
to mount this attack, an attacker should be very resourceful to jam/tamper
all the benign references and launch multiple false references. Furthermore, the
attacker needs to launch invert-tag attack to each victim sensor, otherwise the
victim sensor will performs as increase-tag attacker who can affect only the direct
neighboring nodes.

COTA: A Robust Multi-hop Localization Scheme 349

Table 3. Simulation Parameters and Default Values

Meaning Default
FM the filtering metric Combination
EI the localization error indicator Statistical
D the damage degree 20m
n the number of false references 1
P the percentage of sensors being attacked 10%
nf the noise factor of distance measurement 1%

6 Simulation Results

6.1 Simulation Setup

In our simulation, 600 sensors are deployed uniformly and randomly in a square
field of 300m × 300m. The sensor-to-sensor and anchor-to-sensor communica-
tion range are both R = 25m, thus each sensor can hear 12 neighbor nodes
on average. Within the center square area, whose lower-left/upper-right coordi-
nates are (100, 100)/(200, 200), we randomly deploy 10 anchors, thus about 18
(3%) sensors can receive adequate number of beacon messages to be firstly local-
ized. Anchors’ positions bear the highest confidence tag T = 8. We perform the
non-protected multi-hop scheme and COTA in every deployment, and average
the results over 100 independent deployments. The distance measurement error
model is d̃ = d + d ∗ x ∗ nf , where d̃ and d are measured and real distance, x
is uniformly distributed within [−1, 1], nf is the noise factor. E.g., if nf = 1%,
then |d̃ − d| ≤ 1% · d.

Various attacks (cheating report/wormholes/rang enlargement/range reduc-
tion) will result in either false position or false range attack. To launch the
former attack, we change one of sensor s’s location references from (pi, ti, dis)
to (p′i, T, dis). To launch false distance, we replace the reference with (pi, T, d′is),
where d′is is smaller than the communication range R, otherwise it will be easily
detected. We perform the tag-increase attack to COTA by appending the highest
tag T to each false reference. As we have discussed, this attack is both powerful

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error (m)

P
ro

ba
bi

lit
y

COTA-Both

COTA-Absolute Metric

COLE-Relative Metric

No Protection

Fig. 5. CDF of Localization Error using different FM

350 Y. Wei, Z. Yu, and Y. Guan

and easy to perform. We also perform non-colluding and colluding attacks by
launching different numbers of false references to target sensors. In the former
scenario, only one of the references that sensor s uses is contaminated; in the
latter scenario, multiple contaminated references will collude to mislead s to
localize at another position.

6.2 Criteria and Parameters

The first criteria we use to evaluate the performance of COTA is sensor’s local-
ization error. The average localization error Le is defined as:

Le =
1
N

N∑
i=1

√
(x̃i − xi)2 + (ỹi − yi)2, (10)

where N is the total number of localized sensors, (x̃i, ỹi) and (xi, yi) are the esti-
mated and true positions of sensor i. We also study the Cumulative Distribution
Function (CDF) of sensors’ localization errors. CDF shows the percentage of
localized sensors whose localization error is smaller than some value, thus tells
us whether local damages have proliferated to other areas. The localized per-
centage Lp is computed by Lp = Nl/N , where Nl is the number of sensors
localized.

To evaluate the effectiveness of COTA, we test on the following parameters.

1. FM is the filtering metric, including absolute metric and relative metric.
2. EI is the localization error indicator, including the statistical and geograph-

ical indicator.
3. D is the damage degree:

Definition 5 (Damage Degree). Sensor s has a false reference (pi, ti, dis).
One or more of the items in the triple are contaminated. If the distance
between the claimed position pi and s’s true position is dt, then we call
|dis − dt| the damage degree of this false reference.

4. n is the number of false references received by the target sensor. When n = 1,
this attack is non-colluding; when n > 1, multiple contaminated references
are consistent with each other, thus this is a colluding attack.

5. P is the percentage of sensors being attacked.
6. nf is the noise factor of the measured distances.

We summarize the parameters in TABLE 3. In the simulation, we vary one
or two parameters at one time and keep others constant as their default values:
FM is the combination of two metrics, EI is the statistical indicator, D = 20m,
n = 1, P = 10%, and nf = 1%.

6.3 Filtering Metric (FM)

The goal of this experiment is to study the localization performance of COTA
with different filtering metrics (FM). Fig. 5 shows the CDF of sensors’ localiza-
tion errors when using the unprotected multi-hop scheme and COTA. We can

COTA: A Robust Multi-hop Localization Scheme 351

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error (m)

P
ro

ba
bi

lit
y

COTA-Statistical Indicator

COTA-Geographical Indicator

No Protection

(a) n = 1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error (m)

P
ro

ba
bi

lit
y

COTA-Statistical Indicator

COTA-Geographical Indicator

No Protection

(b) n = 3

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization Error (m)

P
ro

ba
bi

lit
y

COTA-Statistical Indicator

COTA-Geographical Indicator

No Protection

(c) n = 5

Fig. 6. CDF of Localization Error using Different Localization Error Indicators (EI)

see that without protection, more than 50% sensors are localized with Le > 30m,
which indicates that local damage has proliferated and impacted many sensors.
When using COTA, the localization performance is effectively improved, e.g.,
more than 80% sensors are localized with Le < 10m when the two filtering
metrics are applied together.

The two filtering metrics have different performances. Firstly, absolute met-
ric can localize more sensors with small errors, e.g., about 70% sensors can
be localized with Le < 10m when using the absolute metric, but only 40%
when using the other. The reason is that absolute metric makes a sensor to
discard all inaccurate references whose location errors are higher than emax,
but the relative metric fails to do so if the false reference contains a large mu-
tual distance, which leading to a small u = fe(t)/d < u0. Secondly, the ab-
solute metric has a low localized percentage: when the CDF curve turns flat,
only 84% sensors are localized. By looking at sensor field snapshot, we found
it is because many peripheral sensors are unlocalized for lack of enough valid
references.

When the two metrics are used together, COTA has the best performance and
achieves both small Le and high Lp. Therefore, we use the two metrics together
to filter out bad references in the rest of our studies.

352 Y. Wei, Z. Yu, and Y. Guan

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

Percentage of Impacted Sensors

A
ve

ra
gl

e
Lo

ca
liz

at
io

n
E

rr
or

 (
m

)

No Protection, D=40m
No Protection, D=20m
No Protection, D=10m
COTA, D=40m
COTA, D=20m
COTA, D=10m

Fig. 7. Le under Different Attack Percentages and Damage Degrees

6.4 Localization Error Indicator (EI)

The goal of this experiment is to study how the localization error indicator (EI)
affects the performance of COTA.

Fig. 6 shows the CDF of sensors’ localization errors when the number of
false references are n = 1, 3, 5. In Fig. 6(a), the statistical indicator outper-
forms the geographical one: more sensors can be localized with the same local-
ization error; when n = 3, they have very similar performances; when n = 5,
the geographical indicator performs a little better. For example, in Fig. 6(c)
about 92% sensors can be localized with Le < 20m when using the geograph-
ical indicator, higher than the 88% when using the statistical one. The rea-
son is that when there are overwhelming consistent false references, the sensor
will localize itself at a wrong position with a small residual, thus the statis-
tical indicator can not properly indicate sensor’s localization error. But the
geographical indicator always produces large values of the residing area and
dmax, as long as benign references can be received. Therefore, we conclude that
the statistical indicator is more effective in defending against non-colluding
attacks, but the geographical indicator performs slightly better against col-
luding attacks. We adopt the statistical indicator as default in our
simulations.

6.5 Attack Percentage (P) and Damage Degree (D)

In this subsection, we test the robustness of COTA under different attack per-
centages (P) and damage degrees (D). We observe in Fig. 7 that when damage
degree is set as D = 20m and the attack percentage P increases from 1% to
10%, the average localization error Le of non-protected localization scheme in-
creases quickly from 20m to 50m. Secondly, Le also increases with the damage
degrees. E.g., when the attack percentage is set as P = 2%, and D = 10m,
20m, 40m, the localization error Le is 22m, 28m, 48m respectively. COTA ef-
fectively improves the localization performance: Le is less than 5m in all the
cases.

COTA: A Robust Multi-hop Localization Scheme 353

0 2 4 6 8 10 12 14 16 18 20
0

25

50

75

100

125

150

Localization Round

A
ve

ra
ge

 L
oc

al
iz

at
io

n
E

rr
or

 (
m

)

Noise Factor = 0.05
Noise Factor = 0.03
Noise Factor = 0.01
COTA, Noise Factor = 0.05
COTA, Noise Factor = 0.03
COTA, Noise Factor = 0.01

Fig. 8. Le under Different Noise Factors

6.6 Noise Factor nf

The goal of this experiment is to test COTA’s property of mitigating error ac-
cumulation problem caused by noisy distance measurements in non-adversary
scenarios. We vary the noise factor nf and study the average localization
error.

The simulation results are shown in Fig. 8. We compute Le of sensors that
are localized in each round. ”Round” roughly indicates the localizing sequence
of sensors. In the first round, the sensors who can receive adequate number
of beacon messages from anchors are localized. Then the second-round sensors
will be localized using location references from the first-round sensors and the
anchors, and so forth. We can see from the figure that when noise factor is
1%, error accumulation problem is not severe that sensors in all rounds can be
localized with small errors. However, when nf = 3%, Le grows quickly as the
round increases; when nf = 5%, the problem becomes more severe. COTA can
greatly mitigate the error accumulation problem, that even in the last round,
the average localization error is less than 10m, which means the sensors who
reside around the peripheral areas in the sensor field can still be accurately
localized.

7 Conclusion and Future Work

In this paper, we proposed a robust multi-hop localization scheme COTA based
on the novel notion of confidence tag. We evaluated the localization performance
of COTA through simulations. It shows that COTA can effectively prevent local
location errors from proliferating to other sensors and can provide accurate posi-
tion estimations. COTA takes the first step toward robust multi-hop localization.
For future work, we are planning to perform implementations and experimental
evaluations in a real wireless sensor network testbed.

354 Y. Wei, Z. Yu, and Y. Guan

Acknowledgment

This research was supported in part by NSF under contract number DUE-
0313837, DTO/ARDA under contract number NBCHC030107, and Carver Trust
Foundation.

References

1. Bahl, P., Padmanabhan, V.: RADAR: An In-Building RF-based User Location and
Tracking System , IEEE INFOCOM (2000)

2. Brown, R., Hwang, P.: Introduction to Signals and Applied Kalman Filtering (97)
3. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low Cost Outdoor Localization

for Very Small Devices, IEEE Personal Communications Vol.7 No.5, pp. 28 C34
(2000)

4. Capkun, S., Hubaux, J.: Secure Positioning in Sensor Networks, Technical report
EPFL/IC/200444 (2004)

5. Doherty,L., Pister, K., Ghaoui, L.: Convex position estimation in wireless sensor
networks, IEEE INFOCOM (2001)

6. Du,W., Fang,L., Ning,P.: LAD: Localization anomaly detection for wireless sensor
networks, IEEE IPDPS (2005)

7. Eren,T., Goldenberg,D., Whiteley,J., Yang,Y., Morse,A., Anderson,B., Belhumeur,
P.: Rigidity, Computation, and Randomization in Network Localization, IEEE IN-
FOCOM (2004)

8. Fok,C., Roman,G., Lu,C.: Mobile Agent Middleware for Sensor Networks: An Ap-
plication Case Study, IPSN (2005)

9. Greene,W., Econometric Analsis, third edition, Prince Hall (1997)
10. Harter,A., Hopper,A.,Steggles, P.,Ward,A.,Webster,P.: The anatomy of a context-

aware application, ACM Mobicom (1999)
11. He,T., Huang,C., Blum,C., Stankovic,J., Abdelzaher,T.: Range-Free Localization

Schemes in Large Scale Sensor Network, ACM MobiCom (2003)
12. Hu,L., Evans,D.: Using directional antennas to prevent wormhole attacks, Pro-

ceedings of the 11th Network and Distributed System Security Symposium, pages
131-141 (2003)

13. Hu,Y., Perrig,A., Johnson,D.: Packet Leashes: A Defense against Wormhole At-
tacks in Wireless Ad Hoc Networks, IEEE INFOCOM (2003)

14. Ji,X., Zha,H.: Sensor positioning in wireless ad-hoc sensor networks using multidi-
mensional scaling, IEEE INFOCOM (2004)

15. Lazos,L.,Poovendran,R.: SeRLoc: Secure Range-Independent Localization for
Wireless Sensor Networks, ACM Workshop on Wireless Security (WiSe)(2004)

16. Li,Z., Trappe,W., Zhang,Y.,Nath,B.: Robust Statistical Methods for Securing
Wireless Localization in Sensor Networks, IPSN (2005)

17. Liu,D., Peng,N., Du,W.: Attack-Resistant Location Estimation in Sensor Networks,
IPSN (2005)

18. Moore,D., Leonard,J., Rus,D., Teller,S.: Robust distributed network localization
with noisy range measurements, ACM SenSys (2004)

19. Nagpal,R., Shrobe,H., Bachrach,J.: Organizing a Global Coordinate System from
Local Information on an Ad Hoc Sensor Network, IPSN (2003)

20. Nicolescu,D.,Nath,B.: Ad-Hoc Positioning Systems (APS), IEEE GLOBECOM
(2001)

COTA: A Robust Multi-hop Localization Scheme 355

21. Niculescu,D.,Nath,B.: Dv based positioning in ad hoc networks, Journal of
Telecommunication Systems (2003)

22. Savvides,A., Han,C.,Srivastava,M.: Dynamic fine-grained localization in ad-hoc
networks of sensors, ACM MobiCom (2001)

23. Savvides,A., Park,H., Srivastava,M.: The Bits and Flops of the N-hop Multilater-
ation Primitive for Node Localization Problems, ACM WSNA (2002)

24. Shang,Y., Ruml,W., Zhang,Y., Fromherz,M.: Localization from mere connectivity,
ACM MobiHoc (2003)

25. Shang,Y., Ruml, Y. Zhang, Fromherz, M.: Improved MDS-Based Localization,
IEEE INFOCOM (2004)

26. So,A., Yu,Y.: Theory of Semidefite Programming for Sensor Network Localization,
ACM-SIAM Symposium on Discrete Algorithms (SODA)(2005)

27. Want,R., Hopper,A., Falcao,V., Gibbons,J.: The Active Badge Location System,
ACM Transactions on Information Systems, vol. 10, No. 1, pp. 91-102 (1992)

Contour Approximation in Sensor Networks

Chiranjeeb Buragohain1, Sorabh Gandhi1,
John Hershberger2, and Subhash Suri1

1 Dept. of Computer Science, University of California, Santa Barbara, CA 93106�

{chiran, sorabh, suri}@cs.ucsb.edu
2 Mentor Graphics Corp., 8005 SW Boeckman Road, Wilsonville, OR 97070

john hershberger@mentor.com

Abstract. We propose a distributed scheme called Adaptive-Group-
Merge for sensor networks that, given a parameter k, approximates a
geometric shape by a k-vertex polygon. The algorithm is well suited to
the distributed computing architecture of sensor networks, and we prove
that its approximation quality is within a constant factor of the optimal.
We also show through simulation that our scheme outperforms several
other alternatives in preserving important shape features, and achieves
approximation quality almost as good as the optimal, centralized scheme.
Because many applications of sensor networks involve observations and
monitoring of physical phenomena, the ability to represent complex geo-
metric shapes faithfully but using small memory is vital in many settings.

1 Introduction

We consider the problem of approximating polygonal paths and cycles in the
context of a sensor network. The problem of representing complex geometric
shapes using small memory is fundamental in many sensor net applications:
sensor networks observe, measure, and track physical phenomena, which often
involves representing and communicating a geometric shape. The problem arises,
for example, in the application of computing contour lines on a field of sensor
measurements [8]. Suppose that a geographically distributed set of sensors mea-
sures some physical parameter, say temperature, that varies smoothly over the
sensor region. An analyst is interested in the rough shape of the temperature dis-
tribution, but does not care about the exact values measured by all the sensors.
A collection of isocontours—cycles along which the measured and interpolated
sensor values are constant—can be a useful summary of the distribution.

Contour lines reduce the data to be reported from two dimensions (the full set
of sensors) to one dimension (dependent on only those sensors near the contour).
However, even this reduction may not be enough. Communication is arguably
the most important resource in a sensor net, and a one-dimensional contour
whose feature size depends on the spacing of the sensors may contain too much
� The research of C. Buragohain, S. Gandhi and S. Suri was supported by grants from

the National Science Foundation (CCF-0514738) and Army Research Organization
(DAAD19-03D0004).

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 356–371, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Contour Approximation in Sensor Networks 357

data to send through the network back to the analyst. Therefore, it is important
to consider methods for simplifying a one-dimensional contour that approximate
the original data well and can be computed by a distributed network.

We use “contour approximation” as a guiding application, but our treatment
of the problem is at an abstract level: distributed algorithms to compute a
bounded-memory approximation of a polygonal curve embedded in a sensor field.
Because sensor networks are envisioned as distributed “spatial instruments” that
take measurements in a physical space but have limited resources (bandwidth,
power, etc.), the ability to represent complex geometric shapes faithfully but us-
ing small memory is vital to sensor networks. In particular, significant improve-
ment in system lifetime is possible if the network performs local computation to
build compact approximations instead of sending the entire raw data to a cen-
tralized location. Indeed, a number of techniques have been proposed recently
for “in-network aggregation” of sensor data [8, 12, 16]. The focus of these papers
is on numerical summaries, such as min, max, average, or median, while the
main focus of our paper is a fundamental form of spatial summary. Imagine, for
instance, a physical phenomenon, such as a structural fault, that is evolving with
time, and an analyst who wants to receive a periodic snapshot of the general
shape of the phenomenon. Another possible application is building a compact
representation of the boundary of the entire sensor field, which can be broadcast
efficiently throughout the network so that each node knows the overall geograph-
ical coverage of the system. Awareness of the sensor field’s shape can be useful in
data storage schemes like Geographical Hash Tables (GHT) that associate data
with geometric locations.

The problem of contour approximation was considered by Hellerstein et al. [8]
in a sensor net setting. They proposed an algorithm in which a contour is initially
approximated by its axis-aligned bounding box, and then the approximation is
successively refined. At each step the approximate polygon encloses the origi-
nal contour. Each refinement step deletes from the current approximation the
maximum-area rectangular notch that lies outside the original contour. The re-
finement stops when the approximating polygon reaches some target complexity
(number of vertices). This approach, while a useful heuristic, has several liabili-
ties: (1) the restriction to rectangular approximation imposes an axis-dependence
where none is required by the data; (2) the greedy maximization of area removed
at each step does not ensure that the approximating polygon is near the origi-
nal; and (3) the algorithm is a heuristic, with no proof of approximation quality.
In [17], Singh, Bakshi, and Prasanna consider the problem of producing topo-
graphic maps over a sensor field using a quadtree-based approach, but they do
not focus on constructing a compact representation of the map.

Approximating polygons is a fundamental problem that has been considered
in many fields, including geographic information systems (GIS), computer vision,
and computational geometry. In these settings the computational model favors
centralized computation, in which all the input data are available to a single
computational engine. Performance is measured in terms of approximation qual-
ity (in any of a variety of metrics) and running time/memory usage as a function

358 C. Buragohain et al.

of the input size n and the output size k. Typical algorithms include dynamic
programming (which can optimize most metrics in roughly O(n2k) time [10,
Chapter 3]) and the Douglas–Peucker algorithm (which provides good practical
approximation quality in O(n log n) time [4, 9]). Because of the centralized com-
putation requirement, however, these algorithms are ill-suited for use in a sensor
net setting without significant adaptation.

Our Contribution
We make the following contributions in this paper: (1) We propose a new dis-
tributed algorithm, called Adaptive-Group-Merge (AGM), for polygon ap-
proximation with a worst-case constant factor approximation guarantee. (2) We
develop a distributed wavelet-based scheme as a natural, simple alternative to
AGM. (3) We show through simulation that AGM significantly outperforms
the wavelet scheme in approximation quality. (4) Our experiments show that, in
fact, AGM performs almost as well as the centralized, dynamic-programming-
based optimal scheme. Thus, our new scheme is able to combine the virtues of
the two extreme alternatives: it delivers the approximation quality of the cen-
tralized optimal scheme, but it incurs a computational and communication cost
comparable to the wavelet scheme.

One of the most attractive features of our algorithm is its locality, which
makes it highly suitable for heterogeneous multi-tiered sensor architectures,
such as Tenet [7, 19]. These networks include a small number of high-powered
(tier 1) nodes that act as clusterheads for many low-powered, mote-caliber
(tier 2) devices. The motes simply collect and send their data to a neighbor-
ing clusterhead—the application software runs only on the tier 1 nodes. Us-
ing AGM, each tier 1 node can approximate its own portion of the contour
without jeopardizing the global approximation quality. These partial contour ap-
proximations then can be exchanged among the tier 1 nodes to compute the
final approximation. By contrast, centralized schemes such as dynamic pro-
gramming or Douglas-Peucker require global knowledge of the data to decide
which portions of the contour to keep, and thus are not amenable to distributed
computation.

2 Preliminaries

We make the following assumptions about the sensors in the network: each sen-
sor has a fixed radio range r, it knows its geographical location by using some
localization technique [1, 14] and every sensor knows its neighbors’ positions
(other sensors within a circle of radius r). These assumptions, though some-
what idealized—radio ranges are not disks in practice [11, 20], and localization
is nontrivial—are fairly standard in sensornet research, and allow us to focus on
the approximation problem of interest. At the same time, we make no assump-
tions about the distribution of sensors in the field, or the shape of the field, so
our results apply to an arbitrary collection of sensors.

Contour Approximation in Sensor Networks 359

Many different metrics have been used to measure the quality of a polyg-
onal approximation. Two common choices are the Lp metrics and the Haus-
dorff metric. Given a polygonal curve S (a polyline) whose vertex sequence is
(p1, p2, . . . , pn), let A = (a1, a2, . . . , ak) be a k-point approximation of S. To
measure the approximation using the Lp metric, let S′ = (p′1, p

′
2, . . . , p

′
n) be the

points on the polyline A closest to the corresponding vertices of S. Define the
point coordinates to be pi = (xi, yi) and p′i = (x′

i, y
′
i). Then the Lp approxima-

tion error of A is

εp ≡ ||S − S′||p ≡
(∑

i

(|xi − x′
i|p + |yi − y′

i|p)
)1/p

.

In particular ε2 is the Euclidean mean squared error and ε∞ is the maximum
error. To define the Hausdorff approximation error, let d(p, Q) be the minimum
Euclidean distance from a point p to a polyline Q. Then the Hausdorff distance
between S and A is

H(S, A) ≡ max(max
0≤i<n

d(pi, A), max
0≤j<k

d(aj , S)).

Given the above definition of the distance d(p, Q) between a point p and a
polyline Q, we can think of the Haussdorff error as follows. The Hausdorff error
between two polylines is the maximum distance of a point on either of the two
polylines from the other polyline.

We will evaluate the efficiency of our algorithms primarily in terms of total
communication complexity (also known as message complexity). If an algorithm
requires N message transmissions, with each message of size m, then the com-
munication complexity of the algorithm is defined to be O(Nm). We will also
consider total work (the sum over all processors of the running time they use)
and overall running time (the elapsed time between the start and end of an algo-
rithm). Overall running time helps us measure how much of the computational
parallelism present in a sensor network we are able to exploit.

We assume that the isocontour (or the shape) to be approximated is already
available to the network. The problem of determining an isocontour from raw
sensor data is a well-studied problem, and many (distributed) algorithms are
available. An interested reader may consult [3, 15, 17] for various approaches
to constructing the contour boundary. Thus, we assume that a subset of the
sensors, namely, s1, s2, . . . , sn, collectively stores the detailed representation of
the isocontour, and the goal of our algorithm is to build a provable-quality
approximation that fits in a given memory size. There has not been significant
previous work on this data reduction aspect of isocontour construction.

3 Algorithms for Shape Approximation

We assume that the isocontour to be approximated is a polygonal curve embed-
ded in the two-dimensional plane, and a sequence of sensor nodes s1, s2, . . . , sn

360 C. Buragohain et al.

A B
DC

u v

Fig. 1. Boundary estimation from sen-
sor values

Fig. 2. Low approximation quality us-
ing bounding box or convex hull

collectively stores the contour. Specifically, each node si stores a consecutive sub-
sequence of the contour polygon so that the concatenation of the chains stored
at nodes s1, s2, . . . , sn results in the full contour. We allow each sensor node to
contribute arbitrarily complex portions of the isocontour because, in general,
sensors can use complex and collaborative algorithms to compute the contour
boundary. As an example (see Fig. 1), the contour detection algorithm may use
interpolation to decide that the points A, B, C and D lie on the contour. Points
A and B may be stored at node u, while C and D may be stored at node v. In
order to keep the presentation of our algorithm simple, however, we will assume
that each sensor si has only one vertex pi of the contour. (The location of the
contour vertex pi does not necessarily coincide with the sensor si.) However,
it will be clear from the description that our algorithm extends easily to the
general case where each sensor may store a contiguous portion of the contour
boundary.

We assume that adjacent sensor nodes storing the contour boundary are
within the communication range of each other; that is, each node si is within
one hop of si−1 and si+1. Given a user-specified parameter k, where typically
k % n, we wish to compute a k-vertex approximation of S. Of course, a trivial
approach is to communicate all the vertices of S to a central node, and build
the approximation there. This scheme, however, has message complexity Θ(n2),
and we seek more efficient alternatives.

In the following three subsections, we describe contour approximation schemes
with which we will compare our new scheme Adaptive-Group-Merge. In Sec-
tion 3.1, we briefly mention two näıve schemes, which are simple to compute but
are too crude to be useful. In Section 3.2, we design a distributed two-dimensional
wavelet-based scheme that takes advantage of the signal compression abilities of
wavelets. This scheme is easy to implement in the distributed environment of the
sensor network, though it lacks good theoretical bounds on the approximation
quality. In Section 3.3 we describe a dynamic programming based algorithm that
can compute an optimal contour approximation. The dynamic programming al-
gorithm gives optimal approximation, but requires centralized computation, and
so is ill-suited for an efficient implementation in sensor networks. It serves, how-
ever, as the ultimate benchmark for approximation quality.

3.1 Bounding Boxes and Convex Hulls

One of the simplest representations of any polygon is its bounding box, the small-
est axis-aligned rectangle containing the polygon. The bounding box of S can be

Contour Approximation in Sensor Networks 361

computed with O(n) message complexity and time. Another simple representa-
tion is the convex hull of the polygon vertices, which can be computed exactly
with O(n2) message complexity, or approximated to within any fixed relative
error with O(n) message complexity (using an approximation technique due to
Dudley [2, 5]). These approximations can be very poor, as shown in Fig. 2: they
are too coarse, fail to highlight significant boundary features, and may lose im-
portant topological properties—the approximations of widely separated contours
may intersect (Fig. 2, right side).

3.2 Wavelets

Wavelet transforms [13] have been used extensively in signal processing, image
analysis and database operations. They represent a signal as a linear combi-
nation of normalized wavelet basis functions. A wavelet transform takes a one-
dimensional signal sampled at n points {f1, f2, . . . , fn} and outputs n coefficients
{c1, c2, . . . , cn} for a given set of basis functions. Given a parameter k < n, we
construct a size-k approximation of the signal by retaining just the k coeffi-
cients with largest absolute magnitudes, and truncate the rest to zero. Let c̃
and f̃ , respectively, denote the approximate wavelet coefficient vector and the
reconstructed signal. Then the L2 error of the approximation is given by∑

i

(fi − f̃i)2 =
∑

i

(ci − c̃i)2 =
∑

i∈truncated

c2
i .

We now describe a natural way to use wavelets for approximating a polygon
embedded in the two-dimensional plane, and a distributed scheme to imple-
ment it. Suppose the coordinates of a point pi are given by (xi, yi). We de-
compose S into two vectors Sx and Sy such that Sx = (x1, x2, . . . , xn), Sy =
(y1, y2, . . . , yn). We carry out independent wavelet transforms on Sx and Sy,
and achieve a compact representation of the curve by keeping only the k most
important wavelet coefficients. We can implement this computation in a dis-
tributed fashion, with every sensor forwarding a single message to its neighbor
in the sequence. The message from si to si+1, which has size O(k + log i) for
the specific case of Haar wavelets [6], contains the top k wavelet coefficients
of the sequence p1, p2, . . . , pi. Sensor si+1 integrates its own coordinates into
the wavelet transform and forwards the new message to si+2 and so on. Sen-
sor s1 initiates the computation and when the message reaches sn the algo-
rithm terminates. Summing up the message sizes

∑
i(k + log i), we see that

the total communication complexity of the Distributed-Wavelet algorithm
is O(n(k + log n)).

Unfortunately, this algorithm does not exploit the parallelism available in the
sensor network. In the full version of this paper, we describe a pipelined version
of the distributed wavelets algorithm that completes the computation in optimal
O(n) time. We state this as a theorem.

Theorem 1. There is a distributed implementation of the two-dimensional
Haar wavelet approximation that takes O(n) time, with total communication
complexity O(nk + n logn).

362 C. Buragohain et al.

Two key disadvantages of the wavelet representation of a polygon are that it
tries to minimize L2 error, rather than the more important Hausdorff error, and
it uses a fixed, nonadaptive set of basis functions. In Section 5, we will show
some examples where these disadvantages lead to very poor approximations.
This motivates us to consider approximation schemes that attempt to minimize
the Hausdorff error.

3.3 Optimal Approximation Using Dynamic Programming

Our goal is to partition the polygonal curve S = {p1, p2, . . . , pn} into k fragments
S1, S2, . . . , Sk, with associated approximating line segments A1, A2, . . . , Ak. Each
fragment consists of a subsequence {pi, pi+1, . . . , pj} of S, with consecutive frag-
ments sharing a common vertex. Each fragment and its approximating segment
have an associated error value, and the error of a partition is the maximum er-
ror over all fragments in the partition. An optimal partition OPT k(S) is defined
as a partition Q(S) such that the error is minimum over all possible partitions
of S. If the optimum approximating segment for a fragment depends only on
the points of the fragment, then an optimal partition OPT k(S) can be com-
puted using dynamic programming as follows. Let T be a k × n table, where
T (α, j) contains the optimal (minimum) error for approximating the polygo-
nal curve {p1, p2, . . . , pj} using α segments, where α ≤ k. We wish to com-
pute T (k, n). The key insight is that the optimal α-segment approximation of
{p1, . . . , pj} consists of two pieces: the optimal (α − 1)-segment approximation
of a prefix curve {p1, . . . , pi} for some i < j, and a single approximating seg-
ment for the fragment {pi, pi+1, . . . , pj}. This leads to the following recurrence:

T (α, j) = min
1≤i<j

max (T (α − 1, i), e(i, j)), (1)

where e(i, j) is the error of the optimum single-segment approximation for {pi,
pi+1, . . . , pj}.

We fill in the entries of T in increasing order of α, and for each α in order
of increasing j. Since the table has nk entries and computing each entry using
Eqn. 1 takes O(n) time, the dynamic program runs in O(n2k) time once the
e(i, j) values are known. The general recurrence of Eqn. 1 can be used to com-
pute optimal approximations under several different error metrics. We use the
following two in this paper:

1. Fixed-Segment Error : A fragment Sα = {pi, . . . , pj} is approximated by the
line segment pi, pj. The error e(i, j) is defined to be the maximum distance of
any point in the fragment from pi, pj, which is nothing but the Hausdorff error.

2.Floating-SegmentError :A fragmentSα = {pi, . . . , pj} is approximatedby the
bisector of the minimum bounding rectangle (MBR) of the points in the fragment.
The error e(i, j), the maximum distance between any point of S and the approxi-
mating segment, is half the width of the MBR, which is also the width of Sα.

The floating segment model allows the approximating polygon to use arbitrary
points in the plane as vertices, which can potentially improve the approximation

Contour Approximation in Sensor Networks 363

quality. However, the approximating segments for neighboring fragments do not
necessarily meet at a common point, and so additional segments may be needed
to patch them into a connected polyline.

A third approximation model, which we may call the Min-Link model, allows
the approximating polygon to use arbitrary vertices (not just vertices of S),
but requires the approximating segments for neighboring fragments to share a
common vertex. The optimum approximation for the Min-Link model cannot
be computed by dynamic programming, because the optimum approximating
segment for a fragment depends on points outside the fragment. Nevertheless,
the optimum k-segment approximation under the floating-segment model has
error no larger than the optimum k-segment Min-Link approximation (which
has half as many vertices).

4 Adaptive-Group-Merge (AGM): Provable-Quality
Contour Approximation

We now describe the main result of this paper: a new, efficient, distributed con-
tour approximation algorithm that delivers a worst-case guarantee on the ap-
proximation quality. In particular, we show that whatever approximation quality
the optimal (centralized) scheme achieves with k segments, our algorithm is able
to achieve that with at most 2k segments.

We prove this guarantee using the Floating-Segment model of error, described
in the previous section. That is, given an input polyline S, we consider an ap-
proximation A consisting of k possibly-disconnected segments. The polyline S
is partitioned into k polyline fragments S1, . . . , Sk, each associated with an ap-
proximating segment Ai. The Hausdorff distance between Si and Ai is εi, and
the maximum εi over all i is the error ε of the approximation A. Because the
segments of A are independent of each other, the error εi depends only on Si. By
choosing Ai to be the bisector of the MBR of Si, we achieve error εi equal to half
the width of the fragment Si. (The width of a set is the minimum separation
of two parallel lines that sandwich the set between them. The approximating
segment Ai lies parallel to and halfway between these lines.)

Let us define the width of a partition of S into fragments to be the maximum
width of a fragment Si. Let us denote a partition of S by Q(S), and its width
by width(Q(S)). We call a partition optimal if it has the minimum width among
all partitions of size k and denote it by OPTk(S).

In order to reason about the approximation quality of a partition, we define
the min-merge property. A partition Q(S) has the min-merge property if merging
any two adjacent fragments results in a fragment with width at least as large as
width(Q(S)).

One algorithm that produces a partition with the min-merge property is
Greedy-Merge: starting with the trivial partition of S into n segments (all
fragments with zero width), repeatedly merge the adjacent pair of fragments
whose merge product has minimum width, until the partition consists of k frag-
ments. It is easy to prove by induction that this algorithm produces a partition

364 C. Buragohain et al.

with the min-merge property. Likewise, applying Greedy-Merge to a partition
with the min-merge property preserves the property. However, Greedy-Merge
is not the only way to produce a partition with the min-merge property, as we
will see.

We now argue that any partition into 2k fragments with the min-merge prop-
erty has width no greater than that of OPT k(S).

Lemma 1. Let Q(S) be a partition of the path S into 2k fragments that has the
min-merge property. Then width(OPT k(S)) ≥ width(Q(S)).

Proof. Any partition of S into k fragments splits at most k − 1 fragments of
a 2k fragment partition. Therefore Q(S) will have at least k + 1 of its frag-
ments unsplit. By the pigeonhole principle, there exists some fragment Si of
OPTk(S) that contains at least two unsplit fragments of Q(S). By definition,
width(OPT k(S)) ≥ width(Si), which is in turn at least as large as the the width
of the union of the two unsplit fragments. By the min-merge property, this is at
least width(Q(S)).

The preceding lemma assumes that S is a path, with distinct endpoints p1 and
pn. If S is in fact a cycle, as in an isocontour application, then the proof can
be modified to show that width(OPTk−1(S)) ≥ width(Q(S)). This difference in
approximation quality between paths and cycles is minor, and we will ignore it
in the remainder of this paper.

The Greedy-Merge algorithm maintains the min-merge property, as noted
above. However, implementing Greedy-Merge in a distributed setting would
require global minimization at each step, and thus would suffer from a serializa-
tion bottleneck. We propose an alternative hierarchical merging algorithm, and
prove that it also preserves the min-merge property.

In the Adaptive-Group-Merge algorithm we divide the original curve S
into n/k groups, each with k fragments of size 1 each. The total number of
fragments is n. The algorithm proceeds in rounds that reduce the number of
groups, maintaining the invariant that each group contains k fragments. In each
round we split the current sequence of g groups into g/2! disjoint pairs of
adjacent groups (possibly with one group left over unpaired). For each pair we
combine the two groups into one group of 2k fragments, then run Greedy-
Merge on the combined group until the total number of fragments is k. We
repeat this for log(n/k) rounds until the total number of fragments is k.

For this algorithm to work we need to argue that each of the groups it produces
has the min-merge property. This is true for the initial groups of segments; the
following lemma establishes the fact inductively.

Lemma 2. Let Q and Q′ be two adjacent groups of fragments of S, each con-
taining k fragments and each with the min-merge property. If we apply Greedy-
Merge to the union of Q and Q′ until k fragments remain, the resulting group
has the min-merge property.

Proof. Without loss of generality assume width(Q) ≥ width(Q′). It follows that
width(Q ∪ Q′) = width(Q). As long as the min-merge property does not hold,
Greedy-Merge produces fragments with width less than width(Q).

Contour Approximation in Sensor Networks 365

Thus the min-merge property starts to hold just before Greedy-Merge first
produces a fragment with width at least width(Q). In particular, if Greedy-
Merge produces a fragment that includes two original fragments of Q, the
min-merge property must have held prior to that round of Greedy-Merge.
After k + 1 rounds of Greedy-Merge, at least k + 2 fragments of Q ∪ Q′ are
contained inside Greedy-Merge products, including at least two fragments
from Q. Thus the min-merge property holds after k rounds of Greedy-Merge,
if not before.

If n is not a multiple of k, at least one of the original fragment groups does not
have k members, violating the precondition of Lemma 2. However, this is easy
to overcome: to take up the slack we create one group of segments with size s
in the range k ≤ s < 2k, and greedily merge it to size k before the main AGM
algorithm begins.

To implement this algorithm in a distributed fashion, we need to keep track of
the widths of the new fragments after every merge operation. The simplest way
to achieve this is to maintain the convex hull of the points in each fragment [18].
When two neighboring fragments are merged, the convex hull of the resulting
fragment is the convex hull of the union of the convex hulls of the old fragments.
Thus when a merge operation occurs, the merging fragments need to exchange
information about their individual convex hulls.

In the worst case the convex hull of n points can have Θ(n) vertices. This
would give a message complexity of Θ(n2 log(n/k)) for AGM, which is more
than we would like. Fortunately, we can approximate each convex hull H using
only a constant number of points [2, 5], such that the width of the approximation
satisfies

(1 − δ)width(H) ≤ width(approx (H)) ≤ width(H)

for any desired 0 < δ < 1. This degrades the approximation quality of the result
by a small relative error, but allows the algorithm to run much faster. (The proof
of correctness appears in the full paper.)

Using this convex hull approximation, we can implement the Greedy-Merge
algorithm on each group of 2k fragments by sending all the fragment data (of
total size O(k)) to a coordinator node within the group, and let it run Greedy-
Merge locally. If the group encompasses N segments of S, this takes O(kN)
message complexity and O(N) time. Summing over all groups in all rounds of
the algorithm, we get total message complexity O(kn log(n/k)) and total time
O(n). Putting it all together, we have the following theorem:

Theorem 2. Given an n-vertex polyline stored in a neighbor-connected sequence
of sensors, the algorithm Adaptive-Group-Merge computes an approxima-
tion by k segments whose approximation error is at most (1 + δ) times the error
of the optimum approximation by k/2 segments, for any 0 < δ < 1. The algo-
rithm has total message complexity O(kn log(n/k)) and total running time O(n),
with the constant factor dependent on δ.

The Adaptive-Group-Merge algorithm’s approximation of S consists of k
disconnected segments: adjacent segments do not necessarily meet. Thus the

366 C. Buragohain et al.

output is neither a polygon, nor directly comparable with other schemes like
wavelets or Douglas–Peucker, because k disjoint segments require 2k vertices to
describe the output. Of course, we could simply join each pair of adjacent seg-
ments, but that näıve scheme always produces a (2k−1)-segment approximation.
In practice this may be improved: whenever joining two consecutive segments at
the intersection of their supporting lines would not degrade the local approxima-
tion quality beyond the worst-case bound for the whole partition, we can omit a
connecting segment. Our simulation results (cf. Section 5) show that indeed the
size of the resulting polyline approximation remains close to k.

Note that the best polyline approximation by k segments has error at least
as large as the error of the best approximation by k disconnected segments.
This allows us to convert the Floating-Segment approximation guarantees of
this section to bounds in the Fixed-Segment or Min-Link models, with the loss
of another worst-case factor of two.

5 Experiments and Results

In this section we experimentally demonstrate the quality of approximations
obtained by Distributed-Wavelet and Adaptive-Group-Merge. We use
dynamic programming as the optimal reference approximation.

The implementation of Adaptive-Group-Merge computes an approxima-
tion by k disconnected segments, then heuristically reduces the number of ver-
tices in the final approximation by linking consecutive segments at the intersec-
tion of their supporting lines whenever that does not increase the error of the
overall approximation. In our experiments we found that this heuristic reduced
the size of the final approximation from 2k vertices to around 1.2k.

Our implementation does not use the Dudley approximation [2, 5] as described
in Section 4, because we did not want to introduce another parameter into the
experimental setup. We computed the width based on the full convex hulls of
the fragments. Using the Dudley approximation might degrade our approxi-
mation quality slightly. Interestingly enough, the full hulls were very small in
practice—none contained more than eight vertices. This suggests that a practi-
cal implementation should be coded with a threshold, so that it uses the Dudley
approximation only when the true convex hull has too many points.

We believe that the key measure of approximation quality in practice is the
error associated with a given output size. Thus when we compare AGM against
other algorithms whose output size is fixed, we choose an input parameter k
for AGM that produces the same output size. In a practical setting, the user
would specify an input parameter k, with the knowledge that the output will
contain slightly more than k vertices. Because the algorithms produce polylines
as output, we use dynamic programming with the Fixed-Segment error as our
benchmark of quality.

In the following subsections we first compare the approximation performance
of the three algorithms, then give a few brief vignettes focused on the approxi-
mation behavior of individual algorithms.

Contour Approximation in Sensor Networks 367

Wavelets Adaptive-Group-Merge Dyn Program

Fig. 3. Approximations for the Lake Superior dataset. The top row shows outputs for
k = 8, the bottom row for k = 16.

5.1 Overall Approximation Quality

We compare the approximation performance of the algorithms on a GIS data set
that digitizes the boundary of Lake Superior into 1024 points. Fig. 3 shows the
approximations obtained with k = 8 and 16. Because wavelets aim to minimize
L2 error, the wavelet approximations cut off the extreme points and round them
out. Adaptive-Group-Merge does better, and the dynamic programming ref-
erence algorithm gives the best results, as expected. The trend was similar for
other data sets (Lake Huron boundary and Death Valley), and values of k rang-
ing from 8 to 64.

Next we show the approximations obtained by Adaptive-Group-Merge on
GIS datasets digitizing the boundaries of India and England into 1383 and 1213
points respectively. Fig. 4 shows the approximations obtained with k = 32, 48
and 64 points for both these boundaries. Adaptive-Group-Merge captures
these complex boundaries faithfully using a relatively small amount of memory;
approximation quality improves as k increases.

Next we evaluate quantitatively the approximations that are obtained by the
three schemes. We measure the algorithms using the Hausdorff error and the
relative area error εA we define as follows: if Adiff is the area of the symmetric
difference between the regions enclosed by the original and approximate curves,
and AS is the area enclosed by the original curve, then εA = Adiff /AS . We again
work with the Lake Superior dataset to analyze the approximation performance
of the three algorithms. In Figs. 5 and 6 we show the Hausdorff and εA errors
respectively. Adaptive-Group-Merge consistently and significantly outper-
forms wavelets, and is typically very close to the optimal dynamic programming
solution. Results for the L1 and L2 metrics were intermediate between those for
the Hausdorff and εA errors.

368 C. Buragohain et al.

k=32 k=48 k=64

Fig. 4. AGM approximates complex shapes faithfully. The first row shows approxi-
mations for the boundary of India, and the second row shows approximations for the
boundary of England.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

16 32 64

H
au

sd
or

ff
D

is
ta

nc
e

k

DISTRIBUTED-WAVELETS
ADAPTIVE-GROUP-MERGE

DYNAMIC-PROGRAM

Fig. 5. Hausdorff distances from S to A

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

16 32 64

A
re

a
D

iff
er

en
ce

k

DISTRIBUTED-WAVELETS
ADAPTIVE-GROUP-MERGE

DYNAMIC-PROGRAM

Fig. 6. Fraction of area missed (εA)

5.2 Wavelets and the Effects of Sparse Sampling

Because wavelet approximations try to minimize mean squared error instead of
maximum error, they can miss some important features, as illustrated in Fig. 7.
The figure shows a hand-crafted point set of size 64 and the 8 point approxima-
tions obtained by Distributed-Wavelet (Fig. 7(a)) and Adaptive-Group-
Merge (Fig. 7(b)). The wavelet approximation tends to weigh all 64 points in
the original curve equally, and so large errors for a few extreme points are offset

Contour Approximation in Sensor Networks 369

Fig. 7. Bad approximation by wavelets in low density regions

by small errors for the rest of the points. On the other hand the Adaptive-
Group-Merge algorithm seeks to minimize maximum error and thus produces
a much more acceptable approximation. This shortcoming of wavelet approxi-
mations is seen in more realistic data sets as well.

5.3 Approximation Quality in Theory and Practice

Although our primary concern is approximation quality as a function of the
number of vertices in a polyline approximation, our provable quality bounds in
Section 4 use the Floating-Segment error. We compared the Hausdorff errors of
Adaptive-Group-Merge and dynamic programming in the Floating-Segment
model to see how tight our bounds are. See the table below for the numerical
results on the Lake Superior data set. As predicted, Adaptive-Group-Merge
results for k segments are somewhat worse than the optimum k-segment approx-
imation, but better than the optimum (k/2)-segment approximation.

segments Adaptive-Group-Merge Optimum
8 15.8 13.3
16 7.43 5.14
32 3.27 2.39
64 1.33 1.01

6 Discussion

Reflecting on our simulation results, it seems clear that approximation quality
improves markedly as an algorithm pays closer attention to the geometry of the
shape. The wavelet algorithm uses a “generic” form of compression to reduce
the representation size, which tends to treat all vertices the same. This has the
virtue of simplicity, but often leads to poor approximation.

We also considered the Douglas–Peucker polygon simplification algorithm [4],
which is popular in geographical information systems (GIS), computational ge-
ometry, and computer graphics. This is a greedy scheme that starts with a
coarse representation (say, the four extreme vertices) then successively refines it
by adding a new line segment at each step. At each step, the algorithm adds seg-
ments to the vertex that is farthest from the current approximation. In typical

370 C. Buragohain et al.

GIS applications, the refinement continues until the maximum distance between
the approximation and the input polyline drops below a specified threshold. In
our setting, the termination occurs when the approximation reaches k vertices.

By design, the Douglas-Peucker scheme has a centralized flavor: at each step,
it requires global computation to determine the vertex of the contour that is far-
thest from the current approximation. We have developed distributed variants of
Douglas-Peucker, but decided to emphasize Adaptive-Group-Merge (AGM)
for several reasons. First, much of the simplicity and computational efficiency
of Douglas-Peucker is lost in adapting it to a distributed environment. Second,
while it generally yields good approximations in practice, Douglas-Peucker does
not have a good worst-case theoretical guarantee, while AGM does. And, fi-
nally, our experiments showed that distributed AGM produces approximations
at least as good as the centralized versions of Douglas-Peucker, and hence we
expect AGM to be the algorithm of choice in distributed settings.

By design, AGM is well-tailored for distributed environments. The localized
nature of AGM allows the algorithm to carry out contour data reduction in-
dependently at nodes. In particular, if consecutive portions of the contour are
available at m different nodes, then each node can reduce the contour size to O(k)
through entirely local processing, without risking global approximation quality.
Thus, AGM may be especially well-suited for heterogeneous multi-tiered archi-
tectures like Tenet [7] where clusterhead nodes will aggregate data from nearby
motes, and the application software will run only on clusterheads.

AGM guides its approximation by discarding those vertices whose removal
leads to least increase in the error, and thus pays close attention to local fea-
tures of the input—a long sequence of nearly collinear points may get replaced
by just the endpoints, while peaks are preserved. We find it encouraging that
(1) such a locally adaptive scheme yields a worst-case approximation guarantee,
which others including wavelets and Douglas–Peucker do not; (2) even though
AGM is limited by being tailored to the distributed architecture of sensor net-
works, it outperforms both wavelets and Douglas–Peucker in the quality of its
approximation; and (3) in most cases, AGM performs almost as well as the
optimal dynamic programming scheme (which is both centralized and slow).

References

1. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor optimization
for very small devices. IEEE Personal Communications Magazine, 7(5):28–34,
2000.

2. T. Chan. Faster core-set constructions and data stream algorithms in fixed di-
mensions. In Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 152–159,
2004.

3. K. K. Chintalapudi and R. Govindan. Localized edge detection in sensor fields. In
IEEE Intl. Workshop on Sensor Network Protocols and Applications, pages 59–70,
2003.

4. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Canadian Cartographer,
10(2):112–122, December 1973.

Contour Approximation in Sensor Networks 371

5. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory, 10:227–236, 1974.

6. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. One-pass wavelet
decompositions of data streams. IEEE Trans. on Knowledge and Data Engineering,
15(3):541–554, 2003.

7. R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chintalapudi, O. Gnawali, S. Rang-
wala, R. Gummadi, and T. Stathopoulos. Tenet: An architecture for tiered embed-
ded networks. Technical report, University of California, Los Angeles, November
10 2005.

8. J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average: Toward
sophisticated sensing with queries. In Information Processing in Sensor Networks:
2nd Intl. Workshop, pages 63–79. Springer-Verlag, 2003. LNCS 2634.

9. J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simplifica-
tion algorithm. In Proc. 5th Intl. Symp. on Spatial Data Handling, pages 134–143,
1992.

10. A. Kolesnikov. Efficient Algorithms for Vectorization and Polygonal Approxima-
tion. PhD thesis, Department of Computer Science, University of Joensuu, 2003.

11. D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless-network
research. Technical Report TR2003-467, Dept. of Computer Science, Dartmouth
College, July 2003.

12. S. Madden, M.J. Franklin, J. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. In Proc. of OSDI ’02, 2002.

13. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.
14. R. Moses, D. Krishnamurthy, and R. Patterson. A self-localization method for

wireless sensor networks. EURASIP J. Applied Signal Processing, 2003(4):348–
358, 2003.

15. R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory and
methods. In Information Processing in Sensor Networks: 2nd Intl. Workshop,
pages 80–95. Springer-Verlag, 2003. LNCS 2634.

16. N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:
New aggregation techniques for sensor networks. In Proc. of SenSys’04, 2004.

17. M. Singh, A. Bakshi, and V. K. Prasanna. Constructing topographic maps in
networked sensor systems. In Proc. of Workshop on Algorithms for Wireless and
Mobile Networks (ASWAN), 2004.

18. G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc.
IEEE MELECON ’83, pages A10.02/1–4, 1983.

19. M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S. Singh. Ex-
ploiting heterogeneity in sensor networks. In Proc. of IEEE INFOCOM 2005,
2005.

20. J. Zhao and R. Govindan. Understanding packet delivery performance in dense
wireless sensor networks. In Proc. of the 1st Intl. Conf. on Embedded Networked
Sensor Systems, SenSys’03, pages 1–13, 2003.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 372 – 388, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distortion-Aware Scheduling Approach
for Wireless Sensor Networks

Periklis Liaskovitis and Curt Schurgers

University of California San Diego, Electrical and Computer Engineering Department
{pliaskov, curts}@ucsd.edu

Abstract. An important class of applications for wireless sensor networks is to
use the sensors to provide samples of a physical phenomenon at discrete
locations. Through interpolation-based reconstruction, a continuous map of the
monitored environment can be built. In this paper, we leverage the spatial
correlation characteristics of the physical phenomenon and find the minimum
set of nodes that needs to be active at each point in time for a sufficiently
accurate reconstruction. Furthermore, multiple such sets of nodes are found so
that a different set can report at each point in time in a rotating fashion. This is
crucial in improving network lifetime. To perform all related scheduling tasks
we employ a novel approach which does not assume a-priori knowledge of the
underlying phenomenon. Instead it jointly estimates process characteristics and
performs node selection online. We illustrate that significant gains in network
lifetime can be achieved with minimal impact on the overall reconstruction
quality, measured in terms of distortion.

Keywords: spatial random process, irregular sampling, distortion, lifetime,
energy efficiency.

1 Introduction

Large scale networks of wireless micro-sensors are envisioned to enable the
monitoring of physical phenomena without supervision for long periods of time. As
sensor nodes often contain a limited energy supply, the individual nodes, and more
importantly the network as a whole, have to operate in a highly energy efficient
fashion. At the same time, it is crucial that any energy saving mechanism preserves a
certain monitoring quality of the network, as this is its primary functionality.

It has been realized that sensors in close physical proximity can generate correlated
readings, which can be exploited to increase the overall network lifetime with
minimal effect on the monitoring quality. The basic principle is that at each moment
in time, only a subset of all available sensor nodes is kept active, while the others are
in an energy efficient sleep mode. If the active set of sensors is chosen appropriately,
the negative impact on overall sensing quality can be kept to a minimum. It is crucial
to note here that such a strategy does not lead to an increase in network lifetime by
itself. In fact, only if multiple such sets of sensors, i.e. sets providing adequate
coverage, are found and activated sequentially, does the overall network lifetime
increase. This process of finding rotating sets is the idea behind sensing topology
management.

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 373

We can broadly identify two classes of sensing applications, both of which can
benefit from such topology management, namely event-driven and continuous-
monitoring applications. Event-driven sensor networks focus on detecting single
events, such as the presence of an intruder or when the temperature exceeds a certain
alarm level. Topology management for these systems has generally been investigated
as k-coverage, where each point in space has to be sensed by at least k sensors [6].
Most approaches have assumed a known sensing range or sensing behavior [13].

On the other hand, our work focuses on the second class of applications, namely
continuous-monitoring. In this case, the goal is to use the readings from the sensors to
reconstruct a spatio-temporal estimate of a physical phenomenon. For example, a
sensor network could be deployed to build a temperature map of an area. This
essentially boils down to interpolation, as we want to reconstruct a continuous
phenomenon from a discrete set of measurement points, i.e. readings at specific
sensor node locations. In this case, topology management should try to find the
minimum set of sample points needed to generate a sufficiently accurate interpolation,
e.g. within a specified distortion bound. Note that this criterion for selection is
distinctly different from the k-coverage problem for event-driven applications.

The primary focus of the work presented here is finding an efficient way to reduce
the amount of data, i.e. the amount of sample points, output by the network at any
point in time, while still being able to accurately reconstruct the monitored
phenomenon in the entire spatial domain. We do not yet examine how this data
actually reaches the data processing center. Our notion is that a reduced amount of
data can benefit any type of aggregation scheme subsequently imposed on the sensors
to eventually communicate this data. In this sense, our work most closely compares
with Slepian-Wolf encoding of correlated sources as presented for instance in [7]. It is
however, to the best of our knowledge, the first to practically address two vital issues:
firstly, how the correlation structure of the sensed phenomenon can be discovered by
the network on the fly, without a-priori assumptions on process statistics, which is
often the case in real deployments; and secondly, how sensing behavior is determined
by the physical correlation structure and leads to energy efficient reporting schedules.
Our motivation is that the driving element for any real sensor network should be
adjusting to the physical phenomenon at hand. For instance, the sensing range is not
necessarily circular and the statistical behavior is not always Gaussian.

We will tackle the sensing topology management problem for continuous-
monitoring applications assuming one-dimensional scenarios. This setup corresponds
to applications such as monitoring the light intensity in a hallway or the humidity
along a coast line and there exists a mobile access point (i.e. a robot or aircraft) for the
sensor nodes, as discussed in [4] and references thereof. It also provides a useful first
step into the more general, but more complex, problem in multiple dimensions.

2 Problem Overview

Consider N monitoring sensor nodes deployed over a one-dimensional spatial
observation interval of length L. At distinct time instants ti a data processing center
seeks to obtain a reconstruction of the monitored phenomenon, within a distortion

374 P. Liaskovitis and C. Schurgers

bound D0. The reconstruction will be an interpolation of the measured values, as the
phenomenon is a continuous function of space.

If N is large, correlation in the phenomenon translates to redundancy in
measurements, so that, ideally, not all N readings are necessary to produce a
sufficiently accurate interpolation. For energy efficient operation, the center should
try to identify the minimum set of readings it needs to provide a sufficiently accurate
interpolation, and request that only the respective sensor nodes report in the future.
This set inevitably depends on the correlation characteristics of the phenomenon. In
addition, the set of nodes should not remain fixed, but rotate among the available
nodes to increase the lifetime of the monitoring system as a whole. The data center
must thus devise a sequence of selections over time, i.e. impose a reporting schedule
on the sensors. This operation can be succinctly described by the following
optimization problem:

Minimize: (1)

Subject to: (2)

and (3)

Mi is a vector of length N where each element corresponds to one sensor. The
element is equal to one if that sensor reports at ti and zero otherwise. I(Mi , m) stands
for a function indicating whether the m-th position of vector Mi is unity or,
equivalently, if sensor m is a member of the set reporting at ti. E[D] is an average
measure of distortion and tk is the last time instant of interest. The initial energy of the
nodes is denoted as E0. Minimization problem (1) is over the total number of
messages, i.e. samples, sent from sensors to the data center. Constraint (2) states that
the total number of messages sent by any sensor m cannot exceed its initial energy,
assuming unit energy cost for a message. This simple model is adequate for our
purposes of describing the energy consumption of the network especially since direct
communication capability of the sensors to a mobile access point has been assumed.

There are two further observations to be made on our formulation:

• When a schedule is constructed, its performance, i.e. if it actually meets the
distortion bound, can only be evaluated in an average sense as per (3),
because the monitored phenomenon is a random process. The processing
center must therefore possess statistics for the process.

• The most information the processing center can obtain about the monitored
phenomenon at any single time instant is N sensor measurements. It has to
rely on those N discrete values, perhaps over multiple time instants, to
estimate the necessary statistics of the process it requires.

Building on these two observations, we propose a two-phase approach. In the first
phase, the learning phase, all N nodes report their readings to the data processing
center. This phase lasts for K time instants, i.e. K periods of periodic reporting. Based
on the information gathered this way about the underlying physical phenomenon, the
reporting sets are computed and the nodes are notified of their membership to these
sets. Only designated nodes will report their measurements in future time instants.

==

k

i

N

m

mI
11

),(iM

0
1

),(EmI
k

i

≤
=

iM Nm ,...,2,1=

0][DDE ≤

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 375

This whole procedure assumes that the statistics of the underlying physical
phenomenon do not change significantly during the lifetime of the network, i.e. that
the phenomenon is stationary in time.

During the first phase, we use a procedure with two logical steps. In the first step,
the available readings are used to distill useful statistical information about the
underlying physical phenomenon. This is used in the second step to devise the
rotating sets that satisfy the desired distortion bound. The architecture is graphically
depicted in Figure 1.

The learning phase is potentially costly in terms of energy consumption, as all
nodes need to report their measurements for K time instants. Note however, we will
evaluate different alternative schemes to devise the reporting sets, which might
require different levels of statistical knowledge of the process and hence different
values of K. Before introducing our schemes, we will first give a more detailed
mathematical description of our setup in the next section. This includes the modeling
of the physical process and a discussion of the basic interpolation at the data
processing center.

3 Physical Process

At each point of continuous space, the measurable value of the phenomenon is a
random variable of unknown distribution. Values at points in close proximity are, in
general, correlated with one another, thus forming a spatial random process S(x). At
each point in time ti the values of the process in space constitute a sample function or
realization of the process Si(x).

We assume that S(x) is real, wide sense stationary (WSS) and ergodic in mean and
correlation over the entire observation interval. This is a mild assumption since it
holds for many real world processes as well as most correlation models appearing in
current literature [1][4][7]. Again, without compromising the applicability of our
methodology on real-world random processes we assume that S(x) has a continuous
covariance function RS(x-y) and power spectral density φ(�) given by:

 (4)

The power spectral density function is also assumed to satisfy the condition:

 (5)

Monitoring phase: time instants > tK

Learning phase: K time instants

(I) Perform statistical operations on gathered readings
(II) Devise schedule of monitoring sets

Fig. 1. Monitoring Architecture

∞

∞−

⋅=⋅==− ωωφτ ωτ deySxSERyxR j
SSS)()]()([)()(

0)(=ωφ),(BB−∉ω π<B

376 P. Liaskovitis and C. Schurgers

This condition means that the process can effectively be represented by its
equidistant samples without loss in spectral information, i.e. that it is band-limited.
The band-limited assumption has been extensively employed in recent research work
to describe smoothly varying physical phenomena such as temperature and humidity
[2]. Note that refers to cyclic frequency normalized by the rate with which these
equidistant samples are obtained, Fs.

4 Interpolation

Sensor nodes (we also refer to them as ‘sensors’ for short) are distributed over the
spatial observation interval L in a uniformly random fashion. Their exact locations
{xn}, where {xn} is an ordered set, are assumed to be known and fixed over the whole
lifetime of the network. This is achievable by running a localization service in the
network. In addition, sensors are indexed by increasing order of their positions. The
messages sent to the data center, are assumed to contain exactly one time-stamped
value Si(xn) and impose a standard unit energy cost. When it is not reporting, a sensor
is in sleep mode. In this mode, the node saves energy by not sensing, not processing
data and not sending it, where the last contribution is often dominant. If direct
transmission to the data processing center is not feasible, nodes might have to resort
to multi-hop communication. This imposes an additional constraint on when nodes
can turn their radio off, and which is governed by communication topology
management. In this paper, as previously discussed, we solely focus on the sensing
topology problem, postponing the interaction with multi-hop communication to future
work.

With the assumption of no measurement and no communication noise, at each time
instant of interest ti the data processing center possesses the values Si(xi). The vector
xi contains only the positions of those sensors that were scheduled and reported and
has as many elements as are the non-zero entries of Mi. The operation performed on
this data to reconstruct the process is of the form:

 (6)

where Uk = Si(xk). The processing center basically treats the realization Si(x) as a
deterministic function of space and interpolates its reported values. The term
‘interpolation’ stresses the requirement that the resulting reconstructed version of the
realization should, at least, induce zero error at the sampling points, i.e. (Mi, xk) =
Si(xk), k = 1, …, |xi|. Note that (6) is a linear operator with respect to Uk. Distortion
can be readily defined as:

 (7)

Equation (7) indicates the average reconstruction performance of a given set of
reporting sensors Mi over all possible realizations of the process in time.

The general interpolation equation (6) utilizes all sampled values and all sampling
positions to compute the estimate at a point x of the observation interval. Specific
interpolation schemes should define the form of the weighting functions gk(x, xi),
usually referred to as interpolation kernels [8]. The characteristic of interest for an

=
⋅=

ix

ii xM
1

),(),(ˆ
k

kk UxgxS

]))(),(ˆ([][
0

2−=
L

dxxSxSEDE iM M
i

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 377

interpolation kernel is the support it requires on the observation space, i.e. how many
sampled values need to be taken into account for the computation of the estimate at a
point x. A kernel with large sample support results in good reconstruction for
intermediate points of the observation interval but enhances edge effects in a real
system and is computationally burdensome.

A generic class of interpolators with finite sample support is Lagrange
interpolators defined by:

 (8)

where xm+1 < … < xm+p < x < xm+p+1 < … < xm+p+q are the positions of p+q sampled
values, of which p immediately precede x and q immediately follow x, as indicated by
the vector xi . For p = q = 1 the scheme corresponds to linear interpolation.

For reasons that will be clarified later on, we have primarily used the following
interpolation scheme in our system:

 (9)

with r(x) being the cubic four-point interpolation kernel [8] with � = -0.5, which we
do not reproduce here due to lack of space and hi(x) is a nonlinear space
transformation such that:

 in (0,L) (10) and (11)

The basic idea behind the scheme (9) is to ‘stretch’ space so that consecutive
sampling positions become effectively equidistant in the transformed space, with �
being their resulting distance. The function hi(x) defines the one-to-one mapping
between a point in the original space and a point in the transformed space. Equations
(10) and (11) can for instance be satisfied by a piecewise-linear mapping function.

Next, we present the main contributions of this paper: how to construct generic
monitoring schedules that meet pre-specified distortion bounds through online
estimation of process statistics, and how to best exploit available statistics to devise
highly energy efficient schedules.

5 Monitoring Schemes

A monitoring schedule, as previously mentioned, is a sequence of sensor set
selections over time. Selected sensors have to be able to provide reconstruction within
some distortion bound D0. In addition, selected sets should be as disjoint from each
other as possible. To that end, the first scheduling scheme we examine is uniformly
random selection.

∏
++

+=

++

≠
+=

⋅
−
−

=
qpm

mk

qpm

nk
mn

k
nk

n U
xx

xx
xS

1 1

)(),(ˆ
iM

0
)(

)(
)(>=

xd

xdh
xv i

i
Δ=−= +

+

)()()(1

1

kiki

x

x

i xhxhdxxv
k

k

+
Δ

−
Δ

=

⋅Δ⋅−=
2

)(

1
)(

))((),(ˆ

xh

xh
k

ki

i

i

UkxhrxS iM

378 P. Liaskovitis and C. Schurgers

Random Selection: At each time instant choose M out of N sensors uniformly at
random to report.

A conceptually similar scheduling scheme is:
Random Binning: Divide the observation interval in A1 bins, each of length L / 1.

In each bin choose A2 sensors uniformly at random to report. To reach the desired
number of active sensors M, the data center may have to sequentially choose one
sensor at random to report from the bin that currently contains the most (not
previously selected) sensors. The intuition behind this scheme is to have at least one
sensor active and reporting in each bin at all times. Therefore, if the choices of
parameters are such that M < L / A1 * A2 the value of A2 is forced to unity.

The next scheduling scheme stems from the familiar notion of equidistant sampling
of a signal:

Semi-Equidistant Sampling: At time instant ti choose the M sensors that are closer
to positions

to report. What this scheme basically does is, starting off at a different initial point for

each time instant, find positions that are spaced
M

L apart and then schedule the

sensors that are closest to those positions to report.

The remaining question is how to choose M so that the M selected sensors give
distortion D0 on the average. At system initialization, the processing center has no
information about what M should be, because it has no knowledge about the process it
is monitoring. Even for these simple monitoring schedules there is a need for
distortion prediction ahead of time. Specifically, the data processing center needs a
way to be able to evaluate the average performance of a configuration of sensors M,
without actually activating that configuration.

This operation corresponds to step 1 of the scheduling algorithm, as was shown in
Figure 1. Overall, monitoring with the above schemes is performed as follows:

• Step 1: Construct a distortion prediction curve i.e. a function Ê[DM] for all
vectors M. From the curve find the number of sensors M that gives average
distortion D0.

• Step 2: At each time instant select M out of N sensors in the way defined by
the corresponding scheduling scheme.

We next elaborate on an algorithm that, given a systematic way to select M out of
N sensors, produces a distortion prediction curve tailored to this selection scheme.
The method requires reporting from all available sensors for K initial time instants.

5.1 Distortion Prediction

Introducing the discrete process Q(x): (12)

equation (7) can be re-written as: (13)

M

L
kOffsetx ik ⋅+=

−
=

M

L

OffsetL
k i,...,0

])([][
0

2=
L

dxxQEDE iM
iM

),(ˆ)()(, xSxSxQ ii iM M
i

−=

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 379

This new process evolves in time and space according to how close the estimate of
S(x) being constructed at the data processing center is to the actual process.

1. Begin operation at t = t0.

2. Activate all N sensors for the initial K time instants. Record K sets of reported values.

3. Perform interpolation for each set separately according to (9). Call the interpolated sequences n(M0,
x), n = 1, …K.

4. To predict distortion for a target sensor set Mi, interpolate the values of the sensors, comprising set Mi
to produce n(Mi, x), n = 1, …K. Then compute the quantity:

 K

n

L

nn xSxS
K

DE
i

1 0

2)),(ˆ),(ˆ(1][ˆ
i0M MM

Algorithm 1. Distortion Prediction

To predict distortion, we need an estimate of the second moment of the process
QMi(x) as per (13); this can be achieved if we consider that the realizations of S(x) and
hence their reconstructed versions (Mi, x) are ergodic. The natural estimator

 (14)

is in this case the optimal one. In order to use (14), however, we still need the exact
values of the realization Sn(x). We propose to approximate Sn(x) by n(M0, x), where
M0 is the set of all available sensors. To obtain a sufficient number of values of Q(x)
all sensors have to be active and reporting for K time instants. Algorithm 1
systematically presents these operations.

5.2 Simulations

Reliable distortion prediction is an integral part of scheduling. We present simulation
results on the quality of our distortion prediction algorithm for the three scheduling
schemes presented in section 5. First, we elaborate on our simulation setup, which is
the same throughout the paper. We generate one realization of a spatially correlated
process by feeding zero mean uniformly random white noise of unit variance into a
low-pass filter, referred to as the spatial filter. The two filters we have experimented
with have transfer functions as shown in Figure 2.

As can be seen, the process generated by filter H1 has negligible energy outside the
interval (-0.0314, 0.0314) rads/sample resulting in bandwidth B1 = 0.0314
rads/sample while B2 = 0.157 rads/sample. The specific choice of filters was made
because H1 imposes the same gain to all frequencies of interest, thus generating
process realizations with an accurately defined bandwidth, whereas H2 is frequency
selective.

=

⋅==
K

n

L

n

L

dxxQ
K

dxxQEDE
1 0

2
,

0

2)(
1

])([ˆ][ˆ
iiM

i MM

380 P. Liaskovitis and C. Schurgers

g

-0.2 -0.1 0 0.1 0.2
0

20

40

60

80

100

120

2B1

-0.2 -0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(rads/se (rads/sec)

2B2
H1 H2

Fig. 2. Filters for process generation

We choose a one dimensional field of length L = 10 m. To mimic a continuous
process in our calculations, we have divided the field in tiny slots of length �x = 0.001
m. Furthermore:

 (15)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

0 200 400 600 800 1000
0

5

10

15
Random

Selection-Filter H1

D

Prediction

Average

M

M Random
Binning-Filter H2

D

Prediction

Average

Random
Binning-Filter H1

D

Prediction

Average

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Random

Selection-Filter H2

D

Prediction

Average

0 200 400 600 800 1000
0

5

10

15

20

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Semi-Equidistant
Sampling-Filter H1

D

Average

Prediction

Semi-Equidistant
Sampling-Filter H2

D

Average

Prediction

M M

M M M

Fig. 3. Predicted and true average distortion for three scheduling schemes

In this case, � is 10000. The N sensors are deployed uniformly random over this
field. We chose N = 1000 for the results presented here, but also experimented with
other values. We evaluated the quality of distortion prediction as described by
Algorithm 1. Always starting from the same random initial deployment of N sensors,
we removed N – M sensors according to each of the scheduling schemes described in
section 5 and logged the true distortion suffered by the resulting set of M sensors,
averaged over a hundred process realizations. For distortion prediction, we generated
K realizations of the process, performed interpolation of all N initial sensor values and
then for each reduced set of M sensors estimated distortion by regarding these ‘best’
interpolated versions as estimates of the true signal. We experimented with different

xL Δ⋅Θ=

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 381

values of K. These results are not included due to space limitations. A good
compromise between prediction accuracy and overhead was found to be K = 7. The
resulting true vs. predicted distortion curves are shown in Figure 3.

The parameters chosen for the random binning scheme were A2 = 2 for both filters
and A1 = 0.1 for filter H1 and A1 = 0.025 for filter H2. We observe that, in all cases,
prediction closely matches the average up to the knee of the curve, which is the
interesting region for most practical scenarios, i.e. those requiring relatively low
distortion.

The overall topology management procedure is thus as follows. In step 1 (see also
section 5), these prediction curves of distortion versus M (the number of sensors that
remains active in each set) are generated. Given a predefined desired level of
distortion, the appropriate value of M is found. This M is the only input needed for
the random selection, random binning and semi-equidistant sampling procedures in
order to devise the reporting sets of sensors.

5.3 Minimal Semi-equidistant Sampling

Two key observations can be made on the monitoring schemes discussed so far:

• They can suffer in terms of energy consumption from a potentially high value
of K. K defines the duration of the energy-expensive learning phase where all
sensors have to report. Its value essentially depends on the temporal
correlation characteristics of the process and may greatly fluctuate for
different scenarios.

• The curves shown in Figure 3 represent a continuous tradeoff of energy spent
for sensing and reporting versus distortion induced when reconstructing at the
data center. But we also notice that the curves corresponding to Semi-
Equidistant Sampling have a relatively sharp knee, specifically at M ≅ 120
sensors for filter H1 and at M ≅ 400 sensors for filter H2.

The latter observation is related to the fact that we are performing equidistant
sampling on a band-limited process. It would be beneficial therefore to discover the
minimum possible M that can give us arbitrarily low distortion in the Semi-
Equidistant Sampling scheme. According to the Nyquist criterion, a band-limited
continuous signal with W as its highest cyclic frequency component can be
reconstructed perfectly from its equidistant samples, if they are obtained at a cyclic
sampling frequency Fs,min at least equal to W / . Equivalently the sampling period
Ts,max can be at most / W / W.

The maximum sampling period is roughly the threshold distance after which
equidistant samples of the signal become uncorrelated and therefore cannot provide
any useful information about the signal. Thus, we will hereafter refer to the maximum
sampling period as the correlation distance Cd of the signal (this is not exactly
accurate nomenclature, but is done to make the discussion more intuitive).

Our goal now is to estimate the bandwidth of the process or, equivalently, its
correlation distance. We can then obtain the fewest possible number of equidistant
sensors necessary to reconstruct the process with arbitrarily low distortion. However,
we are constraint to the actual (random) positions of the N deployed sensors, and
therefore typically cannot achieve this ideal equidistant sampling. However, as we
will show, we can still utilize this information to generate a minimal semi-equidistant
sampling monitoring scheme.

382 P. Liaskovitis and C. Schurgers

For true equidistant sampling, the minimum number of sensor nodes needed is:

 (16)

This is essentially the Nyquist rate of the process. Note that the discretization of the
space in slots of �x, imposes the following relationship between the bandwidth of the
continuous space process, W, and the normalized bandwidth, B [12]:

 (17)

A substitution in (17) readily gives us the Nyquist rates for the processes generated by
the filters H1 and H2 as 100 sensors and 500 sensors respectively, which are close to
the knees of the curves in Figure 3, as cited earlier.

With the assumption of possessing an algorithm (presented in the next subsection)
that estimates the bandwidth B, the minimal semi-equidistant monitoring policy will
be:

Minimal Semi-Equidistant Sampling:

Step 1: Estimate B, Cd and Mmin from (17) and (16).
Step 2: At time instant ti choose the Mmin sensors that are closer to positions

to report.
One can observe that the sensor selection taking place in step 2 is identical to that

of Semi-Equidistant Sampling. Minimal Equidistant Sampling is a special case of
Semi-Equidistant Sampling for M = Mmin. Because it uses the minimum possible M
that can achieve arbitrarily low distortion, it is also the best possible semi-equidistant
sampling scheme in terms of producing disjoint sets of sensors. The maximum
number of disjoint sets thus produced is N / Mmin. We refer to this ratio as the
oversampling factor of the network. Of course, this policy would be most beneficial,
if also bandwidth estimation in step 1 needed a low value for K. In the following
section we present such a bandwidth estimation algorithm.

5.4 Bandwidth Estimation

The problem of bandwidth estimation readily translates to estimating the spectrum of
the process, i.e. discovering which frequencies hold the bulk of its power. This needs
to be done at the data center from a limited number of process samples Si(xn) that are
irregular in space, because the sensors have been deployed at random. To achieve this
we take advantage of the extensive research that has been conducted on the topic of
spectrum estimation i.e. estimating the power spectral density of the process as
defined by (4).

Two categories of estimators have emerged as prevalent in this area. The first
category consists of estimators that directly operate on the irregularly sampled data,
such as the Lomb-Scargle estimator [11]. The second one includes estimators that first
perform resampling, i.e. interpolation of the data on a regular grid, and then utilize
one of the numerous techniques for spectrum estimation of regularly sampled data,

dC

L
M =min

ds Cx
B

TxWB =Δ⋅=Δ⋅=
π

max,

minM

L
kOffsetx ik ⋅+=

−=

min

,...,0

M

L

OffsetL
k i

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 383

such as the smoothed periodogram or auto-regressive modeling [9]. For reasons of
simplicity, we have chosen to use an estimator of the second category.

Resampling, essentially means interpolation on the regular grid defined in (15).
Initially, values from all available sensors are used for resampling and eventually we
obtain (M0, x) computed at a set of � discrete positions of the observation interval
{yk}. To leverage accuracy in resampling, we demand that all sensors report for the
initial K time instants and concatenate the resampled sequences. The assumption here
is that the initial set of sensors is numerous enough to provide us with a near errorless
representation of the process realization so that the bandwidth estimate will be close
to the true bandwidth. Recall that a similar assumption holds for distortion prediction.

To get a reliable resampled sequence for our bandwidth estimation procedure, we
choose to interpolate the initially reported values with the Lagrange method (8)
instead of (9). Our initial experiments indicated that Lagrange interpolation results in
very low distortion for p + q > 4 (Lagrange parameters), but only if the used number
of sensor values well exceeds the Nyquist rate. Otherwise, distortion can be very high,
which is undesirable and therefore we use (9) in all other cases.

The method we have used to estimate the normalized spectrum B from the �
resampled values is the smoothed periodogram or Blackman-Tukey estimator [12]:

 (18)

where w(x) is Parzen’s spectral window [10] used as a smoothing kernel, and

nR̂ is an

estimate of the covariance of the process, computed as:

 (19)

(M0, x) in (20) is assumed to have been normalized in the mean. �S is a parameter of
the spectral window satisfying ∞→ΘS

 and 0/ →ΘΘS
 as ∞→Θ . Eventually the

bandwidth estimate is obtained as per equation (20) where � is chosen close to unity.
The algorithm is depicted in the corresponding box.

 (20)

As stressed in the previous section, it is desirable that the number K of time

instants that all sensors have to report for bandwidth estimation is low. To verify this

Begin operation at t = t0.

Activate all N sensors for the initial K time instants. Record K sets of reported values.

Perform interpolation for each set according to (8). Then concatenate the interpolated sequences.
Call the resulting sequence (M0, x).

Estimate the autocorrelation sequence according to (19), the power spectral density according to
(18), the bandwidth according to (20).

Algorithm 2. Bandwidth Estimation

Θ

Θ−=

− ⋅
Θ

⋅
⋅

=
S

Sn
n

S

nj R
n

we ˆ)(
2

1
)(ˆ ω

π
ωφ

−Θ

=
+⋅

Θ
=

||

1
||),(ˆ),(ˆ1ˆ

n

k
nkkn ySySR 00 MM

})(ˆ)(ˆ{minargˆ
−−

⋅==
π

π

ωωφεωωφ ddB
A

AA

384 P. Liaskovitis and C. Schurgers

we performed simulations over a hundred independently generated initial node
deployments and process realizations. The results, translated into Nyquist rates by
way of (17) and (16) are shown in Figure 4.

We also experimented with values of K higher than two but obtained very similar
results, enabling us to infer that low values are sufficient for practical purposes. The
Nyquist rate estimate for filter H1 is quite close to its true value for initial numbers of
sensors down to the true Nyquist rate of 100 sensors. It can be observed that raising K
only improves the estimate when the initial number of sensors is lower than this
threshold. For the case of H2 there is a slight bias towards lower Nyquist rates, i.e.
lower bandwidths. This can be attributed to the specific shape of the spatial filter and
the type of spectrum estimation employed in (18) that tends to underestimate low
energy spectral content as in the tails of H2. This bias however does not practically
affect us because the knee in the Semi-Equidistant Sampling distortion curve for filter
H2 (Figure 3) is itself somewhat ill-defined.

200 400 600 800 1000

200

400

600

800

200 400 600 800 1000

40

60

80

100

120

140

160

N N

K=1

K=2

K=1

K=2

M

true

true

M
Filter Filter

=0.999

=0.999

Fig. 4. Nyquist rate estimates for filters H1 and H2

The schemes presented in section 5 allow a direct tradeoff between distortion and
energy by way of adjusting the number of reporting sensors M. Minimal semi-
equidistant sampling allows such a tradeoff indirectly, through adaptation of the
parameter � (see equation (20)). This parameter steers the accuracy of spectral
estimation and therefore the resulting energy consumption. In fact, the tradeoff of
distortion versus � can be quantified and predicted in much the same way as for all
the schemes of section 5.

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

D D
Minimal Semi-Equidistant

Sampling Filter H1

Minimal Semi-Equidistant
Sampling Filter H2

Average

AveragePrediction

Prediction

Fig. 5. Predicted and true average distortion for the Minimal Semi-Equidistant Sampling
Scheme

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 385

The related curves for K = 7 are shown in Figure 5. The magnitude of distortion is
comparable with that of the diagrams in Figure 3. However, such distortion prediction
necessitates a long learning phase, and thus relinquishes the advantage Minimal Semi-
Equidistant Sampling has over the schemes of Section 5.

6 Comparative Results

We have thus far presented four monitoring policies. Three of them, namely Random
Selection (RS), Random Binning (RB) and Semi-Equidistant Sampling (SES) require
the construction of a distortion prediction curve when the network starts operating.
This translates to all sensors having to report for K = K1 initial time instants. Figure 6
comparatively shows average distortion results for these three schemes.

The fourth scheme presented, namely Minimal Semi-Equidistant Sampling
(MSES) requires all sensors to report for K = K2 initial time instants, where, in
general, K2 < K1. This scheme in essence tries to directly obtain M at the knee of the
SES curve in Figure 6 without going through the expensive distortion prediction
procedure.

The last step in our simulation study is to actually impose a schedule on the
network and track reconstruction distortion as well as the status of sensors over time.
We assumed all sensors start out with the same amount of a thousand energy units and
that they spend twenty energy units each time they send a message to the data
processing center.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000
0

5

10

15
D D

M M

Filter H1
Nyquist = 100

Filter H2
Nyquist= 500

SES

RS

RB
SES

RS

RB

Fig. 6. Average distortion for three heuristic monitoring schemes

Keeping the same initial random sensor deployment as in the distortion prediction
scenarios of Figure 3, we first ran the MSES monitoring scheme with � = 0.999. The
initial average distortion observed for this scheme was 1.1194 for filter H1 and
0.0078443 for filter H2. For a fair comparison with monitoring based on the two
random schemes (in this case, SES is equivalent to MSES) we have to specify the
number of sensors M, so that both of them achieve the same average distortion as
MSES. This can be readily acquired from the distortion prediction curves of Figure 3
resulting in M = 290 and 794 for scheme RS and filters H1 and H2 respectively and M
= 184 and 678 for scheme RB and filters H1 and H2 respectively. The plotted results
include the overhead of the learning phase of K1 and K2 time instants. The final results
are shown in Figure 7, where we have also added a black solid line to indicate when
the network would completely die out if no schedule was imposed.

386 P. Liaskovitis and C. Schurgers

p y p

0 50 100 150
0

0.2

0.4

0.6

0.8

0 50 100 150
0

200

400

600

800

1000

0 200 400 600
0

200

400

600

800

1000

0 200 400 600
0

5

10

15

20

25

D

titi

ti ti

RS

MSES
RB

D # of sensors alive

of sensors alive

RS

MSES

RB

RS MSES
RB

RS

MSES

RB

Unscheduled

Fig. 7. Distortion and number of alive sensors over time for (a)Filter H1 (b)Filter H2

The distortion remains low as long as the sensors remain alive, and only increases
once nodes start dying. Note that lifetime is much higher for filter H1 than for filter
H2. This is due to the fact that the oversampling factor N / Mmin is much higher for the
process generated by H1 than that by H2, i.e. 1000 / 100 vs. 1000 / 500. The
oversampling factor is essentially an upper bound to the lifetime gain we can obtain
through scheduling sensor reports. The MSES policy significantly outperforms the
distortion prediction based schemes both in terms of quality of reconstruction and of
number of sensors alive in the network at any given time. The RS (random selection)
scheme on the other hand, can be considered as a benchmark to compare the others
against, as it selects sensors uniformly at random (although it still utilizes knowledge
of the most appropriate value of M). It is interesting to point out that the benchmark
scheduling scheme attains more than three-fold gain in lifetime compared to an
unscheduled network, provided there is potential for such a gain in terms of initial
oversampling.

All four schemes allow a tradeoff between distortion and energy when a long
learning phase can be tolerated. The MSES scheme however, has the ability to
inexpensively predict the knee of the curves shown in Figure 6. For lower numbers on
M beyond this knee point, distortion increases rapidly while only resulting in marginal
lifetime improvements. In most situations therefore, operating at the knee point is
probably desirable.

7 Related Work

In [1], a spatial correlation based Medium Access Control (MAC) protocol, CMAC, is
presented, assuming Gaussian statistics. The described system however does not aim
at providing a representation of the process over the whole observation area but rather

 A Distortion-Aware Scheduling Approach for Wireless Sensor Networks 387

computing the best estimated value of the point source, i.e. it addresses a more basic
monitoring problem. Recently, [2] proposed heuristics based on mutual information
criteria for optimally placing a given set of sensors on an area. Sensor readings can
effectively be modeled as a multivariate Gaussian process. This approach however
finds the best achievable distortion performance given a target number of sensors,
whereas we are interested in finding the fewest sensors that result in a target
distortion. A related approach is presented in [6], where mutually exclusive sets of
nodes are selected, so that each of the sets completely covers the observation area.
Coverage in this case is based on the notion of a circular sensing radius, which is not
clearly related to the underlying spatial phenomenon. The work in [4] analyzes noisy
sampling of a one-dimensional Gaussian-Markov random field, not however targeting
lifetime improvements. In [3], a distributed approach for in-network spatial data
modeling is presented. The model computes weights of local basis functions when
sensor measurements have been partitioned on the basis of kernel functions. Kernel
functions model the correlation among various positions in the field and therefore
assume prior knowledge of this correlation by the query center. In our work, we do
not make a-priori assumptions neither on the distribution of the process nor on the
form of the dependence of its correlation function on distance.

8 Conclusion

In this paper we have presented a two-phase approach tackling energy-efficient,
distortion-driven monitoring of a spatial random process. Based on the premise that
none of the process statistics are a-priori known but have to be estimated at network
initialization, we proposed four distinct monitoring schemes. Three of the proposed
schemes rely on distortion prediction as a first step while the fourth one bypasses this
need by exploiting the notion of bandwidth as a measure of spatial correlation. We
showed that considerable improvements in lifetime can be achieved this way. Our
current work focuses on extending these results to the two dimensional case.

References

[1] M. C. Vuran and I. F. Akyildiz, “Spatial Correlation-based Collaborative Medium Access
Control in Wireless Sensor Networks”, to appear in IEEE/ACM Transactions on
Networking, June 2006.

[2] C. Guestrin, A. Krause and A. P. Singh, “Near Optimal Sensor Placements in Gaussian
Processes”, in Proceedings of the 22nd International Conference on Machine Learning,
2005.

[3] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin and S. Madden, “Distributed Regression:
An Efficient Framework for Modeling Sensor Network Data”, in IPSN 2004.

[4] M. Dong, L. Tong and B. M. Sadler, “Effect of MAC Design on Source Estimation in
Dense Sensor Networks”, in ICASSP 2004.

[5] Y. Yu, D. Ganesan, L. Girod, D. Estrin and R. Govindan, “Synthetic Data Generation to
Support Irregular Sampling in Sensor Networks”, in Geo Sensor Networks 2003, October
2003.

388 P. Liaskovitis and C. Schurgers

[6] S. Slijepcevic, M. Potkonjak, “Power Efficient Organization of Wireless Sensor
Networks”, in ICC 2001.

[7] R. Cristescu, B. Beferull-Lozano and M. Vetterli, “On Network Correlated Data
Gathering”, in INFOCOM 2004.

[8] T. M. Lehmann, C. Gönner and Klaus Spitzer, “Survey: Interpolation Methods in Medical
Image Processing”, in IEEE Transactions on Medical Imaging, Vol. 18, no. 11,
November 1999.

[9] S. de Waele and P. M. T. Broersen, “Reliable LDA Spectra by Resampling and ARMA-
Modeling”, in IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6,
December 1999.

[10] E. Masry, D. Klamer and C. Mirabile, “Spectral Estimation of Continuous Time
Processes: Performance Comparison between Periodic and Poisson Sampling Schemes”,
in IEEE Transactions on Automatic Control, Vol. 23, no. 4, August 1978.

[11] J. D. Scargle, “Studies in Astronomical Time Series Analysis. II. Statistical Aspects of
Spectral Analysis of Unevenly Spaced Data”, in The Astrophysical Journal, 263:835-853,
December 1982.

[12] J. G. Proakis, D. G. Manolakis, “Digital Signal Processing Principles, Algorithms and
Applications”, Third Edition, Prentice Hall.

[13] B.C rbunar, A. Grama, J. Vitek and O. C rbunar, “Coverage Preserving Redundancy
Elimination in Sensor Networks”.

Optimal Placement and Selection of Camera Network
Nodes for Target Localization

Ali O. Ercan1, Danny B. Yang2, Abbas El Gamal1, and Leonidas J. Guibas2

1 Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
aliercan@stanford.edu, abbas@ee.stanford.edu

2 Dept. of Computer Science, Stanford University, Stanford, CA 94305, USA
danny@riya.com, guibas@cs.stanford.edu

Abstract. The paper studies the optimal placement of multiple cameras and the
selection of the best subset of cameras for single target localization in the frame-
work of sensor networks. The cameras are assumed to be aimed horizontally
around a room. To conserve both computation and communication energy, each
camera reduces its image to a binary “scan-line” by performing simple back-
ground subtraction followed by vertical summing and thresholding, and commu-
nicates only the center of the detected foreground object. Assuming noisy camera
measurements and an object prior, the minimum mean squared error of the best
linear estimate of the object location in 2-D is used as a metric for placement
and selection. The placement problem is shown to be equivalent to a classical in-
verse kinematics robotics problem, which can be solved efficiently using gradient
descent techniques. The selection problem on the other hand is a combinatorial
optimization problem and finding the optimal solution can be too costly to im-
plement in an energy-constrained wireless camera network. A semi-definite pro-
gramming approximation for the problem is shown to achieve close to optimal
solutions with much lower computational burden. Simulation and experimental
results are presented.

1 Introduction

A wireless sensor network (WSN) comprises a collection of many low cost, low-power
nodes each with sensing, processing and communication capabilities. WSNs have many
advantages over traditional sensing modalities including wide coverage, robustness,
scalability, and the ability to observe large scale phenomena distributed over space and
time [1, 2].

The scarcest resource in a WSN is energy, as typically nodes operate untethered. The
limited battery life of a node imposes severe constraints on its communication and com-
putation capabilities. Consequently, recent work on WSNs has focused mainly on very
low data rate sensor nodes [3]. In many applications, however, high data rate sensors are
needed to perform the desired tasks. The most notable example is video cameras, which
are widely used for surveillance and monitoring. Current surveillance camera installa-
tions are expensive and use outdated infrastructure. All captured video data is shipped
to a central station for human operators to watch which makes the system non-scalable.
As a result, there is a growing need to develop less costly wireless networks of cam-
eras with automated task-driven capabilities. Such development faces many challenges.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 389–404, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

390 A.O. Ercan et al.

First, current video cameras are expensive and have high power consumption. Second,
video cameras are high data rate devices, so transmitting all the data is costly in terms
of energy. Third, video processing algorithms are in general computationally expensive,
require floating point arithmetic, and are costly to implement locally.

The camera cost and power problems can be addressed by recent advances in CMOS
technology, which enable the integration of sensing, processing and communication [4].
It is currently feasible to design very low cost and power camera systems suitable for de-
ployment in a wireless network. To address the communication and computation chal-
lenges facing the development of wireless camera networks, simple local processing
algorithms that produce only the essential information needed for the network to col-
laboratively perform a task or answer a query are needed (e.g., see [5]).

Energy consumption can also be minimized by reducing the number of cameras used
to answer a query. This can be achieved by judicious placement of the cameras with re-
spect to the objects and selection of the best subset of cameras to collaboratively answer
the query. A proper placement of cameras increases the accuracy of sensing, while se-
lecting a good subset allows for efficient sensing with little performance degradation
relative to using all the cameras. Selection also allows the network to scale to large
numbers of nodes because of the savings in communication, computation, and sensing.

In this paper, we investigate the problems of placement and selection of camera nodes
in order to minimize the localization error for a single object. Localizing an object is
important in many applications such as tracking, surveillance, and human computer in-
teraction. For example, if we could localize an object at every time step, the tracking
and correspondence problems become trivial. Very accurate localization is also impor-
tant in several robotics applications, such as navigation through a complex environment
or controlling an end effector to perform a delicate task. Specifically, we focus on 2-D
object localization, i.e., location on the ground plane, because this is the most relevant
information for many real world applications. We assume that the cameras are placed
horizontally around a room. The local processing framework in [5] is used to reduce
the image to a scan-line and only the center of the detected object from each camera is
communicated to the central processor. Given these noisy measurements and the object
prior distribution, the minimum mean squared error (MSE) of the best linear estimate
of the object location in 2-D is used as a metric for placement and selection. To find the
best camera placement, we optimize this metric with respect to the camera positions.
For a circularly symmetric object prior distribution and sensors with equal noise, we
show that a uniform sensor arrangement is optimal. Somewhat surprisingly, we estab-
lish that the general problem is equivalent to solving the inverse kinematics of a planar
robotic arm which can be solved efficiently using gradient descent techniques. We then
devise a semi-definite programming approximation of the optimal solution for the se-
lection problem. We show that this method performs close to optimal and outperforms
naive heuristics (e.g., picking greedily or the closest or uniform sensors).

The rest of the paper is organized as follows: In Sect. 2, we review related sensor
networks, computer graphics and computer vision work. In Sect. 3, we introduce the
camera model and define the placement and selection problems. In Sect. 4, we derive
the optimal solution for the placement problem. In Sect. 5, we develop an approxi-
mate solution to the selection problem and compare our approximation method to other

Optimal Placement and Selection of Camera Network Nodes 391

heuristics and to the optimal solution, both in simulation and experimentally. Section 6
discusses how to handle some non-idealities. Finally, in Sect. 7, we conclude.

2 Related Work

Sensor placement and selection have been addressed in the sensor networks, computer
vision, and computer graphics literature. Selection has been studied in wireless sensor
networks with the goal of decreasing energy cost and increasing scalability. Viewpoint
selection, or the next best view, has been studied in computer graphics and vision for
picking the most informative views of a scene. We summarize the work related to this
paper in this section.

Sensor placement: Camera placement has been studied in computer vision and graph-
ics. In photogrammetry [6, 7, 8], the goal is to place the cameras so as to minimize the
3D measurement error. The error propagation is analyzed to derive an error metric that
is used to rank camera placements. The best camera placement is then solved numer-
ically. The computational complexity of this approach only allows solutions involving
a few cameras. In our approach we simplify the camera model, derive the localization
error analytically as a function of camera places and minimize it to find the best place-
ment. This is computationally lighter compared to above numerical methods. In [9] the
problem of how to position (general) sensors with 2-D measurement noise to minimize
the overall error is investigated. The paper also presents an algorithm to compute the
optimal sensor placement. Our measurements are 1-D after local processing and we
pose the placement problem as a special case of classical inverse kinematics problem.
The emphasis of our work is also on selection, which due to its combinatorial nature is
different from placement.

Sensor Selection: In [10] a technique referred to as IDSQ is developed to select the
next best sensor node to query in a sensor network. The technique is distributed and
uses a utility measure based on the expected posterior distribution. However, expected
posterior distribution is expensive to compute because it involves integrating over all
possible measurements. In [11] the mutual information metric is used to select sen-
sors. This is shown to be equivalent to minimizing the expected posterior uncertainty,
but with significantly less computation. The work in [12] expands on [11] and shows
how to select the sensor with the highest information gain. An entropy-based heuris-
tic that approximates the mutual information and is computationally cheaper is used.
All these methods greedily select the next best sensor based on an entropy metric.
In our work, we show how to select the next best group of sensors via combinato-
rial optimization. Also, in our approach the utility function is an analytical expres-
sion, which makes it much faster to evaluate than methods requiring numerical
integration.

Camera Selection: Sensor selection has also been studied for camera sensors. In [13,
14, 15], a metric is defined for the next best view based on most faces seen (given a
3-D geometric model of the scene), most voxels seen, or overall coverage. The solution
requires searching through all camera positions to find the highest scoring viewpoints.
In [5], a subset of horizontal camera sensors are selected to minimize the visual hull

392 A.O. Ercan et al.

of all objects in the scene. This problem is solved using heuristics. These works use
numerical techniques or heuristics to compute the viewpoint scores. We investigate a
simpler problem, devise an analytical metric for it and find the optimal solution using
combinatorial optimization techniques.

3 Problem Formulation

Given a number of noisy camera sensors, our goal is to localize an object as accurately
as possible in the ground plane. We first describe the camera model and then formulate
the utility metric used in determining the best placement and selection.

We assume that the cameras are aimed roughly horizontally. An overhead camera
may have a less occluded view, and may allow better localization. But overhead cam-
eras are often impractical to deploy and can only observe a small area limited by the
field of view. Horizontal cameras are often more practical to install. They can also
observe a larger area. Additionally targets may be easier to identify in a horizontal
view.

As discussed earlier, the camera nodes in a WSN must perform cheap local image
processing to reduce the video data. Following a similar approach to [5], we limit this
processing to background subtraction. The background subtracted images are vertically
summed and thresholded, as the horizontal location of the object in the camera plane
is most relevant to the 2-D localization (see Fig. 1). We refer to the resulting linear
bitmap as a “scan-line”. For the localization method that we use, only the center of the
detected foreground object in the scan-line is communicated to the central processor.
This reduces the data per frame from a 2-D array of pixel values to a single integer. This
approach requires very little computation and communication and is thus compatible
with a resource constrained WSN framework.

Fig. 1. Local processing at each camera

We assume that the cameras are far enough from the object that they can be modeled
by weak perspective projections. We assume that the measurement error variance is of
the form σ2

v = ζd2 + σ2
f , where d is the distance from the camera to the object (see

Fig. 1). It can be shown that making camera noise variance dependent on d effectively
models the weak perspective projection while allowing the usage of projective model
in the equations. Our noise model also accounts for errors in the calibration of the
cameras. Errors in the 2-D camera locations can be accounted for in σf and errors in the
orientation can be accounted for in ζ.

Optimal Placement and Selection of Camera Network Nodes 393

Our specific problem is to localize one point object in a room with N cameras placed
around its perimeter (See Fig. 2). As there is only one object to localize, we do not need
to consider occlusions from other objects. For now, we also assume that there is no static
object that occludes the view of the cameras. We discuss how static occlusions can be
handled later in Sect. 6. The orientations of the cameras with respect to the abscissa are
given by θi, i = 1, 2, . . . , N . For simplicity, it is assumed that the point to be localized
is in the FOV of all cameras. The consequences of limited FOVs is also addressed in
Sect. 6. We assume that the mean μx and covariance Σx of the prior distribution of the
object location are known.

θ1

θ2

θN

Object Distribution

Cameras

Room

Fig. 2. Illustration of the problem definition

We formulate the problem of camera placement for target localization in the frame-
work of linear estimation. Given the first and second order statistics of the object prior
and the camera noise parameters, we use the minimum MSE of the best linear estimate
of the object location, which is a function of the camera orientations θi, as a measure
for localization error. The best placement is then obtained by finding the camera ori-
entations that minimize this metric. As explained in Sect. 4, the best orientations give
the best positions of the cameras uniquely based on our assumptions for the placement
problem. The same formulation is then used to investigate the camera selection prob-
lem, with some of the simplifying assumptions removed.

The measurement model is illustrated in Fig. 3. As explained before, we use the pro-
jective model in our equations. The weak perspective dependence of the measurements
is hidden in the error model for the cameras. Let the object location be x = [x1, x2]T,
and the measurements from the N cameras be z = [z1 . . . zN]T. The relationship be-
tween the measurements and the object location is then given by

z = Ax + v ,

where A is given by

A =

⎛⎜⎜⎜⎝
− sin θ1 cos θ1
− sin θ2 cos θ2

...
...

− sin θN cos θN

⎞⎟⎟⎟⎠ ,

and v is the measurement error.

394 A.O. Ercan et al.

object
x1

x2

zi

Fig. 3. The measurement model

The best linear unbiased estimator for x is given by

x̂ = μx + ΣxAT(AΣxAT + Σv)−1(z − Aμx) , (1)

where μx is the mean and Σx is the covariance of the object location prior, and Σv is
the covariance of the measurement noise.

Assuming the measurement noise is independent for different cameras, its co-
variance is

Σv = diag(σ2
v1

, · · · , σ2
vN

) .

The object prior can be assumed to be diagonal with a horizontal major axis without loss
of generality because one can rotate everything, solve the problem and rotate everything
back, so

Σx = σ2
xdiag(1, 1/α) ,

where α ≥ 1. It can be shown that the MSE of the best linear estimate in (1) is

MSE =

4

(
α+1
σ2

x
+

N∑
i=1

1
σ2

vi

)
(

α+1
σ2

x
+

N∑
i=1

1
σ2

vi

)2

−
(

α−1
σ2

x
+

N∑
i=1

cos 2θi

σ2
vi

)2

−
(

N∑
i=1

sin 2θi

σ2
vi

)2 . (2)

Note that only the latter two terms in the denominator of (2) are functions of the camera
orientations. Given fixed σvi s, the MSE is minimized by setting these two squared terms
as close to zero as possible. If these two terms are set to zero, we obtain a lower bound
for MSE:

MSE ≥ 4
α+1
σ2

x
+
∑

i

1
σ2

vi

. (3)

The cameras with lower noise achieve a smaller lower bound. In our noise model, closer
cameras have less noise, so this means closer cameras achieve a smaller lower bound.
The two additional terms in the denominator of MSE (2) balance this low noise criterion
with the direction criterion. Given σvi s, (3) can be utilized to estimate the number of
cameras that must be used to achieve a certain allowable error.

Optimal Placement and Selection of Camera Network Nodes 395

Given the above formulation, we define the following two problems:

Placement: Minimize (2) over θ1, θ2, . . . , θN . The resulting θis provide the locations
of the cameras that result in the best localization error.

Selection: N cameras are previously placed. This means that the θis and σvi s are
fixed. We need to select the best subset of k cameras. As we are using a subset of the
cameras, the summations in (2) also need to run over the selected set of cameras. The
metric to minimize then becomes

4

(
α+1
σ2

x
+
∑
i∈S

1
σ2

vi

)
(

α+1
σ2

x
+
∑
i∈S

1
σ2

vi

)2

−
(

α−1
σ2

x
+
∑
i∈S

cos 2θi

σ2
vi

)2

−
(∑

i∈S

sin 2θi

σ2
vi

)2 . (4)

where S is the set of selected cameras. Formally defined, the selection problem be-
comes: Minimize (4) over the set S such that S ⊆ {1, . . . , N} and |S| = k. The
resulting set S gives the best selection.

In the following section we show that the optimal placement problem can be solved
efficiently. An approximate solution to the selection problem is presented in Sect. 5.

4 Placement

We wish to find θis that minimize (2), given the object location prior statistics and the
σvi s for each camera.

The placement of the cameras is usually done before there is actually any object
in the room. Therefore, it is natural to assume in this problem that the object prior is
centered in the room. However, it does not have to be circularly symmetric, as people
might tend to walk along certain directions more than others. For example, in a hallway,
the major axis of the prior distribution would be aligned with the hallway.

Cameras are usually placed on the walls of the room, so the distance of the camera to
the object prior cannot vary by much and can be approximated by a constant. Therefore,
for the placement problem specifically, we are trying to come up with the best orienta-
tions of the cameras, and we assume a circular room for simplicity. As the cameras are
fixed to the periphery and oriented towards the center, the orientations of the cameras
(θis) uniquely determine their placement.

Note that all of the above assumptions are specific to the placement problem. In the
selection problem (see Sect. 5), the circular room assumption and the centered object
prior assumption are removed and our approach is applicable to any room shape, camera
configuration and object prior. In Sect. 6 we give a recipe on how to handle general case
for the placement problem with non-circular room and non-centered prior.

Given these assumptions, the camera noise parameters are constant. From (2) we note
that only the last two terms of the denominator depend on the θis. Thus minimizing (2)
is the same as minimizing(

α − 1
σ2

x

+
N∑

i=1

cos 2θi

σ2
vi

)2

+

(
N∑

i=1

sin 2θi

σ2
vi

)2

. (5)

396 A.O. Ercan et al.

It is clear that (5) is bounded below by 0. The following subsections show when this
can be achieved for the optimal camera orientations.

4.1 Symmetric Case

When the cameras have the same error variance, σvi = σv for all 1 ≤ i ≤ N , and the
object prior is circularly symmetric (α = 1), the problem of minimizing (5) reduces to
minimizing (

N∑
i=1

cos 2θi

)2

+

(
N∑

i=1

sin 2θi

)2

. (6)

This is equivalent to the norm-squared of the sum of N unit vectors with angles 2θi.
Thus (6) is equal to zero when the θis are chosen uniformly between 0 and π. This
leads to the intuitive conclusion that when the object prior is circularly symmetric and
the cameras have the same amount of noise, uniform placement of cameras is optimal.
An illustration of this result for 6 cameras is depicted in Fig. 4(a). The angles of the
vectors are twice the orientation angles of the cameras. For example, for two cameras,
an orthogonal placement of the cameras is optimal, so that the unit vectors are 180
degrees apart.

2θi

and

(a) (b)

Fig. 4. (a) Uniform placement of 6 cameras that minimizes (6). (b) Locally optimal clusters are
globally optimal. Relative orientations of clusters do not matter.

Uniform placement, however, is not the only optimal way to place the cameras. If
we partition the vectors into subgroups and all subgroups of vectors sum to zero, then
the combination of all the vectors also sums to zero. This means that we can cluster
the cameras into (local) groups (with at least 2 cameras in each group) and solve the
problem distributedly in each cluster. If each group finds a locally optimal solution, then
the combined solution is globally optimal (see Fig. 4(b)). This is true no matter what
the relative orientations between the groups of cameras are.

4.2 General Case

We now discuss the general placement problem, i.e., when α �= 1 and the σvi s are
not all equal. The problem corresponds to minimizing (5). Again this is the sum of N
vectors, but the vectors can have different lengths 1/σ2

vi
. The MSE is minimized when

the sum equals −α−1
σ2

x
(offset from zero) on the abscissa. Again, the resulting angles of

the vectors are twice the optimal θi of the cameras (see Fig. 5).

Optimal Placement and Selection of Camera Network Nodes 397

α−1
σ2

x

2θi

Fig. 5. An optimal solution

This problem can be thought of as an inverse kinematics robotics problem. Our vec-
tors describe a planar revolute robot arm with N linkages. The base of the robot arm is
at the origin and it is trying to reach a point −α−1

σ2
x

on the abscissa with its end effector.
If the σvi s are ordered such that

σvN ≥ σvN−1 ≥ . . . ≥ σv1 ,

then any point in an annulus with inner and outer radii

rout =
∑

i

1/σ2
vi

,

rin = max

⎛⎝0, 1/σ2
v1

−
∑
i�=1

1/σ2
vi

⎞⎠
is achievable. If the point the robot is trying to reach is inside the annulus, we use gra-
dient descent algorithms to find an optimum solution that minimizes (5) by setting it to
zero [16]. If the point is outside the annulus, we minimize the distance to the point the
robot arm is trying to reach by lining up all the vectors along the abscissa such that the tip
of the arm touches the outer or inner radius of the annulus. This configuration does not
zero out (5) but gives the minimum achievable error. Figure 6 illustrates these two cases.

rout
α−1
σ2

x

α−1
σ2

x

(a) (b)

Fig. 6. Inverse kinematics can solve for the best θi: The case when the point to reach is (a) inside
the annulus, and (b) outside of the annulus. Note that rin is 0 for this example.

The gradient descent technique might give different solutions for different starting
arm configurations. However, under the assumptions made earlier, all such solutions
yield the same MSE on average. This leaves room for further relaxations of these as-
sumptions. Some of these generalizations will be discussed in Sec. 6.

In Fig. 6(b), note that all the vectors point in the same direction. The best placement
for this scenario is putting all cameras orthogonal to the object prior’s major axis (such

398 A.O. Ercan et al.

that twice the angles are 180 ◦). This seems counterintuitive since we expect an orthog-
onal placement to be better for triangulation. However in this case, the prior uncertainty
along the minor axis is small enough ((α−1)/σ2

x >
∑

i 1/σvi) that the optimal solution
is to place all cameras to minimize the uncertainty along the major axis.

An example placement for N = 4, α = 5, σx = 4 and σ2
vi

= 5, 10, 15, and 20 is
given in Fig. 7(a). The room, object prior and resulting camera placements are shown.
Note that the three higher noise cameras are placed close to each other, while the first
camera is placed separately. The interpretation here is that the similar views from these
bad cameras are averaged by the linear estimator to provide one good measurement.
This is verified by the example in Fig. 7(b). Here, an optimal placement for two high
quality cameras (σ2

vi
= 5 for both) is shown. The first camera is placed roughly at the

same position as before, while the second camera is placed in the middle of the three
bad camera positions. Note that the cameras are placed in [0, π), as the corresponding
vectors have angles in [0, 2π) and they are twice the angles of the cameras. However, one
can flip any camera to the opposite side of the room without changing its measurement.

cam1
cam2cam3

cam4

cam1cam2

(a) (b)

Fig. 7. Two optimal placements for the given object prior. (a) One good camera and 3 worse ones.
(b) Two good cameras.

Note that for the general case, clustering the cameras into multiple groups can still
achieve global optimality while solving the placement problem for each cluster as long
as the clusters zero out their share of the offset. Suppose N cameras are clustered into c
groups. Then one algorithm might ask each cluster’s “arm” to reach −α−1

cσ2
x

. If this can
be achieved by all the clusters, the solution is globally optimal.

5 Selection

For the selection problem defined in Sect. 3, the camera locations are fixed and we wish
to select the best set S of size k that minimizes (4). In this problem, the object prior is
not necessarily assumed to be at the center of the room. Also, the room does not have to
be circular, and the cameras neither have to be placed at the periphery nor be oriented
towards the center. This problem is difficult to solve because:

– All the terms in (4) change with different selections since the summation involving
the σvi s is a function of the selected set S.

– A naive search for the global optimum requires a combinatorial search among all
possible sets S, which is O(Nk). This is too costly.

Optimal Placement and Selection of Camera Network Nodes 399

To overcome these difficulties, we drop the numerator of (4) and focus only on op-
timizing the denominator. This is reasonable because it is equivalent to maximizing the
mutual information between the measurements and the object location assuming Gaus-
sian distributions, which is another good metric for camera selection ([11, 12]). Simu-
lations also show that this modification does not introduce much performance degrada-
tion. We added the weights wi inside the sums of (4), instead of running them over the
subset S. The weights can be either 0 or 1. That is, they have to satisfy w2

i − wi = 0.
With the above, the problem can be formulated as follows:

Maximize

⎡⎣(α+1
σ2

x
+

N∑
i=1

wi

σ2
vi

)2

−
(

α−1
σ2

x
+

N∑
i=1

wi cos 2θi

σ2
vi

)2

−
(

N∑
i=1

wi sin 2θi

σ2
vi

)2
⎤⎦

Subject to
N∑

i=1

wi = k,

w2
i − wi = 0, ∀i .

This problem is not convex – neither the objective function nor the feasible set is
necessarily convex. We use the following heuristic to find a good solution. We form the
dual of the problem and use semi-definite programming (SDP) to find the dual optimal
variables [17]. We then plug the dual optimal variables in the Lagrangian and solve for
the wis. We select the k cameras with the highest weights.

In practice, the selection technique we described might be performed distributedly
as follows. The user asks for the location of an object with a desired accuracy. The
query is passed to a cluster head near the object prior. The cluster head knows the
locations of the other cameras near him. Using (3) with the lowest noise cameras, it
computes a lower bound of the number of required cameras. It can also compute an
upper bound assuming uniformly placed cameras and that the final selection will do
better than the uniform selection. Using this lower and upper bounds, the cluster head
decides on k. It then can compute the optimal selection of k cameras. If the predicted
MSE from (4) for this selection is above the desired accuracy, k is incremented and
the selection algorithm is repeated. Computing the optimal selection is feasible on a
sensor node because it is computationally inexpensive. Finally, the selected cameras are
queried for a measurement and the result is sent back to the cluster head to compute the
measured localization. The relatively cheap processing is only done on the cluster head,
and only the minimum number of camera nodes are queried. This limits the amount of
networking and processing required of each node and is expected to greatly extend the
overall network lifetime.

5.1 Simulation Results

We performed Monte-Carlo simulations to compare the performance of the above SDP
approach to the optimal using brute-force enumeration as well as to the following other
heuristics:

– Uniform: Pick uniformly placed cameras.
– Closest: Pick the closest cameras to the object mean.

400 A.O. Ercan et al.

3 5 7 9 11
4

5

6

7

8

9

Number of Sensors

R
M

S
 E

rr
or

Closest
Uniform
Greedy
SDP
Brute−force enumeration

3 5 7 9 11
4

5

6

7

8

9

Number of Sensors

E
xp

ec
te

d
R

M
S

 E
rr

or

Closest
Uniform
Greedy
SDP
Brute−force enumeration

(a) (b)

Fig. 8. (a) Localization performance for different selection heuristics. (b) Expected RMS local-
ization error.

– Greedy: Pick one camera at a time, using the expected posterior after each selected
camera’s measurement (w/o actually making a measurement) as the prior for the
next camera.

In Fig. 8(a) we show a typical simulation run for k = 3 to 11 cameras out of 30
uniformly placed cameras on a circle of radius 100 units. The camera noise parameters
used were

σ2
vi

= (0.1 × di)2 + 4 ,

where di is the distance from the ith camera to the object mean. For this run we chose
α = 5 and σ2

x = 80. As seen in the figure, the SDP approach achieves very close to
optimal and clearly outperforms the other heuristic approaches. We can also predict the
expected RMS of the localization using (2), for the selected cameras. Figure 8(b) shows
the predicted RMS values, which are close to the RMS errors in Fig. 8(a).

5.2 Experimental Results

We tested our selection algorithm in an experimental setup consisting of 12 web cam-
eras placed around a 22′ × 19′ room. The horizontal FOV of the cameras used is 49 ◦,
and they all look toward the center of the room. The relative positions of the cameras in
the room can be seen in Fig. 9(a). The cameras are hooked up to a PC via an IEEE 1394
(FireWire) interface and can provide 8-bit 3-channel (RGB) raw video at 15 Frames/s.
The PC connected to a camera models a sensor node with processing and communica-
tion capabilities. Each PC is connected to 2 cameras, but the data from each camera is
processed independently. The data is then sent to a central PC, where further processing
is performed.

A process was run for each camera to perform background subtraction and generate
the scan-lines (as described in Sect. 3). Only the selected cameras need to take a mea-
surement and send the scan-line data over the network to an aggregating node where
the localization is performed. The actual object that is localized is a point light source
(see Fig. 9(b)).

Optimal Placement and Selection of Camera Network Nodes 401

2 3 4 5 6
0

1

2

3

4

Number of Sensors

R
M

S
 E

rr
or

 (
in

ch
es

)

Greedy
Closest
Uniform
SDP
Brute−force enumeration

(a) (b) (c)

Fig. 9. (a) The object prior and positions of the cameras in the real setup. Cones show FOV of
cameras and grid spacing is 1’. (b) Object to be localized. (c) Experimental Results.

The object was randomly placed 100 times according to the prior:

Σx = (6′′)2 ×
[

1 0
0 1

4

]
,

and localized using the selection algorithm. The noise parameters for the cameras were
measured separately. The selection algorithm was applied for 2 to 6 cameras using the
object prior and noise statistics. Figure 9(c) shows the localization error of the selection
heuristics. For k = 2 and 3, the SDP and brute-force enumeration heuristics perform
the best. While uniform selection scheme is also much better compared to greedy and
closest schemes, it performs about 40% worse than SDP or brute-force. For this specific
localization problem, around 4 cameras is enough to localize the object to the accuracy
of the ground truth, so for k ≥ 4, the localization error of all the heuristics levels off to a
similar value. From the figure we see that a good selection scheme can allow us to task
a very small number of cameras (2 or 3 out of 12) and localize with an accuracy that
is very close to optimum. On the other hand, if we have the luxury of tasking a large
number of the cameras (e.g., 6 out of 12), then a simple scheme like uniform selection
works just as well.

6 Discussion

In this section, we discuss how some of the non-idealities can be handled in our
framework.

Static Occlusions: As we are localizing a single object, there is no occlusion from
other moving objects. But there might be occlusions due to static objects such as parti-
tions, tables, etc. For the case of selection, handling these is simple. If a camera cannot
see a considerable portion of the object prior (if the prior probability of the object be-
ing in the area that a camera cannot see is bigger than a user defined threshold), we
simply discard that camera from the feasible set of cameras and limit the search to the
remaining set. For the placement, the following approach could be used: As mentioned
in Sect. 4, flipping the camera to the other side of the room does not affect the result.
So, the type of occlusions that do not have any occluding object at the other side of the

402 A.O. Ercan et al.

room can easily be handled. If the solution obtained in Sect. 4 places the camera behind
such an occluding object, one can still achieve the same result by flipping the cameras
to the other side of the room. (See Fig. 10(a)).

Flip second cam here Not allowed angles
(a) (b)

Fig. 10. (a) Static occlusions can be avoided if there is no other occluding object on the other side
of the room. (b)We cannot place the cameras at some angles due to occlusion.

If it is the case that for some region of angles there are occluding objects at both
sides of the room, then we cannot place the cameras at those angles (Fig. 10(b)). This
places regions of angles that are not allowed (and regions that are allowed) for our
inverse kinematics solution of Sect. 4. For the case that the number of allowed regions
is one, a solution is given in [18]. Note that the situation illustrated in Fig. 10(b) is an
example of one region of allowed angles (not two), as two flip sides of the room are
equivalent. However, for the case of more than one such allowed regions, there is no
general inverse kinematics solution. For this case, we can restrict each joint angle to be
in a specific region and try all possible combinations until a feasible solution is found.
Although the complexity of this search is exponential in the number of allowed regions,
in practice we do not expect the number of occluding objects to be too high to make the
computation infeasible.

Limited FOV: We can also handle limited FOV of cameras. For placement, one can
place the cameras such that the object prior mean is mostly in the FOV of the cam-
era. Of course there is still a possibility that the actual object position is too far away
from the prior mean and it is out of the FOV of some cameras but this is very un-
likely. For selection, again one can discard the cameras that cannot see a considerable
portion of the object prior beforehand and restrict the selection only to the remaining
cameras.

General Case for Placement: In Sect. 4 we assumed the object prior is centered in a
circular room. Any general room shape and non-centered prior can be also handled as
follows. We discretize all possible locations that a camera can be placed and assume
there exists a camera at all of the locations. Then using the SDP heuristic described
above, we select best k cameras. The actual placement is then done at the locations of
these k selected cameras. Note that the selection heuristic we used did not require a
circular room or centered object prior. This placement method can also handle the non-
idealities such as limited FOV of the cameras and static occlusions, using the extensions
described above.

Optimal Placement and Selection of Camera Network Nodes 403

7 Conclusion

With the goal of accurately localizing an object, we have shown how to efficiently com-
pute the best sensor placement and selection in an idealized setting. Our results are
analytical, and yield algorithms that are more computationally efficient than the numer-
ical utility maximization techniques for sensor placement/selection [10,11,12]. For the
placement problem, the globally optimal solution is found. For selection, an efficient ap-
proach using SDP is proposed. We demonstrated using simulation and experimentally
that our selection algorithm performs as well as the exhaustive search and outperforms
other heuristics.

Our algorithm for selection are performed assuming a static object. It can be easily
extended to a moving object using a Kalman filter approach. Initially, the prior can be
assumed circular. Using the measured data, the posterior of the object location can be
computed and used as a prior for the next iteration.

In order to make the analysis tractable, we made several simplifying assumptions that
resulted in some performance degradation in experiments. However, as the optimization
criterion tries to distribute the viewing directions of the cameras, the results were still
promising. When the noisy weak perspective camera assumption is valid (when the
object is far enough from the cameras), our method is expected to work even better, as
the results of our simulations showed.

Acknowledgments

The work in this paper was supported by Stanford SNRC Consortium, Stanford Media-
X Consortium, Max Planck Center for Visual Computing and under NSF NeTS NOSS
grant 0535111. We wish to thank Prof. John T. Gill III for his help in setting up the ex-
perimental lab, and to Prof. Jack Wenstrand, Prof. Balaji Prabhakar, Helmy Eltouhkhy,
Sam Kavusi and James Mammen for their comments.

References

1. Pottie, G.J., Kaiser, W.J., Clare, L., Marcy, H.: Wireless integrated network sensors. Com-
munications of the ACM 43 (2000) 51–58

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A
survey. Computer Networks 38 (2002) 393–422

3. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: Proceedings of First International Workshop on Sensor
Networks and Applications. (2002)

4. Yazawa, Y., Oonishi, T., Watanabe, K., Nemoto, R., Kamahori, M., Hasebe, T., Akamatsu,
Y.: A wireless biosensing chip for DNA detection. In: Proceedings of ISSCC’05. (2005)

5. Yang, D.B.R., Shin, J.W., Ercan, A.O., Guibas, L.J.: Sensor tasking for occupancy reasoning
in a network of cameras. In: Proceedings of BASENETS’04. (2004)

6. Chen, X., Davis, J.: Camera placement considering occlusion for robust motion capture.
Stanford University Computer Science Technical Report, CS-TR-2000-07 (2000)

7. Olague, G., Mohr, R.: Optimal camera placement for accurate reconstruction. Pattern Recog-
nition 35 (2002) 927–944

404 A.O. Ercan et al.

8. Wu, J., Sharma, R., Huang, T.: Analysis of uncertainty bounds due to quantization for three-
dimensional position estimation using multiple cameras. Optical Engineering 37 (1998)
280–292

9. Zhang, H.: Two-dimensional optimal sensor placement. IEEE Transactions on Systems,
Man, and Cybernetics 25 (1995)

10. Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing
for ad hoc heterogeneous sensor networks. The International Journal of High Performance
Computing Applications 16 (2002) 293–313

11. Ertin, E., Fisher III, J.W., Potter, L.C.: Maximum mutual information principle for dynamic
sensor query problems. In: Proceedings of IPSN ’03. (2003)

12. Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for local-
ization. In: Proceedings of IPSN ’04. (2004)

13. Vazquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint
entropy. In: Proceedings of the Vision Modeling and Visualization’01. (2001)

14. Wong, L., Dumont, C., Abidi, M.: Next best view system in a 3d object modeling task. In:
Proceedings of Computational Intelligence in Robotics and Automation. (1999)

15. Roberts, D., Marshall, A.: Viewpoint selection for complete surface coverage of three di-
mensional objects. In: Proceedings of the British Machine Vision Conference. (1998)

16. Welman, C.: Inverse kinematics and geometric constraints for articulated figuremanipulation.
Master’s Thesis, Simon Fraser University (1993)

17. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic
programming. Journal of Global Optimization 7 (1995) 51–73

18. Goldenberg, A.A., Benhabib, B., Fenton, R.G.: A complete generalized solution to the in-
verse kinematics of robots. IEEE Journal of Robotics and Automation RA-1 (1985) 14–20

An Optimal Data Propagation Algorithm
for Maximizing the Lifespan

of Sensor Networks

Aubin Jarry, Pierre Leone�, Olivier Powell, and José Rolim��

Department of Informatics,
University of Geneva, Switzerland

{jarry, leone, powell, rolim}@cui.unige.ch

Abstract. We consider the problem of data propagation in wireless sen-
sor networks and revisit the family of mixed strategy routing schemes.
We show that maximizing the lifespan, balancing the energy among in-
dividual sensors and maximizing the message flow in the network are
equivalent. We propose a distributed and adaptive data propagation al-
gorithm for balancing the energy among sensors in the network. The
mixed routing algorithm we propose allows each sensor node to either
send a message to one of its immediate neighbors, or to send it directly
to the base station, the decision being based on a potential function
depending on its remaining energy. By considering a simple model of
the network and using a linear programming description of the message
flow, we prove the strong result that an energy-balanced mixed strategy
beats every other possible routing strategy in terms of lifespan maximiza-
tion. Moreover, we provide sufficient conditions for ensuring the dynamic
stability of the algorithm. The algorithm is inspired by the gradient-
based routing scheme but by allowing to send messages directly to the
base station we improve considerably the lifespan of the network. As
a matter of fact, we show experimentally that our algorithm is close
to optimal and that it even beats the best centralized multi-hop routing
strategy.

1 Introduction

Recently advances in micro-electro-mechanical systems (MEMS) have enabled
the development of very small sensing devices called sensor nodes [1]. These
sensor nodes are smart devices with sensing, data processing and transmission
(typically radio) capabilities. A typical application of wireless sensor networks
(WSN) is area monitoring, where sensors are dispersed over a region and mon-
itor some event (heat increase, pressure variation, intrusion, etc...). When a
sensor detects an event it needs to report to (one of) the base station(s), which

� Swiss SER Contract No. C05.0030.
�� Research partially funded by the Swiss National Research Foundation (SNRF) and

FP6-015964 AEOLUS.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 405–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 A. Jarry et al.

has much more resources than sensor nodes and will be able to take appropri-
ate action (such as sending a report on the Internet, to a satellite, etc...). We
consider the problem of maximizing the lifespan of a wireless sensor network
that carries out data propagation duties, collecting information from the mon-
itored area [2, 3, 4, 5]. The lifespan of such a network is limited by the available
energy in its nodes, and thus, in order to maximize its lifespan, the network
(and each of its nodes) needs to save energy [6]. We assume that the most en-
ergy expensive operation for sensor nodes is radio transmission and since the
energy cost of sending a message from a node to another grows in propor-
tion to the the square of the distance [2, 3], it makes sense to prefer multi-
hop data propagation algorithms to single-hop algorithms, (unless the distance
from nodes to the base station is very small [7]). However, multi-hop routing
algorithms tend to overuse a few bottleneck nodes (typically the nodes close
to the base station), making them run out of energy and eventually putting
the whole network down (when too many routes are broken) despite the fact
that plenty of energy may still be available in other regions of the network. To
overcome this unbalanced energy consumption, it was proposed in [8] to use
mixed routing strategies. The idea of mixed strategies is to let sensors make
a choice: they can either send messages to a neighbor, or send them directly
to the base station (which may cost a lot more energy when the base sta-
tion is far away). In [8], it was shown that a randomized mixed strategy can
be used to balance the energy consumption among nodes and substantially in-
crease the lifespan of the network. However, the probabilistic decisions made
by each sensor (either to send a message directly to the sink or to a neighbor)
are computed offline by a centralized algorithm. In [9], the possibility of com-
puting solutions online with an adaptive algorithm is considered. However, the
solutions are still computed by a centralized algorithm, which need to be broad-
cast in the network from time to time. In [10], the question of the existence
of energy-balanced mixed strategies is first addressed, and several properties
(such as theorem 2 which is presented in section 3.2) are discovered. An offline
centralized polynomial time algorithm is also given, which finds a lifespan maxi-
mizing mixed routing strategy, even when an energy-balanced solution does not
exist.

We investigate the properties of mixed strategies by introducing a constrained-
flow linear program description of data propagation (having some similarities
with [11]). We answer the important question of the appropriateness of mixed
strategies by proving in theorem 1 that mixed strategies beat every other possible
strategy in terms of lifespan maximization of the network under the weak condi-
tion that an energy-balanced mixed strategy exists. We also show that lifespan
maximization, flow maximization and energy-balancing are equivalent problems
(section 3.2). Improving on [12], we propose an algorithm which is both adaptive
(i.e. online) and distributed and which aims at balancing the energy consump-
tion and thus the lifespan of the network. We prove that the algorithm is stable
under realistic conditions, and show through simulations that it approaches the
centralized offline optimal solution.

An Optimal Data Propagation Algorithm 407

2 Model

2.1 Data Propagation

We consider a Wireless Sensor Network (WSN) with sensor nodes scattered
randomly over a region where some phenomenon is being monitored. When an
event is detected by one of the nodes, it needs to be reported to the closest base
station. In order to report such an event, a message is generated and routed
from node to node towards (one of) the base stations. We allow only two ways
of transmitting messages: from a node to one of its neighbors, (where neigh-
borhood means being neighbor in the unit disc graph built upon the nodes of
the WSN), or alternately, directly from a node to a base station in a single-
hop long range transmission. We simplify the cost of communications as follows:
when a node sends a message to one of its neighbors, it spends x energy unit,
when it sends a message directly to one of the base stations, it spends h2 × x
energy units, where h is the hop distance (in the unit disc graph) from the
node to the closest base station and x is a constant. To simplify the model
further, we will suppose throughout the paper that all nodes have the same
amount of available energy: 1. While this latter simplification (of normalized
and uniform batteries) enables us to unclutter our equations, it is worth not-
ing that the proofs and experiments presented in this paper would still be valid
without it.

2.2 The Slice Model

In our analytic study, we partition the monitored area into slices (following
[8, 9, 10]). Each slice contains all the nodes which are at the same hop distance
(in the unit disc graph) from the base station, as illustrated on the left hand side
of figure 1. We consider that each sensor has 1 energy unit available, and thus
the amount of energy bi available at each slice is equal to the number of nodes it
contains. For the example illustrated in figure 1 we have b1 = 1, b2 = 2, b3 = 2,
b4 = 4 and b5 = 3. We also need to model the detection of external events (i.e.
the phenomenon which is being monitored by the WSN). We define gi to be

5S
4S

3S
2S

1S

Sink

1S2S3S4S5S
Sink

Fig. 1. Slices and simplified model

408 A. Jarry et al.

the number of events detected by the ith slice over a given period of time. If,
for example, one of the nodes of S5 detects 4 events, the second node 2 events
and the third node of S5 detects 0 events, we would set g5 = 6. The gi’s can
be seen as relative input rates between slices (where an input is the detection of
an event).

3 Sensor Network Flows

Consider a slice model of a WSN with N slices S1, . . . , SN such that slice Si

contains bi sensors and such that the input rate for slice Si is gi. We model
the routing of messages with a linear program (LP) (definition 1), which is very
similar to a flow problem. For each slice Si, we represent the input rate by the
parameter f0,i and the number of messages sent from Si directly to the base
station by the parameter fi,0

1. We represent the number of messages sent from
Si to Sj by the parameter fi,j . We need to ensure that the input rates are
respected (equations 1), that the flow is conserved (equations 2), that no slice
spends more energy than available (equations 3), and that messages are only
sent to a 1-hop neighbor or directly to the base station (equations 4).

Definition 1 (mixed-flow maximization problem). Let {(gi, bi)}1≤i≤N be
the description of the slice model of a WSN. A mixed-flow for this WSN is
F = {fi,j}0≤i,j≤N satisfying equations 1 to 4 in the LP hereunder for some
positive real T . The mixed-flow maximization problem is to find a mixed-flow F
maximizing T .

f0,i = Tgi 1 ≤ i ≤ N (1)∑N
j=0 fi,j =

∑N
j=0 fj,i 1 ≤ i ≤ N (2)∑N

i=1 fi,j(i − j)2 ≤ bi 1 ≤ i ≤ N (3)
fi,j = 0 1 ≤ i ≤ N, j �∈ {0, j − 1} (4)

Since equations 4 allow a routing algorithm which is a mix of single-hops and
multi-hops, we call this LP the mixed-flow maximization problem.

Remark 1. The LP is not a network flow problem in a strict sense (because of
inequalities 3), so we should probably follow [11] which calls a similar problem
an energy constrained flow problem. For the sake of conciseness, and since it
brings no confusion in this article, we shall simply call it a flow problem.

A solution to the LP maximizes the amount of data propagated by a mixed-
strategy for given input rates (gi’s) and available energy (bi’s) (i.e. the algorithm
is offline), c.f. [11] for a similar approach. If one looks carefully at the LP above,
it appears that maximizing the flow reduces to choosing the appropriate ratios,
for each i, between the fi,i−1’s and the fi,0’s, c.f. [8, 9, 10] and section 3.2 for
more details.
1 One can think of S0 as a “virtual” slice which plays the role of both the source and

the sink.

An Optimal Data Propagation Algorithm 409

3.1 Optimality of Mixed-Flows

The LP of the previous section can be solved by an offline2 and centralized LP
solver, thus obtaining for each slice the optimal ratio of messages which should
be sent to the next slice and the ratio which should be sent directly to the base
station. As we shall see in section 4, there is a fairly simple totally distributed
and adaptive algorithm which can be implemented in each node of a WSN and
which approaches this solution. However one may ask if mixed-flows are too re-
strictive: nodes (or slices) are only allowed to send messages to the sink and to
neighbors which are one hop away in the unit disc graph. It is natural to ask
oneself how much the message flow can be increased if the nodes are allowed
to send messages not only to the base station and to 1-hop neighbors, but also
to 2-hop neighbors, 3-hop neighbors, etc... 3. There is one a priori objection to
this approach: implementing this idea in a distributed algorithm such as the
one we propose in section 4 seems much more complicated, and there is one
good reason to avoid this extra complication, which is the important finding
(theorem 1) that generalized flows (i.e. flows allowing messages to be passed
1, 2, 3, etc.. hops away or directly to the base station) do not improve the
max flow reached by an energy-balanced mixed strategy (i.e. where message are
passed either 1 hop away or directly to the base station). Details follow. First
of all, the LP of definition 2 can be rewritten to allow 1, 2, 3, etc... hops as
follows.

Definition 2 (Generalized flow maximization problem). The generalized
flow maximization problem is, on input {(gi, bi)}1≤i≤N , to find a flow F =
{fi,j}0≤i≤N maximizing T in the LP program hereunder.

f0,i = Tgi 1 ≤ i ≤ N (5)∑N
j=0 fj,i =

∑N
j=0 fi,j 1 ≤ i ≤ N (6)∑N

j=0 fi,j(i − j)2 ≤ bi 1 ≤ i ≤ N (7)

The main theoretical result of this paper is that an energy-balanced solution
to the mixed-flow maximization problem (definition 1) is also a solution to the
general flow maximization problem of definition 2.

Remark 2. It was shown in [10] that solutions to the mixed-flow maximization
problem are always reached by an energy-balanced solution, when an energy-
balanced flow exists, c.f. theorem 2).

Definition 3 (energy-balanced flow). Let F be a flow (either a mixed or a
generalized flow). The energy spent by slice Si is defined as ei :=

∑N
j=0 fi,j(i −

j)2. A flow is called energy-balanced if there is a constant c such that for each
i with 1 ≤ i ≤ N : ei

bi
= c

2 Because the input rates are known a priori.
3 We are thankful to the research community for asking this question at conferences.

410 A. Jarry et al.

Our main theoretical result (theorem 1) shows that the maximum generalized
flow is reached by an energy-balanced mixed-flow, when such a flow exists. This
finding is important, since it implies that there is no need to search for gen-
eralized flows when one can find an energy-balanced mixed-flow. The proof
follows.

Lemma 1. The following two equations are true.

∀ n > 0,
1

n(n + 1)
+

(n − 1)2

n(n − 1)
=

n2

n(n + 1)
(8)

∀ n > i > 0,
(n − i)2

n(n + 1)
+

i2

i(i + 1)
≥ n2

n(n + 1)
(9)

Proof. The proof of equation 8 is straightforward. Equation 9 is a consequence
of equation 8 when i = n − 1. By multiplying both terms by n(n + 1)(i + 1) (a
strictly positive number), we see that equation 9 is equivalent to

(n − i)2(i + 1) + in(n + 1) − n2(i + 1) ≥ 0
(i + 1)(i2 − 2ni) + i(n − i − 1 + i + 1)(n + 1) ≥ 0
i((i + 1)(i − 2n + n + 1) + (n − i − 1)(n + 1)) ≥ 0

i(n − i − 1)((n + 1) − (i + 1)) ≥ 0

Theorem 1. An energy-balanced solution to the mixed-flow maximization prob-
lem is also a solution to the generalized flow maximization problem.

Proof. Let (T, {fi,j}i,j∈[0,N]) be a solution to the mixed-flow maximization prob-
lem. We will first prove by induction on N that for any path μ = (si0 , si1)
(si1 , si2)..(sil−1 , sl) from a vertex si to the base station (i.e. i0 = i and il = 0)
such that fx,y > 0 if (sx, sy) appears in μ4 , we have

∑
0≤j<l

(ij − ij+1)2

ij(ij + 1)
=

i2

i(i + 1)
(10)

This is obviously true for N = 1. Supposing that the property is true for N − 1,
we can observe that a path from sN to the base station is either composed of a
single edge (sN , s0) (in which case equation 10 holds), or of an edge (sN , sN−1)
and of a path μ′ from sN−1 to the base station, in which case we have∑
0≤j<l

(ij − ij+1)2

ij(ij + 1)
=

1
N(N + 1)

+
∑

1≤j<l

(ij − ij+1)2

ij(ij + 1)
=

1
N(N + 1)

+
(N − 1)2

N(N − 1)
(11)

Equations 8 and 11 imply that equation 10 holds.
Now let (T , {fi,j}i,j∈[0,N]) be a solution to the generalized flow maximization

problem. We will prove by induction that for any simple5 path μ = (si0 , si1)
4 That is, μ is a component path of the flow {fi,j}i,j∈[0,N].
5 i.e. a path without loops.

An Optimal Data Propagation Algorithm 411

(si1 , si2)..(sil−1 , sl) from a vertex si to the base station, if μ is a component
path6 of {fi,j}i,j∈[0,N] we have

∑
0≤j<l

(ij − ij+1)2

ij(ij + 1)
≥ i2

i(i + 1)
(12)

This is obviously true for N = 1. Supposing that the property is true for N−1, we
can observe that a simple path from sN to the base station is either composed of
a single edge (sN , s0) (in which case equation 12 holds), or of an edge (sN , sN−i)
and of a simple path μ′ from si to the base station which does not go back
through sN , in which case we have∑
0≤j<l

(ij − ij+1)2

ij(ij + 1)
=

1
N(N + 1)

+
∑

1≤j<l

(ij − ij+1)2

ij(ij + 1)
≥ (N − i)2

N(N + 1)
+

i2

i(i + 1)

Recalling equation 9, equation 12 holds for all simple paths from sN to the base
station. Simple paths going from si to the base station through sN will give us∑

0≤j<l

(ij − ij+1)2

ij(ij + 1)
≥ N2

N(N + 1)
≥ i2

i(i + 1)

Equation 12 is thus proved.

Decomposing flows into paths enables us to deduce from equations 10 and 12
the following: ∑

0<i≤N,0≤j≤N

(i − j)2fi,j

i(i + 1)
=

∑
0<i≤N

i2f0,i

i(i + 1)∑
0<i≤N,0≤j≤N

(i − j)2fi,j

i(i + 1)
≥

∑
0<i≤N

i2f0,i

i(i + 1)

If (T, {fi,j}i,j∈[0,N]) is an energy-balanced solution to the mixed-flow maximiza-
tion problem and if (T , {fi,j}i,j∈[0,N]) is a solution to the generalized flow max-
imization problem, we have∑

0<i≤N

bi

i(i + 1)
=

∑
0<i≤N,0≤j≤N

(i − j)2fi,j

i(i + 1)
=

∑
0<i≤N

i2f0,i

i(i + 1)∑
0<i≤N

bi

i(i + 1)
≥

∑
0<i≤N,0≤j≤N

(i − j)2fi,j

i(i + 1)
≥

∑
0<i≤N

i2f0,i

i(i + 1)

and since ∀ 0 < i ≤ N, f0,i ≤ f0,i, it follows that ∀ 0 < i ≤ N, f0,i = f0,i, so
T = T : an energy-balanced solution to the mixed-flow maximization problem is
also a solution to the generalized flow maximization problem.
6 c.f. definition of μ above.

412 A. Jarry et al.

3.2 Lifespan, Flow and Energy-Balance

In this section we revisit the lifespan maximization problem introduced and stud-
ied in [10], which builds upon previous results: [8, 9]. As we show in lemma 2,
the lifespan maximization problem from [10] is equivalent, but in another for-
malism, to the mixed-flow maximization problem from definition 2. This lemma,
together with theorem 2, shows that maximizing the flow, maximizing the lifes-
pan and balancing the energy are equivalent. The WSN model considered in [10]
is also the slice model, but a routing strategy (equivalent to a mixed-flow) was
described by values pi (for 1 ≤ i ≤ N) which represent the fraction of messages
sent from slice Si to slice Si−1; 1− pi being the fraction sent from Si directly to
the base station. In this formalism, the energy ei spent by slice Si is computed
in the following way: for each slice Si, let mi be the sum of gi, the number of
events detected by Si and the number of messages that slice Si receives from
Si+1, thus mi = gi + pi+1mi+1. More precisely:

mN = gN (13)
mi = mi+1pi+1 + gi 1 ≤ i ≤ N − 1 (14)
ei = mi(pi + i2(1 − pi)) 1 ≤ i ≤ N − 1 (15)

In [12], the following definitions were given

Definition 4. Let {(gi, bi)}1≤i≤N be the description of a WSN.

– A mixed strategy is the choice of a probability pi for 1 ≤ i ≤ N
– A mixed strategy is called energy-balanced if ei

bi
= ei+1

bi+1
for 1 ≤ i ≤ N − 1

– The lifespan of the network is defined as min{ bi

ei
}1≤i≤N

Definition 5 (Mixed-strategy lifespan maximization). The mixed-
strategy lifespan maximization problem is, on input {(gi, bi)}1≤i≤N (which is
the description of a WSN), to find a mixed strategy which maximizes the lifes-
pan of the network.

Lemma 2. Solving the mixed-strategy lifespan maximization problem is equiva-
lent to solving the mixed-flow maximization problem.

Proof. By definition, the input of both problems is the same. It thus suffices to
show that any solution to one of the problems can be (efficiently) transformed
into a solution to the other problem. The fundamental observation is that the
mixed-flow T grows with the lifespan, since the total amount of events reported
by the WSN before it goes down is the time during which the WSN is active
multiplied by the input rate:

T = input rate · lifespan =
N∑
1

gi · lifespan = cst · lifespan

If {fi,j}0≤i,j≤N is a solution to the maximization of T , then pi = fi,i−1
fi,i−1+fi,0

is
a solution to the mixed-strategy lifespan maximization problem. Reciprocally,

An Optimal Data Propagation Algorithm 413

if {pi}1≤i≤N is a solution to the mixed-flow maximization problem, then the
energy ei spent and the received messages mi can be computed (as in equations
13, 14 and 15). A solution to the mixed-flow maximization problem is then given
by the following equations:

1 ≤ i ≤ N f0,i = gi min
{

bj

ej

}
1≤j≤n

(16)

1 ≤ i ≤ N fi,0 = mi(1 − pi)min
{

bj

ej

}
1≤j≤n

(17)

2 ≤ i ≤ N fi,i−1 = mipi min
{

bj

ej

}
1≤j≤n

(18)

Details are left to the reader.

In [10], the following result (restated in our notation) is shown:

Theorem 2. Given {(gi, bi)}1≤i≤N a WSN, if an energy-balanced mixed strat-
egy exists, it is the unique solution to the mixed-strategy lifespan maximization
problem.

Using lemma 2, theorem 1, and theorem 2 we deduce that if an energy-balanced
mixed strategy exists, it is the unique solution to the general lifespan maximiza-
tion problem:

Theorem 3. Maximizing the flow, the lifespan and balancing the energy are
equivalent.

4 The Algorithm

In this section, we propose a simple blind and online distributed algorithm for
lifespan maximization of a WSN in a data propagation scenario. Following the-
orem 3, lifespan maximization can be achieved by reaching energy balance. The
algorithm is fairly simple: each node has the choice between sending messages
to one of its neighbors or directly to the base station. It makes its decision using
a potential function. We show in section 4.1 that the algorithm is stable, and
we show experimentally in section 4.2 that the energy consumption is almost
energy balanced (and thus close to maximal lifespan).

Definition 6 (Algorithm). We consider a WSN scattered on a surface with
one or more base stations. We consider the unit disc graph with a vertex for
each sensor and a vertex for each base station, and edges between vertexes at a
maximum distance of 1 from each other. Let n be a sensor. Vn is the neighborhood
of n, i.e. all sensors linked to n in the unit disc graph. Each sensor n has an
associated potential pot(n), and each sensor knows the value of the potential of
each of its neighbors. When n detects an event or receives a message which it
must pass on to another sensor, it makes the following decision: let m be the
sensor of Vn with the lower potential value: pot(m) ≤ pot(m′) for all m′ in Vn.

414 A. Jarry et al.

– If pot(n) > pot(m) then n sends the message to m (spending one energy
unit).

– Otherwise, n sends the message directly to the closest base station, spending
h2 energy units, where h is the length of the shortest path from n to a base
station in the unit disc graph.

The potential function pot(n) we use can be separated in two parts: pots(n),
a static component which does not evolve over time and potd(n) a dynamical
component which evolves over time. pots(n) is an estimation of the distance from
n to the closest base station, so for example pots(n) could be equal to h, the
length of the shortest path from n to the closest base station. potd(n) is the
energy spent by sensor n (thus it evolves over time as the sensor n consumes
its energy). The assumption that each sensor is aware of the potential of its
neighbors can be implemented in a real WSN by making each sensor include its
current potential in the header of each message it sends.

4.1 Stability of the Algorithm

In this subsection we restrict the analysis to the case where we have only one
base station (or sink) and the topology of the slice model is the one depicted in
figure 1. The potential function at node n is given by the current energy spent
by the node potd(n). If node n has to handle a message the two options are to
send it to the sink (if potd(n) < potd(n − 1), spending n2 units of energy or
to the next sensor n − 1, spending 1 unit of energy (if potd(n) ≥ potd(n − 1)).
Actually, because of the particular form of the potential energy and since the
time dependence becomes important, we introduce the notation xn(t) to de-
note the energy spent by the sensor n at time t. The time takes discrete values
t = 0, 1, 2, . . . since it only refers to the occurrence of a message to be handled.
This amounts to considering only the Markov Chain embedded in the time con-
tinuous dynamical process, and has no relationship with considering synchronism
in the network. The network states are described by vectors whose entries are
the total energy consumed by slice n, and the discrete dynamics is expressed as
a map ⎛⎜⎜⎜⎝

xN (t)
xN−1(t)

...
x1(t)

⎞⎟⎟⎟⎠ =⇒

⎛⎜⎜⎜⎝
xN (t + 1)

xN−1(t + 1)
...

x1(t + 1)

⎞⎟⎟⎟⎠
Actually, since our main concern is with balancing the energy it is more con-
venient to deal with the reduced state vector X(t) ∈ RN−1 which must ideally
vanish if the energy is balanced

X(t) =

⎛⎜⎜⎜⎝
xN(t) − xN−1(t)

xN−1(t) − xN−2(t)
...

x2(t) − x1(t)

⎞⎟⎟⎟⎠ =⇒ X(t + 1) =

⎛⎜⎜⎜⎝
xN(t + 1) − xN−1(t + 1)

xN−1(t + 1) − xN−2(t + 1)
...

x2(t) − x1(t)

⎞⎟⎟⎟⎠ ≈

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠

An Optimal Data Propagation Algorithm 415

The occurrences of the events in the network leading to the generation of
messages are random and we denote by λn, n = 1, . . . , N the probability that
the event occurs in slice n. To get back to the previous notation, one has λn ≈
gn/

∑
j gj . The evolution of the dynamics X(t) =⇒ X(t + 1) is then described

by a Markov chain.

Theorem 4. The sequence of random vectors {X(t)}t≥1 is a Markov chain.

The proof is clear and omitted. Moreover, we have

Theorem 5. If λi > 0 the Markov chain is irreducible.

Proof. The initial state vector is the null vector X(0) = (0, 0, . . . , 0) and to show
the irreducibility of the chain it is sufficient to show that given any state vectorX(t)
one can with strictly positive probability get back to the initial state. Let us denote
X̃(t) = (xN (t), xN−1(t), . . . , x1(t))T the given state vector. We consider the fol-
lowing sequence of events which occurs with a positive probability and which leads
to perfect energy-balance, X(t + u) = (0, 0, . . . , 0)T , with u ≥ 0. We first assume
that a sequence of events is detected in the N−th slice. The generated messages
are first ejected by slice N until the consumed energy is larger that the consumed
energy in slice N − 1 and then forwarded to slice N − 1. If there are enough events
occurring in the last slice N it will, in the end, happen that

xN (t1) ≥ xN−1(t1) ≥ . . . ≥ x1(t1), t1 ≥ t

This happens with positive probability since λn > 0. Now, assume that xN (t1)−
xN−1(t1) events occur in slice N − 1. Each generated message is forwarded to
slice N − 2, leading to energy-balance between slice N − 1 and N . The event
occurs with probability λ

xN (t1)−xN−1(t1)
N−1 > 0. To conclude the proof, we consider

the occurrence of events in slice N − 2 leading to energy-balance xN−2(t2) =
xN−1(t2), and so on up to the first slice.

The restriction λi > 0 is necessary to ensure irreducibility but is not always real-
istic. Indeed, one can assume that some nodes are only responsible for handling
the messages and not for sensing the environment. In this case, the previous re-
sult cannot be applied directly. To get some sufficient conditions, we investigate
the stability of the algorithm.

Definition 7. The Markov chain {X(t)}t≥1 is stable at the origin o if there
exists a neighborhood D of the origin which is positive recurrent, i.e. such that
given any X ∈ RN−1 the Markov chain with initial condition X(0) = X satisfies

Prob(X(t) ∈ D, t < ∞) = 1 (19)

The stability of the Markov chain means that the chain can leave the neighbor-
hood of the origin but that it will always go back to it.

The next result provides sufficient conditions for stability. We state the result
by assuming λi > 0 since the proof is neater and we discuss how these conditions
can be relaxed later.

416 A. Jarry et al.

Theorem 6. If we assume that λi > 0, i = 1, . . . , N , then the set

A =
{
X ∈ RN−1 : | xi(t) − xi−1(t) |≤ i2

2
, i = 2, . . . , N

}
is positive recurrent if

i2λi > (i − 1)2λi−1, i = 2, . . . , N (20)

Proof. The demonstration of the sufficient conditions is based on proving that
the function

f
(
X(t)

)
=

N∑
i=2

| xi(t) − xi−1(t) |

satisfies ∀X(t) �∈ A

E

(
f
(
X(t + 1)

)− f
(
X(t)

)∣∣∣∣X(t)
)

< −ε, ε > 0, (21)

where E(|) is the conditional expectation. The function f(X) is a Lyapunov
function for the Markov chain and (21) proves that A is positive recurrent
since it shows that f(X(t)) is a convergent super-martingale and because ε > 0
it cannot converge to a point not belonging to A and hence will reach this
set of points (full details can be found in [13], chapter 2). However, once we
have X(t) ∈ A, the super-martingale property (21) no longer holds and the
Markov chain will eventually leave out of the set and oscillate between inside
and outside of A. To prove the existence of the bound (21) we consider different
cases.

Case 1: xi+j(t) < xi+j−1(t) > . . . > xi(t) > xi−1(t) > xi−2(t)
This corresponds to the situation where messages generated in slices i + j −

1, . . . , i are forwarded to the next slice without changing the value of xi(t) −
xi−1(t). Messages generated in slice i − 1 are forwarded to the next slice and it
leads to xi(t + 1)− xi−1(t + 1) = xi(t)− xi−1(t)− 1. The messages generated in
the other slices are not handled by slice i nor i − 1. Hence, we have

E
(
xi(t + 1) − xi−1(t + 1)

)
=
(
xi(t) − xi−1(t)

) N∑
j=1, j �=i−1

λj + λi−1
(
xi(t) − xi−1(t) − 1

)
=xi(t) − xi−1(t)︸ ︷︷ ︸

>0

−λi−1

Case 2: xi+j(t) < xi+j−1(t) > . . . > xi(t) < xi−1(t) > xi−2(t)
A similar reasoning leads to

E
(
xi(t + 1) − xi−1(t + 1)

)
=(λi+j−1 + . . . + λi)(xi(t) − xi−1(t) + i2)+
+λi−1(xi(t) − xi−1(t) − 1) + . . .

= xi(t) − xi−1(t)︸ ︷︷ ︸
<0

+i2(λi+j−1 + . . . + λi) − λi−1

An Optimal Data Propagation Algorithm 417

where the dots . . . in the expression on the second line from the bottom stand
for messages generated in slices which do not change the value of xi(t)−xi−1(t).
We use the same form below to denote such events.

Case 3: xi+j(t) < xi+j−1(t) > . . . > xi(t) > xi−1(t) < xi−2(t)
leads to

E
(
xi(t + 1) − xi−1(t + 1)

)
=(λi+j−1 + . . . + λi)(xi(t) − xi−1(t) + 1 − (i − 1)2)+

+λi−1(xi(t) − xi−1(t) − (i − 1)2) + . . .

= xi(t) − xi−1(t)︸ ︷︷ ︸
>0

− (λi+j−1 + . . . + λi−1)(i − 1)2 + (λi+j−1 + . . . + λi)

Case 4: xi+j(t) < xi+j−1(t) > . . . > xi(t) < xi−1(t) < xi−2(t)
finally, leads to

E
(
xi(t + 1) − xi−1(t + 1)

)
=(λi+j−1 + . . . + λi)(xi(t) − xi−1(t) + (i)2)+

+λi−1(xi(t) − xi−1(t) − (i − 1)2) + . . .

= xi(t) − xi−1(t)︸ ︷︷ ︸
<0

+ (λi+j−1 + . . . + λi)i2 − λi−1(i − 1)2

In order to ensure that there exists εi > 0 such that

E
(| xi(t + 1) − xi−1(t + 1) |)− | xi(t) − xi−1(t) |< −εi,

in the four cases listed above, one can check that (20) is a sufficient condition
to ensure that the expected value of | xi(t) − xi−1(t) | decreases if x(t) �∈ A. To
conclude, notice that

∑
i εi = ε satisfies the condition in (21).

Before ending this section one has to discuss the case where some λi vanish.
We first notice that if λi �= 0 and λi−1 �= 0 then xi(t) − xi−1(t) is bounded if
the sufficient conditions (20) hold for i, i.e. the (20) conditions are local. When
λi−1 = 0 then | xi − xi−1 |≤ i2 since messages handled by the (i − 1)−th slice
are forwarded by slice i. The only case where the energy consumption difference
can be unbounded is λi = 0, λi−1 �= 0, since the energy in the (i − 1)−th slice
can increase independently of the energy level in the i−th slice. Let us assume
λi+j �= 0, λi+j−1 = 0, . . . , λi = 0, λi−1 �= 0 and xi+j = xi+j−1 = . . . = xi <
xi−1. The first message handled by the (i + j)−th slice will be forwarded up to
the i−th slice which will eject the message since xi < xi−1. The next one will
be ejected by the (i + 1)−th slice since we now have xi+1 < xi, and so on up to
xi+j > xi+j−1 > . . . > xi. In this configuration, the next message handled by
the (i + j)−th slice will be handled by the i−th slice and forwarded or ejected
according to xi < xi−1 or xi ≥ xi−1. This simple reasoning shows the proportion
of messages reaching the (i − 1)−th slice approaches 1

j . The other messages are
ejected in an intermediate slice for which λk = 0. In order to balance the energy
the sufficient condition (20) becomes

(i + j)2
λi+j

j
> (i − 1)2λi−1 (22)

418 A. Jarry et al.

This brief analysis is suitably completed with the following observation. If the
sufficient condition (20) are violated with a strict equality, i.e. if i2λi = (i −
1)2λi−1, then the network is in the situation where all sensors have to eject
the data in order to balance the energy. The dynamic is not stable since, with
probability one, it is impossible to recover from an energy difference between
sensors. However, condition (22) means that the number of messages generated
in the (i + j)−th slice must be multiplied by j to take into account messages
which are ejected by sensors in the slices i + j − 1, . . . , i.

4.2 Simulations

We randomly disperse sensors in a circle or a sector according to a uniform
distribution, and add one or more base stations. Simulations are then made by
discretizing the time in rounds.

– Event generation: During each round, one (or more) event is generated at a
random location (using the uniform distribution). An event can be detected
by any sensor close enough: at most at distance 1, and we make the assump-
tion that only the closest sensor to an event detects it (i.e. each event is
detected by only one sensor).

– Message transmission: During each round, each sensor can send one message
either to a neighbor (spending 1 energy unit), or directly to the base sta-
tion, spending h2 energy units. Message transmission is made synchronously.
Collisions between messages are not taken into account

If we let simulations run for a period of time t, we can observe the energy spent
by each sensor. We can also observe the input rates for each sensor: the number of
events detected by each sensor, and the total number of messages m(t) which have
been reported to one of the base stations (which is equal to the total number of
messages detected by a sensor minus the number of messages which are still inside
the WSN). Making the assumption that the input rates are fixed, we can compute
the flow F (t) of the algorithm: F (t) = m(t)

e(t) where e(t) is the maximum energy
consumption over all sensors at time t. The flow F (t) allows the comparison of the
performance of our algorithm with other routing schemes. In particular, given the
input rates for each sensor we can write an LP program similar to the LP of defini-
tion 1 but including each node: flow must be conserved, input rates respected, and
energy constraint satisfied. Solving this LP permits to find an upper bound U(t)
on the flow F (t). U(t) is the maximum flow which can be reached using a mixed
strategy. Of course, U(t) will be greater than F (t) since our algorithm is handi-
capped by the fact that it is blind (or online) and distributed. We also compute
L (using a similar LP) which is the maximum flow that can be achieved using a
multi-hop routing strategy, but with no direct transmission from a sensor to a base
station (unless the sensor and the base station are at distance less than 1). It is
trivial that L ≤ U . We show experimentally that under the configurations consid-
ered (uniform distribution of sensors and uniform distribution of events) it holds
that L < F < U , and we conjecture those inequalities hold for any reasonable
distribution of sensors and events.

An Optimal Data Propagation Algorithm 419

0 20000 40000 60000 80000

0
5

10
15

Performances

time

flo
w

 p
er

 b
at

te
ry

 u
ni

t

U
F
L

0 2 4 6 8 10

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Energy for the offline and online mixed algorithms at time t=80’000

sensor position (radius)

en
er

gy
 s

pe
nt

Algorithm

U
F

−10 −5 0 5 10

−
10

−
5

0
5

10

Offline multi−hop algorithm (L) at time t=80’000

(circle areas are proportional to energy spent by sensor)
Sensor position X axis

S
en

so
r

po
si

tio
n

Y
 a

xi
s

Fig. 2. First simulation: flows

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
2

4
6

8
10

12

Performances

time

flo
w

 p
er

 b
at

te
ry

 u
ni

t

U
F
L

4 6 8 10 12

0
50

00
10

00
0

15
00

0

Energy for the offline and online mixed algorithms at time t=100’000

sensor position (radius)

en
er

gy
 s

pe
nt

Algorithm

U
F

−5 0 5

0
2

4
6

8
10

12

Offline multi−hop algorithm (L) at time t=100’000

(circle areas are proportional to energy spent by sensor)
Sensor position X axis

S
en

so
r

po
si

tio
n

Y
 a

xi
s

Fig. 3. Second simulation

First Simulation. The first simulation is done by scattering 1000 sensors in
a 10 meter diameter disc with a single base station at the center of the disc.
Five events are generated during each round. The potential functions we use are
pots(n) = hop(n) and potd(n) = energy(n), and we use the following ordering:
pot(n) < pot(m) if and only if [pots(n) < pots(m) and potd(n) < potd(m)] (thus
the hop distance from a message to a base station always diminishes). Flows
are plotted in figure 2. We can also see on the central plot of figure 2 that the
offline ideal flow U balances energy consumption amongst all the nodes (which
is in accordance with theorem 1), and that our online algorithm approaches
energy-balance between nodes. The right-hand side of figure 2 shows a circle
for each of the 1000 sensors, and the area of the circle is proportional to the
energy spent by the sensor under the offline multi-hop flow L. As we can see,
it does not balance energy well: nodes close to the base station spend more en-
ergy than others (they are bottleneck nodes), and only a few privileged routes
are used.

Other Simulations. We have conducted many simulations similar to the one
above, and results are comparable if the distribution of sensors is reasonable.
Events can be generated in a less uniform way (e.g. only certain nodes are
sensors, the others are just used as data transmission gateways), and still re-
sults are comparable, as is consistent with the stability results of section 4.1.
Of course, it can be imposed that L = U by a deliberate but unrealistic dis-

420 A. Jarry et al.

persion of sensors (typically braking conditions 20), and thus it would not
be true that L < F . We present in figure 3 similar plots to those of figure
2, but for a simulation where 600 sensors are dispersed randomly and uni-
formly in two sectors of 30 degrees angle and 10 meter diameter, with a base
station at the narrow end of both sectors (c.f. rightmost plot of figure 3).
Events are then generated randomly and uniformly, and are detected by the
closest sensor which is at no more than distance 1 (therefore, some events are
missed), at the rate of 3 events per round. Events can be reported to either
base station. For this simulation, we used a different potential function than
for the previous simulation, which is the following: pot(n) = hop(n) + potd(n),
with potd(n) being the energy used by sensor n so far. The simulation re-
sults (which are similar to the previous simulation) are shown in the plots of
figure 3.

References

1. Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva, Danny Patel, and Shad
Roundy. Picoradio supports ad hoc ultra-low power wireless networking. Com-
puter, 33(7):42–48, 2000.

2. Jamal N. Al-Karaki and Ahmed E. Kamal. A taxonomy of routing techniques in
wireless sensor networks. In Mohammad Ilyas and Imad Mahgoub, editors, Hand-
book of Sensor Networks: Compact Wireless and Wired Sensing Systems, pages
6.1–6.24. CRC Press, 2005.

3. Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Network Journal, 3/3:325–349, 2005.

4. I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas, and P. Spirakis. A probabilistic
algorithm for efficient and robust data propagation in smart dust networks. In 5th
European Wireless Conference on Mobile and Wireless Systems beyond 3G (EW
2004), pages 344–350, 2004.

5. I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. Smart dust protocols for local
detection and propagation. In 2nd Workshop on Principles of Mobile Computing
(POMC), pages 9–16. ACM, ACM Press, 2002.

6. I. F. Akyildiz, W. Su, Y .Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, (38):393–422, 2002.

7. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient com-
munication protocol for wireless microsensor networks. In Hawaii International
Conference on Sytem Sciences (HICSS), number 33, 2000.

8. C. Efthymiou, S. Nikoletseas, and J. Rolim. Energy balanced data propagation in
wireless sensor networks. Invited paper in the Wireless Networks (WINET, Kluwer
Academic Publishers) Journal, Special Issue on ”Best papers of the 4th Workshop
on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN 2004)”
to appear in 2005.

9. P. Leone, S. Nikoletseas, and J. Rolim. An adaptive blind algorithm for energy
balanced data propagation in wireless sensor networks. In The First International
Conference on Distributed Computing in Sensor Systems (DCOSS), number 3560
in Lecture Notes in Computer Science. Springer Verlag, June/July 2005.

10. Olivier Powell, Pierre Leone, and Jose Rolim. Energy optimal data propagation
in wireless sensor networks. arXiv.org automated e-print archives, 2005. Report
CS-0508052. Journal version submitted for publication.

An Optimal Data Propagation Algorithm 421

11. Bo Hong and Viktor K. Prasanna. Maximum data gathering in networked sensor
systems. International Journal of Distributed Sensor Networks, 2005.

12. Olivier Powell, Aubin Jarry, Pierre Leone, and Jose Rolim. Gradient based routing
in wireless sensor networks: a mixed strategy. arXiv.org automated e-print archives,
2005. Report CS-0511083.

13. G. Fayolle, V.A. Malyshev, and M.V. Menshikov. Topics in the Constructive The-
ory of Countable Markov Chains. Cambridge University Press, 1995.

Lifetime Maximization of Sensor Networks
Under Connectivity and k-Coverage

Constraints�

Wei Mo, Daji Qiao, and Zhengdao Wang

Iowa State University, Ames, IA 50011, USA
{mowei, daji, zhengdao}@iastate.edu

Abstract. In this paper, we study the fundamental limits of a wireless
sensor network’s lifetime under connectivity and k-coverage constraints.
We consider a wireless sensor network with n sensors deployed indepen-
dently and uniformly in a square field of unit area. Each sensor is active
with probability p, independently from others, and each active sensor
can sense a disc area with radius rs. Moreover, considering the inherent
irregularity of a sensor’s sensing range caused by time-varying environ-
ments, we model the sensing radius rs as a random variable with mean
r0 and variance r2

0σ
2
s . Two active sensors can communicate with each

other if and only if the distance between them is smaller than or equal
to the communication radius rc.

The key contributions of this paper are: (1) we introduce a new def-
inition of a wireless sensor network’s lifetime from a novel probabilistic
perspective, called ω-lifetime (0 < ω < 1). It is defined as the expectation
of the time interval during which the probability of guaranteeing connec-
tivity and k-coverage simultaneously is at least ω; and (2) based on the
analysis results, we propose a near-optimal scheduling algorithm, called
PIS (Pre-planned Independent Sleeping), to achieve the network’s max-
imum ω-lifetime, which is validated by simulation results, and present a
possible implementation of the PIS scheme in the distributed manner.

1 Introduction

Energy conservation is perhaps the most important issue in wireless sensor net-
works [1, 2]. Most sensor devices are battery-powered and hence have a very
limited amount of energy. It is, therefore, very important to extend the battery
operation time of individual sensors and, consequently, the network’s lifetime.
Operating each sensor device in a low duty-cycle has been recognized as an ef-
fective way to achieve this goal, where duty-cycle is defined as the fraction of
� The research reported in this paper was supported in part by the Information In-

frastructure Institute (I-Cube) of Iowa State University. The authors would also like
to acknowledge the support from the National Science Foundation under Grants
No. ECS 0428040, CCF 0431092, and CNS 0520102. Preliminary results of this re-
search were presented at the 43-rd Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, Sept. 2005.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 422–442, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lifetime Maximization of Sensor Networks 423

time that a sensor device is active. On the other hand, a wireless sensor network
typically has two major tasks: sensing and communication. It is always desirable
to have all active sensors connected and, at the same time, to have the entire
sensing field k-covered. The connectivity among active sensors is required in or-
der for an active sensor to report its sensing results back to the user, and the
reason for requiring k-coverage rather than just 1-coverage is to increase the de-
tection probability and accuracy of tracking. Obviously, the lower the duty-cycle
of individual sensors, the longer the wireless sensor network’s lifetime, but at
the same time, there are a smaller number of active sensors at a given time and,
hence, more likely either active sensors are not connected or the k-coverage of
the sensing field cannot be guaranteed. So, there are inherent tradeoffs, and the
key contribution of this paper is to present an integrated study on connectivity,
k-coverage, and lifetime of a large-scale wireless sensor network.

1.1 Related Work

Several researchers [3, 4, 5, 6, 7, 8] have addressed the coverage and connectivity
issues in wireless sensor/ad hoc networks. Gupta et al. [3] studied scaling laws
for asymptotic connectivity of sensors placed at random over a unit area, and
provided bounds on connectivity probability for finite-size networks. In [4], the
authors presented an analytical procedure to compute the node isolation proba-
bility in an ad hoc network in the presence of channel randomness, and showed
that, under the assumption that sensing relies on the same wave propagation laws
that also guide signal propagation, the coverage probability coincides with the
complement of the node isolation probability. In [5], the authors studied the re-
lation between k-coverage and k-connectivity when the communication radius is
at least twice the sensing radius, where the sensing radius is deterministic. How-
ever, no statistical properties of either k-coverage or k-connectivity were given.
In [6], three fundamental coverage measures of large-scale sensor networks were
studied: area coverage, node coverage, and detectability. In [7] and [8], the asymp-
totic coverage problem was addressed for mostly-sleeping (unreliable) wireless
sensor networks, where 1-coverage was studied in [7] and k-coverage in [8], but
neither one provided the sufficient-and-necessary condition for asymptotic cov-
erage. None of the above work studied network’s lifetime under connectivity and
coverage constraints.

Recently, research efforts [9, 10] have been made to analyze the lifetime of a
wireless sensor network with coverage requirements. The definitions of network’s
lifetime in these literature are different from ours. In [9], the lifetime refers to
the time it takes for the coverage — defined as the fraction of the area covered
by working sensors — to drop below a pre-defined threshold. In [10], the α-
lifetime of a wireless sensor network is defined as the interval during which at
least α portion of the sensing region is covered by at least one sensor node.
These lifetime definitions are all from the deterministic point of view, while in
this paper, considering the fact that the deployment and dynamics of wireless
sensor networks are random and, hence, the coverage of the sensing field and the
connectivity among active sensors are also random variables, we study network’s

424 W. Mo, D. Qiao, and Z. Wang

lifetime from a (different) probabilistic perspective. Moreover, neither [9] nor [10]
studied the effect of the communication radius on the network’s lifetime.

1.2 Key Contributions

This paper explores the fundamental limits of a wireless sensor network’s life-
time under connectivity and k-coverage constraints, and the contributions are
twofold. First, we introduce a new definition of network’s lifetime from a prob-
abilistic perspective, namely ω-lifetime, which is defined as the expectation of
the time interval during which the probability of guaranteeing connectivity and
k-coverage simultaneously is at least ω. By solving two convex optimization
problems, we obtain a lower bound and an upper bound on the network’s max-
imum ω-lifetime. Second, based on the obtained lower bound, we propose a
near-optimal scheduling scheme, called PIS (Pre-planned Independent Sleep-
ing), to maximize the network’s ω-lifetime, and describe a possible distributed
implementation of the PIS scheme.

1.3 Organization

The rest of this paper is organized as follows. Section 2 describes our network
model and gives the problem statement. In Section 3, we derive the sufficient-
and-necessary condition for maintaining k-coverage with probability one as the
number of sensors goes to infinity. Section 4 describes the details of the pro-
posed ω-lifetime and PIS scheduling scheme. Section 5 presents and evaluates
the simulation results and, finally, the paper concludes in Section 6.

2 Network Model and Problem Statement

2.1 Network Model

Consider a wireless sensornetwork with n sensors deployed independently and uni-
formly in a square sensing fieldD ofunit area. In order to extend network’s lifetime,
an appropriate duty cycle and a well-designed sleeping schedule are required, and
we propose the following Pre-planned Independent Sleeping (PIS) scheme for this
purpose: time is divided into rounds, and at the beginning of a round, each alive sen-
sor becomes active with probability p or inactive (sleeping) with probability (1−p),
independently from others; the value of p and active sensors’ communication radius
may vary with the round, and their variation patterns are pre-determined by the per-
formancemetric to be optimized.Here, alive sensors refer to the sensorswith enough
energy to operate. The PIS scheme is based on the Randomized Independent Sleep-
ing (RIS) schemeproposed in [8] and the details ofPISwillbediscussed in Section 4.
Note that, in general, RIS-like schemes are energy-efficient, lightweight, and easy
to implement because each sensor determines its own sleeping schedule indepen-
dently without interacting with others. In comparison, the Neighborhood Cooper-
ative Sleeping (NCS) schemes [11, 9, 12, 13] allow neighbor sensors to collaborate
with each other to determine their sleeping schedules, hence improving the cov-
erage performance further but with increased complexity. Design and analysis of
NCS schemes are out of the scope of this paper.

Lifetime Maximization of Sensor Networks 425

Sensing model. To consider the sensing radii irregularity caused by time-
varying environments, we assume a random sensing radius model where (1) each
active sensor has a sensing radius of rs; (2) any object within a disc of radius
rs centered at an active sensor can be reliably-detected by the sensor; and (3)
rs’s are independently identically distributed (i.i.d) random variables with mean
r0 and variance r2

0σ
2
s , and the underlying distribution is assumed unknown. A

point in the sensing field D is said to be k-covered if it is within the sensing
radius of at least k active sensors. The field D is said to be k-covered if every
point in D is k-covered.

Communication model. Two active sensors can communicate directly with
each other if and only if the distance between them is less than rc. The radius rc

is referred to as the communication radius and may vary from round to round
in the PIS scheme. For the purpose of simplicity, we assume that, at each round,
all active sensors have the same and deterministic communication radii. The
network is said to be connected if the underlying graph of active sensors is
connected. Moreover, we assume torus convention (also known as the toroidal
model) [14], i.e., each disc (communication or sensing) that protrudes one side
of the field D enters D again from the opposite side. This eliminates the edge
effects and simplifies the problem.

ω-lifetime. Due to the randomness in sensor deployment and sleeping sched-
ule, it is impossible to guarantee connectivity and k-coverage with probability
one with finite number of sensors, unless the communication disc and the sens-
ing disc of each active sensor can cover the entire field. However, the physi-
cal limitations prohibit such large communication radius and sensing radius. In
other words, there is no deterministic guarantee of connectivity or k-coverage
for randomly-deployed wireless sensor networks in practice. Such facts motivate
us to study the network’s lifetime from a probabilistic perspective. More specif-
ically, we define the ω-lifetime of a randomly-deployed wireless sensor network
as the expectation of the time interval during which the probability of guaran-
teeing k-coverage of field D and the connectivity of the network simultaneously
is at least ω, where 0 < ω < 1. For example, suppose that the PIS scheduling
scheme is employed, then the network’s ω-lifetime is Tω = E

[∑M
i=1 Ti

]
, where

Ti is the duration of the i-th round, and M is the maximum number of rounds
during which the network can function properly. In other words, for any round i
(i � M), the probability of guaranteeing both connectivity and k-coverage simul-
taneously, denoted by Pc&c, is at least ω, but for round (M + 1), Pc&c is smaller
than ω.

2.2 Problem Statement

The kernel problem we study in this paper is:

– For a finite-size wireless sensor network, how to find the optimal parameters
(p and rc) for the PIS scheme to maximize the ω-lifetime of the network?

426 W. Mo, D. Qiao, and Z. Wang

This is an interesting problem and the results may serve as good guidelines in
deploying finite-size wireless sensor networks. In order to address this problem,
we first study the following companion problem, which is referred to as the
critical condition for asymptotic k-coverage:

– What relation among n, p, r0, and σ2
s would be the sufficient-and-necessary

condition to guarantee that the probability of the entire field D being k-
covered approaches 1 as n goes to infinity?

3 Critical Condition for Asymptotic k-Coverage

In this section, we derive the sufficient-and-necessary condition, under our ran-
dom sensing radius model described in Section 2.1, to guarantee that the entire
sensing field D is k-covered with probability one as the total number of de-
ployed sensors n goes to infinity. Similar to [10], we apply the coverage process
techniques introduced in [14] to solve the problem.

Lemma 1. Let n points distributed independently and uniformly in a square
field D of unit area within R

2, then for sufficiently large n, these points form a
stationary Poisson point process with density n.

Lemma 1 is a well-known result and its proof is given by Hall in [14]. Let P ≡
{ξi, i � 1} denote the set of active sensors. It is shown in Lemma 2 that P is
also a stationary Poisson point process with density np for sufficiently large n.

Lemma 2. Let n points distributed independently and uniformly in a square
field D of unit area within R

2. Each point is marked independently as an active
point with probability p, where 0 < p � 1. Then the set of active points, P =
{ξi, i � 1}, is a stationary Poisson point process with density np for sufficiently
large n.

Let Si denote a random disc with radius rs,i centered at the origin of R
2, which

is defined as Si ≡ {x ∈ R
2 : |x| � rs,i}, where rs,i is the sensing radius of the i-th

active sensor ξi. Here, we assume that all sensing radii are i.i.d random variables
following an unknown distribution F (r), with known mean r0 and variance r2

0σ
2
s ,

i.e., all Si’s are distributed as S:

S ≡ {x ∈ R
2 : |x| � r, r ∼ F (r)}. (1)

Then, the sensing disc (abbreviated as disc) centered at active sensor ξi can be
defined as Di ≡ ξi + Si = {ξi + y : y ∈ Si}. The set of {Di, i � 1} forms a
stationary coverage process. For such a coverage process, Lemma 3 gives the
distribution of the number of discs with certain properties.

Lemma 3. Let Q = {ξi +Si, i � 1} denote a stationary coverage process, where
{ξi} is a stationary Poisson point process with density λ within D, and Si’s
are distributed as S defined in (1). For a given deterministic condition C, let

Lifetime Maximization of Sensor Networks 427

Y denote the number of discs in Q that satisfy the condition C. Then, Y is
Poisson-distributed with mean

μ = λ · E
[
‖{x : IC(x + S) = 1}‖

]
,

where IC(·) is the indicator function of whether a disc satisfies the condition C
or not, and ‖ · ‖ denotes the area.

The proofs of Lemma 2 and Lemma 3 are omitted due to space limitation.
Interested readers can refer to the full version of this paper [15].

Let Y (x) denote the number of active sensors that cover a point x, and Ik(x)
denote the indicator function of whether the point x is covered by at most (k−1)
active sensors, i.e.,

Ik(x) =

⎧⎪⎨⎪⎩
1, if Y (x) < k,

0, otherwise.

Then, the expectation of Bernoulli random variable Ik(x) is

E[Ik(x)] = P (x is at most (k − 1)-covered) = P (Y (x) < k).

By Lemma 3, we know that Y (x) is Poisson-distributed with mean

μ = np · E[‖{x : (x + S) ∩ {x} �= ∅}‖] = np · E[‖x − S‖] = npas,

where as ≡ E
[‖S‖] = πr2

0(1 + σ2
s). Therefore,

E[Ik(x)] = e−npas

k−1∑
j=0

(npas)j

j!
. (2)

Let the k-vacancy Vk denote the area within D that is covered by at most
(k − 1) active sensors, then the random variable Vk can be expressed as Vk =∫
D Ik(x)dx. Using Fubini’s theorem [16] and exchanging the order of integral

and expectation, we obtain the expected value of the k-vacancy as:

E[Vk] =
∫
D

E[Ik(x)]dx = e−npas

k−1∑
j=0

(npas)j

j!
. (3)

K-coverage of the sensing field D means that each point in D should be covered
by at least k active sensors, which implies Vk = 0. Because sensors are deployed
independently and uniformly within D, it cannot guarantee P (Vk = 0) = 1 with
finite n for as < 1 regardless of the value of n. However, if np → ∞ as n → ∞,
it is possible that P (Vk = 0) → 1 as n → ∞. Before studying the asymptotic
behavior of P (Vk = 0), we first give an upper bound and a lower bound on
P (Vk = 0) for finite n. Similar bounds have been proved in [10] for the case of
deterministic sensing radius model and non-sleeping sensor networks. Theorem 1
is a generalization of the results in [10] for the random sensing radius model.

428 W. Mo, D. Qiao, and Z. Wang

Theorem 1. For n > 1, 0 < p � 1, and as < 1,

Pl < P (Vk = 0) < Pu, (4)

in which

Pu =
4(k + 1)!(1 + σ2

s)(np)−1(npas)−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)−1(npas)−k · enpas

, (5)

and

Pl = 1 − 2e−npas

(
1 +

(
n2p2a′

s + 2npr0
) k−1∑

i=0

(npas)i

i!

)
, (6)

where a′
s ≡ πr2

0(1 + σ2
s/2).

Proof: (i) Upper bound.
By the Cauchy-Schwartz inequality [14],

E[Vk] = E[Vk · I(Vk > 0)] � {E[V 2
k]P (Vk > 0)}1/2,

where I(·) denotes the indicator function, thus

P (Vk > 0) � (E[Vk])2

E[V 2
k]

, (7)

where E[V 2
k] = E

[∫ ∫
D2 Ik(x1)Ik(x2)dx1dx2

]
=

∫ ∫
D2 E[Ik(x1)Ik(x2)]dx1dx2.

Let Y1 denote the number of active sensors that cover x1, Y2 the number of
active sensors that cover x2, and Y3 the number of active sensors that cover x2
but not x1, then

E[Ik(x1)Ik(x2)] = P (Y1 < k, Y2 < k) � P (Y1 < k, Y3 < k). (8)

Lemma 4. For the random variables Y1 and Y3 defined above, we have the fol-
lowing results:

– Y1 is Poisson-distributed with mean npas,
– Y3 is Poisson-distributed with mean npbs,
– Y1 and Y3 are independent,

where bs ≡ E
[∥∥{x : (x + S) ∩ {x1} = ∅, (x + S) ∩ {x2} �= ∅}∥∥].

The proof of Lemma 4 is omitted here due to space limitation. Interested
readers can refer to [15]. Using Lemma 4 and (8), we have

E[Ik(x1)Ik(x2)] � P (Y1 < k) · P (Y3 < k) = E[Ik(x1)] · P (Y3 < k)

= E[Ik(x1)] ·
(

e−npbs

k−1∑
j=0

(npbs)j

j!

)
.

(9)

Lifetime Maximization of Sensor Networks 429

Let z = x1 − x2, then

bs = E
[∥∥{x : (x + S) ∩ {x1} = ∅, (x + S) ∩ {x2} �= ∅}∥∥]

= E
[∥∥{x : (x + S) ∩ {z} = ∅, (x + S) ∩ {0} �= ∅}∥∥] = as − ρ(z),

where

ρ(z) = E
[∥∥{x : (x + S) ∩ {z} �= ∅, (x + S) ∩ {0} �= ∅}∥∥] =

∫ ∞

0
r2B(|z|/2r)dF (r),

and

B(x) =

⎧⎪⎨⎪⎩
4
∫ 1
x

√
(1 − y2)dy if 0 � x � 1,

0 otherwise

is the area of the lens of intersection of two unit discs centered 2x apart, and
F (r) is the distribution of sensing radius rs.

It is shown in [15] that B(x) � π(1 − x) for 0 � x � 1, then using the fact that
ρ(z) � 0 and after some algebraic manipulation, we can bound ρ(z) as⎧⎪⎨⎪⎩

ρ(z) � as − πr0|z|/2 if |z| < 2r0(1 + σ2
s),

ρ(z) = 0 if |z| � 2r0(1 + σ2
s).

If |z| � 2r0(1 + σ2
s), then bs = as. Using (9), we have

E[Ik(x1)Ik(x2)] � E[Ik(x1)] · E[Ik(x2)].

Therefore,

I1 ≡
∫ ∫

D2∩{|x1−x2|�2r0(1+σ2
s)}

E[Ik(x1)Ik(x2)]dx1dx2

�
∫ ∫

D2
E[Ik(x1)] · E[I(x2)]dx1dx2 = (E[Vk])2.

(10)

Similarly, if |z| < 2r0(1 + σ2
s), then bs � πr0|z|/2. Using (9), we have

E[Ik(x1)Ik(x2)] � E[Ik(x1)] ·
⎛⎝e−np

πr0
2 |z|

k−1∑
j=0

(npπr0|z|)j

2j · j!

⎞⎠ .

Therefore,

I2 ≡
∫ ∫

D2∩{|x1−x2|<2r0(1+σ2
s)}

E[Ik(x1)Ik(x2)]dx1dx2

�
∫
D

E[Ik(x1)]dx1

∫ 2r0(1+σ2
s)

0
e−npπr0z/2

k−1∑
i=0

(npπr0z)i

2i · i! 2πzdz

430 W. Mo, D. Qiao, and Z. Wang

= E[Vk] ·
(∫ 1

0
e−λu

k−1∑
i=0

(λu)i

i!
8πr2

0
(
1 + σ2

s

)2
udu

)
< 4as(1 + σ2

s)k(k + 1)λ−2,

where λ = npas. The proof of the last inequality above can be found in [15].
Hence, we have

I2 < 4as(1 + σ2
s)k(k + 1)(npas)−2 ·

(
e−npas

k−1∑
i=0

(npas)i

i!

)
. (11)

Since E[V 2
k] = I1 +I2, combining (7), (3), (10), and (11), we can upper-bound

P (Vk = 0) as follows:

P (Vk = 0) = 1 − P (Vk > 0) � 1 − (E[Vk])2

E[V 2
k]

<
β

1 + β
,

where

β =
4(1 + σ2

s)ask(k + 1)(npas)−2

e−npas
∑k−1

i=0 (npas)i/i!
� 4(1 + σ2

s)(k + 1)!(np)−1(npas)−k · enpas .

Therefore, we obtain the upper bound on P (Vk = 0) as

P (Vk = 0) <
4(k + 1)!(1 + σ2

s)(np)−1(npas)−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)−1(npas)−k · enpas

.

(ii) Lower bound.
Observe that

p(Vk = 0) = 1 − p1 − p2 − p3,

where

p1 = P (no active sensors centered within D) = e−np < e−npas .

Here, we assume as < 1, meaning that, even for the random sensing radius
model, the expected sensing area of one sensor will not cover the entire field D.

p2 = P (at least one disc centered within D, but none of the discs intersects with

any other disc, and none of the discs intersect the boundary of D)

�P (at least one disc centered within D)·P (a given disc intersects with no other discs)

= (1 − e−np) · e−npπE[π(rs,1+rs,2)2] = (1 − e−np) · e−2npπr2
0(2+σ2

s) < e−npas ,

where rs,1 and rs,2 are sensing radii of two active sensors, which are i.i.d with
mean r0 and variance r2

0 · σ2
s , and the second equality is due to Lemma 3.

p3 = P (D is not k-covered, at least one disc centered within D, and at least

one disc intersects with another disc or the boundary of D).

Lifetime Maximization of Sensor Networks 431

Therefore
p(Vk = 0) > 1 − 2e−npas − p3. (12)

Our next task is to derive an upper bound on p3.
Define a crossing to be either an intersection point of the boundaries of two

discs or an intersection point of the boundary of an disc and the boundary of
the field D. A crossing is said to be k-covered if it is within at least k discs. It is
proved in [5] that, field D is k-covered if there exist crossings and every crossing
is k-covered. Therefore, if D is not k-covered, if one or more discs are centered
within D, and if there exist crossings in D, then at least one of the discs has two
or more crossings that are not k-covered. Thus

p3 � P (Mk � 2) � E[Mk]/2, (13)

where Mk denotes the number of crossings that are not k-covered.
Define L1 and L2 as the number of crossings created by two discs intersecting

with each other, and the ones created by a disc intersecting the boundary of field
D. We first study the expected value of L1. The expected number of crossings
created by a given active sensor ξ1 with other active sensors is

E[2np · π(rs,1 + rs,2)2] = 8npa′
s,

where a′
s ≡ πr2

0(1 + σ2
s/2), and the expected number of discs centered within D

is np. Therefore,

E[L1] = np · 8npa′
s/2 = 4n2p2a′

s.

If a disc intersects the edge of field D, at most two crossings will be created; if
a disc intersects the corner of field D, at most four crossings will be created (due
to the toroidal model assumption). Thus the expected value of L2 is bounded by

E[L2] � 8npr0.

The probability that a given crossing is not k-covered is given by (2). Therefore,

E[Mk] = (E[L1] + E[L2])e−npas

k−1∑
j=0

(npas)j

j!
� 4(n2p2a′

s + 2npr0)e−npas

k−1∑
j=0

(npas)j

j!
.

(14)
By (12), (13), and (14), we have

P (Vk = 0) > 1 − 2e−npas

(
1 +

(
n2p2a′

s + 2npr0
) k−1∑

i=0

(npas)i

i!

)
.

This completes the proof. �

In what follows, we establish the sufficient-and-necessary condition for asymp-
totic k-coverage.

432 W. Mo, D. Qiao, and Z. Wang

Corollary 1. Assume np → ∞ as n → ∞, and let

πr2
0
(
1 + σ2

s

)
=

ln(np) + k ln ln(np) + c1(np)
np

, (15)

then the entire unit square field D is k-covered with probability one as n → ∞,
if and only if c1(np) → ∞ as n → ∞.

Proof: The entire unit square field D is k-covered with probability one means
that P (Vk = 0) → 1 as n → ∞. First, we prove if c1(np) → ∞ as n → ∞,
P (Vk = 0) → 1.

By (4) and (6) in Theorem 1, we have

P (Vk = 0) > 1 − 2e−npas − (b1 + b2) · (np)(npas)ke−npas ,

where b1 ≡ 2k
1+σ2

s/2
1+σ2

s
> 0 is independent of n, and b2 ≡ 4k

πr0(1+σ2
s)np . Let npas =

ln(np) + k ln ln(np) + c1(np), then npas → ∞, e−npas → 0, and b2 → 0, as
n → ∞. Therefore, when c1(np) → ∞,

ln
(
(b1 + b2) · (np)(npas)ke−npas

)
= ln(b1 + b2) − k ln ln(np) − c1(np)

+ k · ln
(

ln(np) + k ln ln(np) + c1(np)
)

→ − ∞,

and consequently, P (Vk = 0) → 1. The first part is proved.
If c1(np) � C1 for some finite C1 > 0 as n → ∞, then for sufficiently large n,

4(k + 1)!(1 + σ2
s)(np)−1(npas)−kenpas = 4(k + 1)!(1 + σ2

s)ec1(np)

� 4eC1(k + 1)!(1 + σ2
s).

Therefore, by (4) and (5), we have

P (Vk = 0) <
4eC1(k + 1)!(1 + σ2

s)
1 + 4eC1(k + 1)!(1 + σ2

s)
< 1.

It means that P (Vk = 0) → 1 only if c1(np) → ∞ as n → ∞. This completes
the proof. �
Remark: The bounds obtained in Theorem 1 is valid for finite n. Therefore, they
can be used as performance criteria for designing finite-size sensor networks, as
will be shown in the next section.

4 ω-lifetime of Finite-Size Wireless Sensor Networks

In this section, we address the problem of finding optimal parameters for the
PIS scheme to maximize the ω-lifetime of a finite-size wireless sensor network.

Let A denote the event of the sensing field D being k-covered, and B denote
the event of the sensor network being connected. The probability of guaranteeing
simultaneously k-coverage of field D and connectivity of the network is Pc&c ≡
P (A ∩ B).

Lifetime Maximization of Sensor Networks 433

Definition 1. ω-lifetime, denoted by Tω, of a sensor network is defined as the
expectation of the time interval during which the probability of guaranteeing si-
multaneously k-coverage of field D and the connectivity of the network is no less
than ω, i.e., Pc&c � ω, where 0 < ω < 1.

In order to study the ω-lifetime, we first introduce the energy consumption model
of each wireless sensor. We assume that inactive sensors do not consume energy
and the communication traffic is evenly distributed across the network.The energy
consumption of an active sensor consists of two parts: communication and sensing.
Thus, the power consumption P0 of each active sensor can be modeled as

P0 = Q · 1
rc

· rβ
c + Δ, (16)

where

– rβ
c is proportional to the communication energy consumption per bit, and

the typical values of β range from 3 to 4 for different propagation models [17];
– 1/rc is proportional to the average traffic rate of active sensors (we assume

that all active sensors have the same traffic rate, following the assumption
of evenly distributed traffic.);

– Δ is the power consumption for continuous sensing and listening;
– Q > 0 is a constant.

As the communication radius rc decreases, the average number of hops required
for packets transmitted from one point to another increases inversely. For this
reason, we incorporate the factor of 1/rc into the average traffic rate expression.
We further assume that all active sensors have the same communication radius
rc, which results in the same individual lifetime:

T0(rc) =
E′

0

P0
=

E0

rβ−1
c + η

, (17)

where E′
0 is the initial energy of each active sensor, E0 = E′

0
Q , and η = Δ

Q ,
respectively. This assumption is typical when analyzing the network’s lifetime,
e.g., in [10] and [18].

Next, we formally define the PIS scheme which can extend the ω-lifetime of
a wireless sensor network. Suppose that time is divided into rounds. At the be-
ginning of round i, there are n(i) alive sensors, and each alive sensor decides
independently whether to remain sleeping (with probability 1− p(i)), or become
active (with probability p(i)). All active sensors choose the same communica-
tion radius of r

(i)
c . Both p(i) and r

(i)
c are chosen such that Pc&c � ω. Next,

all active sensors will operate continuously until batteries die out. Since we as-
sume that all active sensors have the same individual lifetime, they will die
out at the same time instant, which is defined as the end of this round. The
same procedure is repeated for the next rounds until there are not enough alive
sensors to satisfy the “Pc&c � ω” requirement, regardless of the choices of p
and rc.

434 W. Mo, D. Qiao, and Z. Wang

The major differences between PIS and RIS in [8] are as follows. In PIS, p
and rc are chosen for each round to satisfy both connectivity and k-coverage
requirements, and they may vary from round to round. The round duration is
the same as an individual sensor’s lifetime, i.e., within each round, all active
sensors operate continuously until batteries die out. In comparison, the round
duration of the RIS scheme is selected to be sufficiently-small, and the values of
p and rc in RIS are fixed throughout the network operation, where p is chosen
to satisfy the k-coverage requirement but with no optimization on rc. This way,
batteries of all sensors die out at approximately the same time around the end
of the network’s lifetime.

In the rest of this section, we study the ω-lifetime with the proposed PIS
scheme and try to find the optimal parameters to maximize the ω-lifetime of the
network.

4.1 ω-Lifetime Study

Suppose that n sensors are deployed independently and uniformly within a unit-
area square field D, and the network can operate M rounds following the PIS
scheduling scheme. Then, the ω-lifetime of the wireless sensor network is

Tω = E

[
M∑
i=1

T0(r(i)
c)

]
= E

⎡⎢⎣ M∑
i=1

E0(
r
(i)
c

)β−1
+ η

⎤⎥⎦ , (18)

subject to both connectivity and k-coverage requirements, and the expectation
is with respect to M . Define n

(i)
eff = n(i)p(i), which is the expected number of

active sensors in round i. It is easy to verify that the probability mass function
(pmf) of M is

P (M = m) =
∑

· · ·
∑

n=n(1)�n(2)�···�n(m)

n(i)�n
(i)
eff , i=1,...,m

n
(m+1)
eff −1∑

n(m+1)=0

m∏
i=1

(
n(i)

n(i+1)

)(
1 − p(i)

)n(i+1) (
p(i)

)n(i)−n(i+1)

.

Thus, the problem of maximizing the ω-lifetime of the network can be expressed
as

T max
ω = max

r
(i)
c ,n

(i)
eff

Tω = max
r
(i)
c ,n

(i)
eff

E

⎡⎢⎣ M∑
i=1

E0(
r
(i)
c

)β−1
+ η

⎤⎥⎦ , (19)

subject to Pc&c = P (A ∩ B) � ω for each round. (20)

Using the union bound, we have

min{P (A), P (B)} � Pc&c � P (A) + P (B) − 1. (21)

Since it is hard to analyze Pc&c directly, we next focus on finding a lower bound
and an upper bound on the optimal ω-lifetime, T max

ω .

Lifetime Maximization of Sensor Networks 435

Lower bound. Restricting the constraint in (20) by replacing it with the lower
bound in (21), and assuming that all n

(i)
eff and r

(i)
c ’s are the same for each round,

we can obtain a lower bound on T max
ω by solving the following optimization

problem:

max
neff,rc,ε

E[M] · E0

rβ−1
c + η

, (22)

subject to P (A) � ω + ε, P (B) � 1 − ε for 0 < ε < 1 − ω. (23)

Using the result P (A) > Pl in Theorem 1, and the following result in [3]:

P (B) ≈ 1 − P (∃ isolated active sensors) > 1 − neffe−neffπr2
c ,

where the edge effects are avoided by the toroidal model assumption, we can
restrict the constraints in (23) as

Pl � ω + ε, rc �
√

[ln(neff/ε)]/(πneff) for 0 < ε < 1 − ω. (24)

Notice that the value of ω is usually larger than 90% in practice, then the Pl

defined in (6) can be approximated as

Pl ≈ 1 − g(neff) ≡ 1 − 2n2
effa′

se
−asneff

k−1∑
i=0

(asneff)i

i!
. (25)

Let Xi denote the number of active sensors in round i, then n(m) = n −∑m−1
i=1 Xi, and conditional on n(i), Xi is Binomial-distributed as BIN

(
n(i), p(i)

)
.

Next, we use the expectation of n(i) to obtain an approximation of p(i) as

p(i) =
neff

n(i) ≈ neff

n − (i − 1)neff
=

1
M0 + 1 − i

, (26)

where M0 ≡ n/neff. Using (26) and the central limit theorem, we can approxi-
mate n(m) as a Gaussian random variable with mean n−(m−1)neff and variance
A(m)neff, where A(m) =

∑m−1
i=1 (1 − p(i)). Then, we have

P (M � m) = P (n(m+1) < neff) = Q

(
n − (m + 1)neff√

A(m + 1)neff

)
,

P (M � m) = P (n(m) � neff) = Q

(
mneff − n√
A(m)neff

)
,

where Q(·) is complementary cumulative distribution function (CCDF) of Gaus-
sian distribution. Therefore,

P (M � M0! − 2) = Q

(
n − (M0! − 1)neff√

A(M0! − 1)neff

)
� Q

(√
neff

A(M0 − 1)

)
,

436 W. Mo, D. Qiao, and Z. Wang

and

P (M � M0! + 2) = Q

(
(M0! + 2)neff − n√

A(M0! + 2)neff

)
� Q

(√
neff

A(M0 + 1)

)
,

where the floor function x! denotes the largest integer that is not greater than x.
For m < M0 + 2, A(m) can be upper-bounded as

A(m) � (m − 1) −
∫ M0

M0+2−m

1
x

dx = (m − 1) − ln
M0

M0+2−m
.

Then, for n and neff in the range of our interests, we have

P (M � M0! + 2) � Q

(√
neff

A(M0+1)

)
� Q

(√
neff

M0−lnM0

)
≈ 0.

Similarly, we have P (M � M0! − 2) ≈ 0. Thus, the pmf of M are mostly
concentrated at 3 points:

⌊
n

neff

⌋−1,
⌊

n
neff

⌋
, and

⌊
n

neff

⌋
+1. Monte Carlo simulation

results also verify this conclusion. Therefore, we have the lower bound on E[M]
as

E[M] �
⌊n − neff

neff

⌋
. (27)

Since E0/(rβ−1
c + η) is a decreasing function in rc, using (24), (25) and (27), we

obtain a new lower bound on T max
ω as

T L
ω = max

neff
T1(neff) ≡ max

neff

⌊
n − neff

neff

⌋
· E0(

1
πneff

ln neff
1−ω−g(neff)

)(β−1)/2
+ η

,

subject to neff > g−1(1 − ω),

where g−1(·) is the inverse function of g(neff). By temporarily removing the floor
function ·!, we have the following convex optimization problem (given β > 3):

max
neff

E0(n − neff)

neff

(
1

πneff
ln neff

1−ω−g(neff)

)(β−1)/2
+ η · neff

,

subject to neff > g−1(1 − ω).

(28)

The verification of the concavity of the objective function is omitted due to space
limitation.

The convex optimization problem defined in (28) can be solved easily by
numerical methods. Suppose that the solution of such problem is n̄eff, then

T L
ω = max{T1(n1

eff), T1(n2
eff)},

Lifetime Maximization of Sensor Networks 437

where n1
eff = n

/⌊
n

n̄eff

⌋
, n2

eff = n
/⌈

n
n̄eff

⌉
, and �x� denotes the smallest integer

that is equal to or greater than x. We can also obtain the corresponding nL
eff and

rL
c as

nL
eff = arg max

n1
eff,n

2
eff

T1(neff), rL
c =

√
[ln(nL

eff/(1 − ω − g(nL
eff)))]/(πnL

eff). (29)

Upper bound. Next, we present an approximate upper bound on Tmax
ω . Relax-

ing the constraint in (20) with the upper bound in (21), we obtain the relaxed
constraints as

P (A) � ω, P (B) � ω. (30)

Then, we use the lower bounds to approximate P (A) and P (B) as

P (A) ≈ Pl ≈ 1 − g(n(i)
eff), P (B) ≈ 1 − n

(i)
effe−n

(i)
eff π

(
r(i)

c

)2

. (31)

Next, we assume that the number of active sensors in round i is approximately
equal to n

(i)
eff . Then the maximum number of rounds, M , is a deterministic quan-

tity, and satisfies the constraint
∑M

i=1 n
(i)
eff � n. Using (30) and (31), we obtain

an approximate upper bound on T max
ω by solving the following optimization

problem:

max
n

(i)
eff

M∑
i=1

E0(
1

πn
(i)
eff

ln n
(i)
eff
ω

)(β−1)/2

+ η

,

subject to n
(i)
eff � g−1(1 − ω),

M∑
i=1

n
(i)
eff � n.

(32)

It is easy to verify that, given M , (32) is a convex optimization problem. By
Lagrange multiplier, we obtain a new upper bound on Tmax

ω as

T U
ω = max

neff
T2(neff) ≡ max

neff

⌊
n

neff

⌋
· E0(

1
πneff

ln neff
1−ω

)(β−1)/2
+ η

,

subject to n
(i)
eff � g−1(1 − ω).

(33)

Similarly, we temporarily remove the floor function ·!. It is easy to verify that
the resulting optimization problem is a convex problem. Suppose that the solu-
tion of such problem is ñeff, then

T U
ω = max{T2(n1

eff), T2(n2
eff)}, nU

eff = argmax
n1

eff,n
2
eff

T2(neff), and

rU
c =

√
[ln(nU

eff/(1 − ω))]/(πnU
eff),

where n1
eff = n

/⌊
n

ñeff

⌋
and n2

eff = n
/⌈

n
ñeff

⌉
.

438 W. Mo, D. Qiao, and Z. Wang

As an example, we let E0 = 1, β = 3.5, η = 0.001, ω = 0.92, and k = 1.
Numerical results show that the relative difference between the lower bound
(T L

ω) and the upper bound (T U
ω) is at the level of 10% for n from 10000 to

40000, which suggests that the derived lower bound is a good approximation of
the optimal ω-lifetime of the sensor network.

4.2 PIS Scheme Design

We propose to choose the operational parameters for the PIS scheme according
to the derived lower bound on the optimal ω-lifetime, i.e., choosing p(i) and r

(i)
c

for round i as
p(i) = min

{
nL

eff
/
n(i), 1

}
, r(i)

c = rL
c , (34)

where n(i) is the number of alive sensors at the beginning of round i (i � 1), and
nL

eff and rL
c are given in (29). Obviously, (34) provides a centralized solution, since

n(i) is a global information. At the beginning of each round, such information is
required for each alive sensor to calculate p(i) online.

In resource-constrained wireless sensor networks, we always prefer distributed
solutions. In our case, distributed solutions mean that the choices of p(i)’s should
be independent of n(i). As shown in Section 4.1, the expected number of active
sensors in each round, n(i)p(i), is the key parameter to determine whether the
network satisfies the “Pc&c � ω” requirement or not. According to the lower
bound on the optimal ω-lifetime, we define outage of round i as the event that
n(i)p(i) < nL

eff, which means that the “Pc&c � ω” requirement can not be satisfied
at round i. The probability that an outage occurs at round i is denoted by
P

(i)
out. For the centralized solution in (34), P

(i)
out is always 0 for the rounds that

n(i) � nL
eff.

As an approximation to (34), we propose a distributed solution as follows:

p(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nL

eff

(
1+ε(i)

)
n−nL

eff

∑ i−1
l=1

(
1+ε(l)

) 1 � i < M

1 i = M

, r(i)
c = rL

c , (35)

where M is the maximum number of rounds, ε(1) = 0, and for 1 < i < M , ε(i)’s
are chosen such that

P
(i)
out = P

(
n(i)p(i) < nL

eff

)
= δ, (36)

where δ > 0 is a pre-defined small quantity.
With the choice of p(i) in (35), where 1 < i < M , we can approximate n(i) as

a Gaussian random variable by the central limit theorem:

n(i) ∼ N
(

n − nL
eff

i−1∑
l=1

(
1 + ε(l)

)
, nL

eff

i−1∑
l=1

(
1 + ε(l)

)(
1 − p(l)

))
.

Lifetime Maximization of Sensor Networks 439

Then, ε(i)’s in (35) can be calculated recursively according to

ε(i) =

⎧⎪⎨⎪⎩
0 i = 1

Q−1(δ)
a(i)−Q−1(δ) 1 < i < M

, (37)

and

a(i) =
n − nL

eff
∑i−1

l=1

(
1 + ε(l)

)√
nL

eff
∑i−1

l=1

(
1 + ε(l)

) (
1 − p(l)

) , (38)

where Q−1(·) is the inverse function of Q(·). The maximum number of rounds
(M) is defined as

M = argmax
i>1

{
a(i) > 0

}
.

The idea of this distributed solution is to use the expected number of alive
sensors to replace n(i) in (34), and increase the expected number of active sensors
slightly by nL

effε(i) such that the outage probability (P (i)
out) can be controlled at

a given level (δ). In fact, this algorithm sacrifices the total number of rounds,
equivalently network’s lifetime, to achieve the distributed property.

5 Simulation Results

In this section, we use simulation results to demonstrate the performance of the
proposed PIS scheduling schemes. The performance criterion is the ω-lifetime
of the network. As a comparison, we include the results of a PIS-like scheme
that simply fixes the communication range to be twice the mean of the sensing
radius (rc = 2r0), and n

(i)
eff to be nA

eff, regardless of i. Here, nA
eff is obtained by

solving the following equation: P (A) = ω, where P (A) is given in (31). We call
this scheme the PIS-naive scheme.

We simulate a square sensing field D of unit area in which n sensors are
deployed independently and uniformly. The sensing radius rs is assumed to be
a uniformly distributed random variable on [0.0384, 0.1216], which corresponds
to r0 = 0.08 and σs = 0.3. Let E0 = 1, β = 3.5, η = 0.001, ω = 0.92, and
k = 1, i.e, we considerer 1-coverage as an example. With this network setup,
the centralized and distributed PIS schemes select p(i) and r

(i)
c according to (34)

and (35), respectively. For the distributed PIS scheme, the outage probability
threshold (δ) is set to 10−2. The PIS-naive scheme selects p(i) according to (34)
with nL

eff replaced by nA
eff.

First, we simulate the operation of a network with n = 10000 using different
scheduling schemes. We divide the field D into a grid of size 62 × 62, and ap-
proximate that the field D is k-covered if all grid points are k-covered. For the
connectivity, we approximate that the network is connected if there is no isolated
active sensors. The torus convention is also employed for simulations to avoid

440 W. Mo, D. Qiao, and Z. Wang

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

P
C

&
C
=

P
(1

−
co

ve
re

d
an

d
co

nn
ec

te
d)

PIS scheme (centralized)
PIS scheme (distributed)
PIS−naive scheme

ω = 0.92

Fig. 1. Three snapshots of the network
operation

1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

total number of deployed sensors

ω
−

lif
et

im
e

(u
ni

t t
im

e)

PIS scheme (centralized)
PIS scheme (distributed)
PIS−naive scheme
Upper bound
Lower bound

ω = 0.92

Fig. 2. ω-lifetime comparison for different
scheduling schemes

edge effects. Then, Pc&c at each round of the network operation is estimated as
follows: given a deployment, the network is operated according to the particular
scheduling scheme until the batteries of all sensors die out. Repeat this experi-
ment 2500 times with the same deployment. For round i of experiment j, define
δi
j = 1 if the field D is k-covered and active sensors are connected, 0 otherwise.

Then, Pc&c of round i can be estimated as P i
c&c = 1

2500

∑2500
j=1 δi

j .
Fig. 1 shows three snapshots of the network operation using PIS-naive scheme,

centralized and distributed PIS scheduling schemes, respectively. It is seen that
all scheduling schemes can guarantee that the network satisfies the connectivity
and k-coverage requirements as long as the expected number of active sensors
is no less than nL

eff. Therefore, in the simulation of the network’s ω-lifetime, we
only need to simulate how many rounds a network can operate properly following
a particular scheduling scheme. Notice that the PIS-naive scheme can operate
more rounds than the PIS schemes. However, each round is shorter in the PIS-
naive scheme, since rc is not optimally selected. As seen in the next simulation,
the PIS schemes have longer ω-lifetime than the PIS-naive scheme.

Second, we compare the ω-lifetime of a network using different scheduling
schemes with n from 10000 to 40000, and the results are plotted in Fig. 2. The
derived lower bound and upper bound for the PIS scheme are also shown in the
figure. The estimate of the ω-lifetime is calculated as:

T̂net =
1
N

N∑
j=1

Mj · T0(rc), (39)

where N is the number of Monte Carlo realizations (we set N to 1000 in this simu-
lation), T0(rc) is the duration of each round defined in (17), and Mj is the number
of rounds the network can operate properly at the j-th Monte Carlo realization.
At each Monte Carlo realization, the network is said to operate properly at round
i if the expected number of active sensors at round i is at least nL

eff, i.e.,

n(i)p(i) � nL
eff.

Lifetime Maximization of Sensor Networks 441

We observe that for the centralized PIS scheme, the simulation result is very
close to the theoretical lower bound, T L

ω , which was derived in Section 4. By
comparing the PIS schemes and the PIS-naive scheme, we clearly see that the
ω-lifetime’s of both centralized and distributed PIS schemes are much longer
than that of the PIS-naive scheme, and the differences become larger with more
deployed sensors. Such fact demonstrates the importance of joint optimization
of lifetime, connectivity, and coverage. We also see that the ω-lifetime of the
distributed PIS scheme is close to that of the centralized one, which suggests
that the distributed PIS scheme is a good choice for real applications.

6 Conclusions and Future Work

In this paper, we investigate the fundamental limits of a wireless sensor network’s
lifetime under connectivity and k-coverage constraints. The contributions of the
paper are twofold. First, we study the lifetime of a wireless sensor network from
a novel probabilistic perspective and introduce a new concept, called network’s
ω-lifetime, which is defined as the expectation of the time interval during which
the probability of guaranteeing connectivity and k-coverage simultaneously is
at least ω. Second, we propose PIS (Pre-planned Independent Sleeping) as a
near-optimal scheduling scheme to maximize the ω-lifetime of a finite-size wire-
less sensor network, describe a possible distributed implementation of the PIS
scheme, and demonstrate the PIS performance by simulation results.

Future work includes extending the analysis to more generic and realistic
scenarios such as when only a portion of the sensing field needs to be k-covered,
or when the sensing field is of irregular shape, or when the communication radius
is also a random variable.

References

1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communication Magazine, vol. 40, no. 8, pp. 102–114, Aug. 2002.

2. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century challenges:
scalable coordination in sensor networks,” in Proc. ACM MobiCom’99, Seattle,
WA, 1999, pp. 263–270.

3. P. Gupta and P. Kumar, “Critical power for asymptotic connectivity,” in Proc. the
37th IEEE Conference on Decision and Control, vol. 1, 1998, pp. 1106–1110.

4. D. Miorandi and E. Altman, “Coverage and connectivity of ad hoc networks in
presence of channel randomness,” in Proc. IEEE INFOCOM’05, Miami, FL, Mar.
2005, pp. 491–502.

5. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and
connectivity configuration in wireless sensor networks,” in Proc. ACM SenSys’03,
Los Angeles, CA, 2003, pp. 28–39.

6. B. Liu and D. Towsley, “A study of the coverage of large-scale sensor networks,”
in Proc. IEEE MASS’04, Fort Lauderdale, FL, Oct. 2004, pp. 475–483.

7. S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: coverage, con-
nectivity and diameter,” in Proc. IEEE INFOCOM’03, vol. 2, 2003, pp. 1073–1083.

442 W. Mo, D. Qiao, and Z. Wang

8. S. Kumar, T. Lai, and J. Balogh, “On k-coverage in a mostly sleeping sensor
network,” in Proc. ACM MobiCom’04, Philadelphia, PA, 2004, pp. 144–158.

9. F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS: a robust energy conserving
protocol for long-lived sensor networks,” in Proc. IEEE ICDCS’03, Providence, RI,
May 2003, pp. 28–37.

10. H. Zhang and J. Hou, “On deriving the upper bound of α-lifetime for large sensor
networks,” in Proc. ACM MobiHoc’04, Roppongi Hills, Tokyo, Japan, 2004, pp.
121–132.

11. Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation
for ad hoc routing,” in Proc. ACM MobiCom’01, Rome, Italy, July 2001.

12. C. Hsin and M. Liu, “Network coverage using low duty-cycled sensors: random and
coordinated sleep algorithms,” in Proc. IEEE IPSN’04, Berkeley, CA, Apr. 2004,
pp. 433–442.

13. C. Gui and P. Mohapatra, “Power convervation and quality of surveillance in target
tracking sensor networks,” in Proc. ACM MobiCom’04, Philadelphia, PA, Sept.
2004.

14. P. Hall, Introduction to the Theory of Coverage Process. John Wiley and Sons,
1988.

15. W. Mo, D. Qiao, and Z. Wang, “Mostly sleeping wireless sensor networks: connec-
tivity, k-coverage, and lifetime,” Electrical and Computer Engineering Department,
Iowa State University, Tech. Rep., 2005.

16. P. Billingsley, Probability and Measure. New York: Wiley, 1979.
17. T. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall,

2001.
18. D. Blough and P. Santi, “Investigating upper bounds on network lifetime extension

for cell-based energy conservation techniques in stationary ad hoc networks,” in
Proc. MobiCom’02, 2002, pp. 183–192.

Network Power Scheduling for TinyOS Applications

Barbara Hohlt and Eric Brewer

Electrical Engineering and Computer Sciences Department
University of California at Berkeley

Berkeley, CA USA
{hohltb, brewer}@eecs.berkeley.edu

Abstract. This paper presents a study of the Flexible Power Scheduling protocol
and evaluates its use for real-world sensor network applications and their plat-
forms. FPS uses dynamically created schedules to reserve network flows in sen-
sor networks allowing nodes to turn off their radio during idle times. We show
that network power scheduling has high end-to-end packet reception and can
achieve power savings of 2-5x for two well-known TinyOS applications over
their existing power-management schemes, and over 150x compared with no
power management. Twinkle is our second-generation implementation of FPS
and provides additional application support.

1 Introduction

Power is one of the dominant problems in wireless sensor networks. Constraints
imposed by the limited energy stores on individual nodes require planned use of
resources, particularly the radio. Sensor network energy use tends to be particularly
acute as deployments are left unattended for long periods of time, perhaps months or
years. Communication is the most costly task in terms of energy [2,9,27,21]. At the
communication distances typical in sensor networks, listening for information on the
radio channel is of a cost similar to transmission of data [23]. Worse, the energy cost
for a node in idle mode is approximately the same as in receive mode. Therefore, pro-
tocols that assume receive and idle power are of little consequence are not suitable for
sensor networks. Idle listening, the time spent listening while waiting to receive pack-
ets, comprises the most significant cost of radio communication. Even for hand-held
devices Stemm et al. observed that idle listening dominated the energy costs [30].
Thus, the biggest single action to save power is to turn the radio off during idle times.

Unfortunately, turning the radio off implies that you must know that the radio will
be idle in advance, and the easiest way to do this is to have a schedule. An obvious
approach is to use TDMA to turn the radio off at the MAC layer during idle slots.
However, this requires tight time synchronization and typically hardware support.
Scheduling network flows helps for multi-hop topologies, which play a significant role
in wireless sensor networks. Pottie and Kaiser [21] cover the many advantages of
multi-hop topologies, including reduced energy use and routing around obstructions.
In multi-hop networks the farthest nodes have more chances to drop packets, and thus
using only hop-by-hop decisions (rather than flows), as with any MAC-layer approach,
tend to achieve lower bandwidth and less fairness.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 443 – 462, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Flexible Power Scheduling (FPS) [13] introduced the approach of scheduling the
network for power savings in sensor networks and proposed a two-level architecture
that combines coarse-grain dynamic scheduling at the network layer to plan radio on-
off times, and simple CSMA to handle channel access at the MAC-layer. The FPS
paper presented the distributed scheduling algorithm details and microbenchmarks, but
no performance evaluation with real applications.

In this paper we present a study of the FPS protocol and evaluate its use for real-
world sensor network applications with studies of two well-known sensornetwork
applications, GDI and TinyDB, on three mote platforms, mica, mica2dot, and
mica2. Our second-generation implementation of FPS, named Twinkle1, is used in
these studies. We compare the power savings of GDI and TinyDB running their default
radio power management against these two applications running Twinkle radio power
management.

The main contribution of this paper is the implementation and evaluations from
two real applications using Twinkle, our second-generation implementation of FPS. In
particular, we provide an application-level evaluation of the power savings using two
well-known and deployed TinyOS applications [11]: the Great Duck Island [18,31]
deployment and a TinyDB application that collects data on Redwood trees [17, 29].
We also compare Twinkle with low-power listening, an alternative proposal for power
savings.

The contributions of this paper include:

• An implementation and evaluation of network power scheduling with two well-
known TinyOS applications accross three platforms

• A 4x power savings for the Great Duck Island application.
• A 4.3x power savings for a 35-mote sensor network using TinyDB, compared

with the default “duty cycling” power management scheme, and 150X versus
no power management.

• A detailed comparison between Twinkle and Low-Power Listening with
measured power data from real motes. This reveals a 2x or more power savings
due to Twinkle.

Section 2 presents an overview of the basic FPS scheduling approach to provide
background for these studies. Section 3 and Section 4 present evaluations using two
real applications. Finally, Section 5 covers related work, and we conclude in Section 6.

2 Background

Flexible Power Scheduling (FPS) [13] introduced the approach of scheduling the net-
work for power savings in sensor networks and proposed a two-level architecture that
combines coarse-grain dynamic scheduling at the network layer to plan radio on-off
times, and simple CSMA to handle channel access at the MAC-layer. The original pro-
tocol only supported communication in one direction, from the network to the gate-
way. Twinkle is our second-generation implementation of the FPS protocol and adds
1 The name “Twinkle” comes from observing the network: scheduling avoids collisions and

thus the network twinkles if you turn on an LED every time a node transmits.

444 B. Hohlt and E. Brewer

broadcast capability to enable communication from the gateway to the network while
running the FPS protocol.

In this section we give a general description of the FPS protocol with an overview
of the new broadcast support to provide context for the studies that follow. The focus
and scope of this paper is to provide real-world experiences and evaluations of FPS
with TinyOS applications and their platforms.

2.1 Power Scheduling

Power scheduling is primarily useful for low-bandwidth long-lived data-gathering
applications such as GDI and TinyDB. The FPS scheme exploits the structure of a tree
to build the schedule, which makes it useful primarily for data collection applications,
rather than those with any-to-any communication patterns. A large class of TinyOS
applications fit this model, including equipment tracking, building-wide energy moni-
toring, habitat monitoring [31, 29], conference-room reservations [5], art museum
monitoring [26], and automatic lawn sprinklers [8]. The basic approach is to use a
schedule that tells every node when to listen and when to transmit. As the bandwidth
needs are low, most nodes are idle most of the time, and the radio can be turned off
during these periods.

FPS scheduling is receiver initiated. In particular, the schedule spreads from the
root of the tree down to the leaves based on the required bandwidth: parents advertise
available slots and children that need more bandwidth request a slot. Applied recur-
sively, this allows bandwidth allocation for all of the nodes in the network. Although
this schedule ensures that parents and their children are contention free, there may still
be contention due to other nodes in the network or poor time synchronization; how-
ever, this contention is rare and can be handled by a normal CSMA MAC layer.

FPS reservations correspond to a unit flow from source-node to root, and thus the
schedule is really a schedule of flows. Scheduling flows reduces contention and
increases fairness, and form one reason why higher-level scheduling has more value
than traditional TDMA.To allow adaptive schedules, advertising continues after the
initial schedule is built. If new nodes arrive, or bandwidth demands change, children
can request more bandwidth or release some.

2.2 Making Reservations

Time is divided into cycles and cycles are divided into slots. Each node maintains a
local schedule that indicates in what slot it transmitts, receives, or idles.The main oper-
ation is as follows:

1. Parent selects an idle slot S and advertises the slot
2. Child hears the advertisement and sends a request for slot S
3. Parent receives the request and sends an acknowledgement.

Here the parent node is the route-through node, closest to the base station. In Step
1, the parent node selects an idle slot S at random from its list of idle slots and adver-
tises slot S during slot C (a specific slot known to its children). In Step 2, a child hears
the advertisement and subsequently sends a request for slot S during slot S. In Step 3,
the parent hears and acknowledges requests during time slot S. Thereafter the child

Network Power Scheduling for TinyOS Applications 445

need to be renegotiated and remains in effect until the child cancels the reservation or
the parent times out the reservation because no receptions occur after some number of
cycles. No acknowledgement implies a request was denied, and the child must petition
for the next advertised reservation slot. A parent may additionally advertise slots at
random times i.e. not in the C slot.

A node keeps its radio off during idle time slots. The one exception is when a node
joins the network or switches parents. In this case it must leave its radio on until it
makes an initial reservation and learns the slot C specific to its parent. Although made
locally, these reservations represent bandwidth allocation for entire traffic flows from
source to sink. This is because all nodes preallocate some amount of flow in advance.
Generally speaking, local nodes observe a rule that the amount of transmission slots in
their schedule must be kept greater than the amount of receive slots.

2.3 Partial Flows and Broadcast

The original FPS protocol reserves entire flows from source to sink. Twinkle intro-
duces a new reservation type called partial flows. A partial flow is one that terminates
at some node other than the root, i.e. the reservation is not from source to sink. Partial
flows can be used for various operations such as data aggregation and compression.
For example, partial flows can be used to enable in-network data aggregation, in which
the flow terminates at the node that does the aggregation.

Broadcast is essential for systems like TinyDB that need to inject queries or com-
mands into the network. In Twinkle, a broadcast channel is an instance of a partial
flow. In this case the partial flows are used in the reverse direction: each node reserves
a partial flow with its parent that it will use as a broadcast channel for its children.
Upon joining the network, each node acquires at least one partial flow reservation that
terminates at its parent. This is called the Comm channel (slot C) and is used by the
node as a broadcast channel for sending synchronization packets, advertisements, and
forwarding messages injected from the base station. Twinkle protocol messages
always include the slot number of the Comm channel (slot C). In this way, children
nodes know in which slot to listen for broadcasts from their parent.

Twinkle maintains two forwarding queues: one used for broadcasting or forward-
ing commands away from the base station, and one used for forwarding packets
toward the base station. When a node receives a command message it invokes the
appropriate command message handler and places the message on the command queue
for forwarding. The Comm channel is shared; both injected commands and time sync
packets (with slot advertisements) use the same channel. The convention is if there is a
command to be forwarded that is sent first followed by the time sync packet.

if current slot == Comm slot
if command in command queue

 broadcast command message
endif
broadcast sync packet

endif

transmits during slot S and the parent receives during slot S. The reservation does not

446 B. Hohlt and E. Brewer

The GDI application in Section 3 uses the Comm channel for time sync packets
and injecting commands to start and stop the experiments. The TinyDB application in
Section 4 uses the Comm channel for time sync packet and injecting TinyDB queries.

3 Application: Great Duck Island
Our first target application, GDI [18, 31], is a habitat monitoring application deployed
on Great Duck Island, Maine. GDI is a sense-to-gateway application that sends peri-
odic readings to a remote base station, which then logs the data to an Internet-accessi-
ble database. The architecture is tiered, consisting of two sensor patches, a transit
network, and a remote base station. The transit network consists of three gateways and
connects the two sensor patches to the remote base station. There are two classes of
mica2dot hardware: the burrow mote and the weather mote. The burrow motes
monitor the occupancy of birds in their underground burrows and the weather motes
monitor the climate above the ground surface. In this section, we will draw on infor-
mation about the weather motes provided by the study of the Great Duck Island
deployment [31].

Of the two weather mote sensor patches, one is a singlehop network and the other
is a multihop network. The singlehop patch is deployed in an ellipse of length 57
meters and has 21 weather motes. Data is sampled and sent every 5 minutes. The mul-
tihop network is deployed in a 221 x 71 meter area and has 36 weather motes. Data is
sampled and sent every 20 minutes.

In this section we compare the end-to-end packet reception, or yield, and power
consumption of Twinkle/FPS with the low-power listening technique [12] used at
Great Duck Island. Both schemes will be running the GDI application on a 30 node
laboratory testbed. We will additionally investigate the phenomena of overhearing in
the low-power listening case.

3.1 GDI with Low-Power Listening

The GDI application uses low-power listening to reduce radio power consumption. In
low-power listening, the radio periodically samples the wireless channel for incoming
packets. If there is nothing to receive at each sample, the radio powers off, otherwise it
wakes up from low-power listening mode to receive the incoming packet. Messages
include very long preambles, so they are at least as long as the radio channel sampling
interval. The advantages of low-power listening are that it reduces the cost of idle lis-
tening, integrates easily, and is complementary with other protocols. It is characterized
by high end-to-end packet reception, or yield. This is due to the long packet preamble
acting as an in-band busy-tone.

Density and multihop also impact power consumption. The GDI study [31] reports
a much higher power consumption in the multihop patch than the single hop patch
which resulted in a shortened network lifetime — 63 of the 90 expected days — for the
multihop patch. Two causes are attributed. First, messages have a higher transmission
and reception cost due to their long preambles. Second, nodes wake up from low-
power listening mode not only to receive their own packets, but anytime a packet is
heard, regardless of the destination. Overhearing is the main contributor to the higher
power consumption in the multihop patch.

Network Power Scheduling for TinyOS Applications 447

We also observe that although low-power listening reduces the cost of idle listen-
ing it does not reduce the amount of idle listening, so that at very low data-sampling
intervals its advantage declines because the radio must continue to turn on to check for
incoming packets although there are none to receive. For very low data rates, we will
show that scheduling such as Twinkle becomes more attractive because the radio (and
potentially other subsystems) can be deterministically powered down until it is time to
be used.

3.2 GDI with Twinkle

We implemented a version of GDI in TinyOS that uses Twinkle for its radio power
management. This was a rather straight forward integration that consisted of wiring the
GDI application component to the Twinkle component and disabling low-power listen-
ing. The Vanderbilt TimeSync, SysTime, and SysAlarm [19] components are used for
time synchronization and timers. At the time of this work, TimeSync only supported
the use of SysTime, which uses the CPU clock. The implication being, that for these
experiments, GDI was not able to power manage the CPU. In all of our data presented
here, we subtracted the draw of the CPU as if we had used a low-power Timer imple-
mentation. A version of TimeSync using the external crystal will become available
shortly.

3.3 GDI Experiments

We conducted a total of 12 experiments on two versions of the GDI application. GDI-
lpl uses low-power listening for radio power management and GDI-Twinkle uses
Twinkle for radio power management The experiments were run on a 30-node in-lab
multihop sensor network of mica2dot motes.

Twinkle supports data-gathering type applications like GDI where the majority of
traffic is assumed to be low-rate, periodic, and traveling toward a base station. We ran
a simple routing tree algorithm provided by Twinkle based on grid locations to obtain a
realistic multihop tree topology and then used the same tree topology for the 12 exper-
iments. As is done in the Great Duck Island deployment, no retransmissions are used
in these experiments.

In each experiment we varied the data sample rate: 30 seconds, 1 minute, 5 minute,
and 20 minutes. For experiments with 30 second and 1 minute sample rates, 100 mes-
sages per node were transmitted. For experiments with 5 minute and 20 minute sample
rates, 48 and 12 messages were transmitted per node respectively. In the GDI-lpl
experiments we varied the channel sampling interval: 485 ms and 100 ms. All experi-
ments collected node id, sequence number, routing tree parent, routing tree depth, node
temperature, and node voltage. The GDI-Twinkle experiments additionally collected
the number of children, number of reserved slots, current transmission slot, current
cycle, and number of radio-on slots per sample period.

3.4 Measuring Power Consumption
During the experiments, we measure the power consumption directly, using an oscillo-
scope, of two nodes located in two separate places of interest in the network. One
node, we call the inner node, is located one hop from the base station and has a heavy

448 B. Hohlt and E. Brewer

amount of route-through traffic that is similar to its routing one-hop siblings. This
should give us an estimate of the maximum lifetime of the network. This is a common
method, documented by several researchers, for example [29]. In addition we measure
the current at a second node. The second node is a leaf node that is one-hop from the
base station as well. As it does not route-through any traffic, we should be able to see
the effect of overhearing on power consumption at a node in a busy part of the net-
work. If the measured current of the inner node and leaf node are similar in their active
cycles, then we know the inner node is experiencing overhearing since all other factors
remain the same. This is an important aspect of evaluating low-power listening.

At the lower sample rates, it is not feasible to take a measurement over the entire
sample period, so we design our experiments so that we take some direct measure-
ments and extrapolate others. For GDI-Twinkle, we define a cycle to be 30 seconds.
Thus, full sample periods for the 30-second, 1-minute, 5-minute, and 20-minute sam-
ple rates are 1, 2, 10, and 40 cycles respectively. We schedule all data traffic during one
cycle of each sample period called the active cycle. The unscheduled cycles are called
passive cycles. Both active and passive cycles include protocol traffic (i.e. sending
advertisements and listening for requests). We then measure the current at the two
motes capturing data from both active and passive cycles during the 1 minute sample
rate experiment. Then we take a running windowed average over a full 1-minute
period, which gives us the power draw for both an active and passive cycle. Table 1
presents these direct power measurements.

For GDI-lpl we follow a similar method. We measure current at the two motes cap-
turing data from both active and passive periods during the 1-minute sample period
experiment. To represent an active period, we take a running average over the full 1-
minute period. This also captures all the overhearing that occurs at the mote during a
full period of any given sample rate. To represent a passive period, we took the longest
chain of data from the measurements in which only idle channel sampling occurred.
From this information we calculate the power consumption for the 5-minute and 20-

Table 1. Power Measurement (mW)

Power
Management

Period
(Sec)

Inner
(mW)

Leaf
(mW)

Twinkle active 30 2.18 0.69

Twinkle passive 30 0.33 0.33

Lpl-485 active 60 16.5 16.0

Lpl-485 passive 60 0.99 0.99

Lpl-100 active 60 8.20 7.60

Lpl-100 passive 60 3.90 3.90

Network Power Scheduling for TinyOS Applications 449

minute sample rate experiments. The 30-second sample rate was measured separately
(not calculated) and is shown in Table 1.

3.5 Evaluation

In this section we discuss the results of the data from all 12 experiments, and we also
compare with the actual GDI deployment data.

Power Comparison with Low-Power Listening. Given the direct power measure-
ments from Table 1, we can estimate the power consumption for the 5-minute and 20-
minute sample rate experiments. For example, for Twinkle, we read off the following:
an active cycle at the inner mote consumes 2.18 mW and a passive cycle consumes
0.33 mW. Given these numbers, for a 20-minute sampling rate we expect 1 active
cycle and 39 passive cycles, for a weighted average of 0.38 mW. For the leaf mote, an
active cycle consumes 0.69 mW and a passive cycle consumes 0.33 mW, giving a
weighted average of 0.34 mW.

Similarly, to compute the GDI-lpl power consumption at a 20-minute sample rate
we assume that for one minute the application consumes the energy of the active
period and for the remaining 19 minutes the application consumes the energy of the
passive period. Using the values from Table 1, the inner mote during the 20-minute
sample rate Lpl-100 experiment, would consume an average of 4.12 mW
((8.2+19*3.9)/20 = 4.12mW).

Figure 1 shows all four sample periods: the 30-second and 1-minute rates are mea-
sured, and the 5-minute and 20-minute periods are estimated as above. For Twinkle,
the inner node consistently has a greater draw than the leaf node. In contrast, for LPL,
the inner and leaf nodes consistently have almost the same draw. This indicates that
Twinkle's main power draw depends on the routed traffic, and in most of the cases
LPL's main power draw depends on the overheard traffic. However, from Table 1 we
see the passive power draw for LPL-100 is 3.9 mW, which forms an asymptote as the

Fig 1. Relative power consumption of Twinkle and LPL for four different sample periods.
 Pulse is a newer version of LPL discussed below

.
.

450 B. Hohlt and E. Brewer

sample period increases. Overall, as the sample rate gets lower and the preambles get
shorter, overhearing does not play as big role.

The next thing to notice is at the higher sample rates, LPL-485 has a higher power
consumption than LPL-100, but at the lower sample rates, LPL-485 has a lower power
consumption than LPL-100. This reveals a relationship within LPL where as the cost
of transmitting increases with longer preambles, the cost of channel sampling
decreases with longer sampling intervals.

Finally, we added a newer variation of LPL to the figure, called Pulse. Pulse was
developed as part of BMAC [20], and optimizes the power consumption of LPL by lis-
tening for energy in the channel rather than the decoded preamble. This reduces the
cost of listening substantially. Because it has much stricter timing constraints, Pulse
cannot run on the mica2dot platform. However, we can compute the active and pas-
sive estimates for Pulse as if it were running on the mica2dot given our power traces
and Table 2 from the BMAC paper, which provides the raw listening cost. Although
Pulse does perform better than LPL, it is still 2x to 5x higher power consumption than
Twinkle. Across the board, Twinkle has better power consumption than LPL, with
improvements that range from 2x (over Pulse for low rates) to 10x (in cases where the
listening interval is poorly chosen).

Table 2. Yield and Fairness Comparison

Power
Scheme

Sample
Period Yield Max/

Min

Twinkle 0.5 0.80 2.11

Twinkle 1 0.90 1.74

Twinkle 5 0.84 1.92

Twinkle 20 0.83 2.4

Lpl-485 0.5 0.40 15.6

Lpl-485 1 0.68 94.0

Lpl-485 5 0.72 11.8

Lpl-485 20 0.69 12.0

Lpl-100 0.5 0.85 3.45

Lpl-100 1 0.83 2.23

Lpl-100 5 0.78 2.76

Lpl-100 20 0.77 4.00

Network Power Scheduling for TinyOS Applications 451

Yield and Fairness. Table 2 shows the average yield (end-to-end packet reception) for
all 12 experiments, and the ratio of the best and worst throughputs (Max/Min). This
ratio indicates fairness: lower ratios are more fair. At 30 seconds, the LPL-485 network
is saturated due to the long preambles and this accounts for its low yield. Overall, both
Twinkle and LPL-100 are significantly better than LPL-485. Twinkle shows better
fairness than LPL-100 and, other than the 30 second sample rate, Twinkle has higher
yield than LPL-100.

Understanding the GDI Field Study. Viewing the data in comparison to the data pro-
vided by the GDI study [31], we find the results in the laboratory are remarkably close
to the results in the field.The Great Duck Island deployment used a low-power listen-
ing channel sampling interval of 485 ms, a data sample period of 20 minutes in the
multihop patch, and a data sample period of 5 minutes in the singlehop patch.

Table 3 presents results taken from the GDI field study, labeled GDI-485, and
includes data from four of our in-lab experiments, labeled LPL-485 and Twinkle. For
each row, we report the sample period, average yield, inner and leaf power consump-
tion, and the number of nodes in the experiment. For GDI-485, the yield figure repre-
sents the average yield from the first day of deployment.

A close comparison can be drawn between LPL-485 and GDI-485 at the 20 minute
sample rate. LPL-485 has a power draw of ~1.76 mW while GDI-485 has a power
draw of 1.6 mW. The GDI-485 figure is expected to be lower for two reasons: in the
laboratory, the two measured nodes are from the busier section of the testbed, and the
testbed has a constant load rather than a decreasing one. In the GDI deployment, some
multihop motes died and stopped sourcing traffic, which is why we report yield from
the first day of deployment.

The yield data is extremely close as well. All yields for LPL-485 and GDI-485 are
~70%. The only large difference between the two data sets is the power consumption

Table 3. Comparison of our lab data with the actual GDI field study

Power
Mgnt

Sample
Period Yield Inner

(mW)
Leaf
(mW) #

GDI-485
(single)

5 0.70 n/a 0.71 21

GDI-485
(multi)

20 0.70 1.60 n/a 36

Lpl-485 5 0.72 4.09 3.99 30

Lpl-485 20 0.69 1.77 1.74 30

Twinkle 5 0.84 0.52 0.36 30

Twinkle 20 0.83 0.38 0.34 30

452 B. Hohlt and E. Brewer

at the 5-minute sample period. This is easily explained by recalling that at the 5-minute
sample period, GDI-485 is singlehop while LPL-485 is multihop, and the LPL-485
measurements include a large amount of overhearing.

The closeness of the LPL-485 and GDI-485 data gives us high confidence in the
corrrectness of our methodology and the results of our laboratory experiments. We
expect the Twinkle numbers are a good estimate of how Twinkle would do were we to
have access to a field deployment. Our laboratory experiments show that Twinkle con-
sumes at least 4x less power and provides about 14% better yield.

4 Application: Redwoods with TinyDB

Our second target application, TinyDB [17], is a distributed query processor for Tin-
yOS motes. TinyDB consists of a declarative SQL-like query language, a virtual data-
base table, and a Java API for issuing queries and collecting results. Conceptually the
entire network is viewed as a single table called sensors where the attributes are inputs
of the motes (e.g. temperature, light) and queries are issued against the sensors table.
The SQL language is extended to include an “EPOCH DURATION” clause that speci-
fies the sample rate.

A typical query looks like this:

SELECT nodeid, temperature
FROM sensors
EPOCH DURATION 3 min

TinyDB allows up to two queries running concurrently: one for sensor readings and
one for network monitoring. In this section we compare the power savings of TinyDB
using Twinkle versus TinyDB using application-level duty cycling — the power man-
agement scheme currently used in TinyDB. We estimate the power savings of the two
approaches using the TinyDB Redwood deployment in the Berkeley Botanical Garden
[14] as our topology and traffic model.

4.1 Estimating Power Consumption

Determing the power consumption of TinyDB with application-level duty cycling is
straight forward. For this analysis we will estimate the power consumption of both the
mica and mica2 platforms and take an in-depth look at a radio trace generated by
TinyDB with Twinkle. We use the following three-part methodology:

1. Estimate the amount of time the radio is on and off for each scheme. Our met-
ric for this will be radio on time per hour, measured in seconds.

2. For Twinkle, we validate this estimate in Section 4.5 by looking in detail at one
of the motes. The radio on time for application-level duty cycling is easy to
estimate.

3. We use actual measured current we obtained from mica and mica2 motes
using an oscilloscope (Table 6) to estimate power consumption for radio on/off
times. (In the GDI application we measured the current directly during the
experiment.)

Network Power Scheduling for TinyOS Applications 453

Listening for information on the radio channel is of a cost similar to transmission
of data [23,24,4], so this combination provides a reasonably accurate overall view of
power consumption, which although not perfect, is certainly very accurate relative to
the 4.3X advantage in power shown by Twinkle in Section 4.6.

4.2 Topology and Traffic Model

The Redwood deployment has 35 mica2dot motes dispersed across two trees reporting
to one base station in the Berkeley Botanical Gardens. Each tree has 3 tiers of 5 nodes
each and 2 nodes placed at each crest. One tree has 1 additional node at a bottom
branch. Every 2.5 minutes each mote transmits its query results, which are multi-
hopped and logged at the base station.

By examining the records in the redwood database, we can derive the actual topol-
ogy information, and from this construct a general topology that reflects its state the
majority of the time.

Out of 35 nodes, generally 2/3 of the nodes are one hop from the base station and 1/
3 of the nodes are two hops from the base station at any given time. We start by com-
puting the radio on time per hour for the case with no power management:

60 sec/min * 60 min/hour = 3600 sec/hour
No power management = 3600 sec/hour

This number is the average amount of time each radio is on per hour throughout the
deployment. We next estimate this metric for duty cycling followed by an estimate for
FPS.

4.3 Duty Cycling

In TinyDB duty cycling, the default power management scheme, all nodes wake up at
the same time for a fixed waking period every EPOCH. During the waking period
nodes exchange messages and take sensor readings. Outside the waking period the
processor, radio, and sensors are powered down. Estimating the radio-on time is thus
straightforward: all 35 nodes wake up at the same time every 2.5 minutes for 4 seconds
and exchange messages. The sample rate is thus 24 samples per hour. Each node is on
for 96 sec/hour.

24 samples/hour * 4 sec/sample = 96 sec/hour
Duty Cycling = 96 sec/hour

As expected, this approach is subject to very high packet losses due to the conten-
tion produced by exchanging packets at nearly the same time. A recent TinyDB empir-
ical study [29] shows high losses, between 43% and 50%, and high variance using duty
cycling. Although we do not test it explicitly, there is no reason to expect the yield for
Twinkle (or low-power listening) would deviate from the 80% shown in Section 3.

4.4 Twinkle
Topology, time-slot duration, protocol traffic, and data traffic are factors in estimating
the radio-on time for Twinkle. We will use the same topology as above for estimating

454 B. Hohlt and E. Brewer

the radio-on time of the 35 nodes. Time-slot duration and number of slots per cycle are
configuration parameters in Twinkle. For this example, the time slot duration is 128 ms
and for simplicity, the number of slots per cycle is 1172, which is roughly 2.5 minutes.
Because of the long cycle length, we will add an extra advertisement per cycle.

Figure 2 depicts our subtree topology and traffic model. Solid lines represent data
traffic (T/R) that is forwarded from the network to the base station every cycle. Dashed
lines represent a Broadcast channel used for protocol traffic (B/RB). The Broadcast
channel is used for TinyDB queries, network protocol messages, and advertisements.

Given the topology in Figure 2 and traffic in Table 4 we can now calculate the
radio-on time for each node. Node 0 is the base station and has no cost. There is a cost
of 3 time slots for advertisements (A): one advertisement, one receive pending, and
one receive pending for the advertisement sent during the Broadcast.

Thus, this model captures data traffic as well as protocol traffic (i.e. sending adver-
tisements and listening for requests).

For each node the cost is 0.767 seconds per cycle:

5(T/R) + 4(B/RB)+ 9(A)
= 18 * 128ms
= 2.3 sec/cycle per 3 nodes
= 0.767 sec/cycle (per node)

Table 4. Traffic per Cycle (number of time slots)

Node T R B RB A

1 1 0 1 0 3

2 2 1 1 1 3

3 1 0 1 0 3

Fig 2. Topology and Traffic for Estimates

0

2

3

1

Traffic
Comm

0

2

3

1

Traffic
Comm

 .

Network Power Scheduling for TinyOS Applications 455

At 24 samples per hour, on average, each node is on 18.4 sec/hour:
24 samples/hour * 0.767 sec/cycle

= 18.4 sec/hour

Twinkle = 18.4sec/hour

This is a savings of 5.2x compared with the duty cycle approach and 196x com-
pared with no power management. In addition, the radio-on time is actually overesti-
mated. Transmit slots do not leave the radio on for the whole slot since they can stop
once their message is sent; this is shown in detail in the next section.

4.5 Twinkle Validation and Radio Trace

We implemented a prototype of TinyDB that uses Twinkle for radio power manage-
ment. To validate our prototype and the radio on/off times, we ran the following exper-
iment on three mica2dot motes and one mica2 mote as base station arranged in a
topology shown in Figure 2. We monitored intermediate node 2 while it forwarded
packets and sent advertisements. There are 64 slots of 128 ms each per cycle. We
instrumented TinyDB-Twinkle to record the time of each call to turn the radio on and
radio off, the beginning time of each time slot, and the state of each slot.

From the TinyDB Java tool we issue the query:

SELECT nodeid
FROM sensors
EPOCH DURATION 8192 ms

The intermediate mote is connected to an Ethernet device, and the debug records
are logged over the network to a file on the PC. The regular query results are multi-
hopped to the base station and displayed by the Java tool. In this experiment, we
expect to have 1 advertisement, 2 receive pending slots, 3 transmit slots (one is a
broadcast), 2 receive slots, and 56 idle slots per 64-slot cycle. We validate both the
count of idle slots against the radio off time shown in Table 5.

Note that the radio off time is higher than the percentage of idle slots because
Transmit slots turn the radio off early — as soon as their messages have been sent.

Table 5. Validating Idle Slots

Metric Slots Idle %

Predicted Idle Slots 56/64 89.1%

Measured Idle Slots 56/64 89.1%

Measured Radio Off Time — 91%

456 B. Hohlt and E. Brewer

Figure 3 shows a subsection of the validation experiment. The top graph shows
actual radio on/off times (milliseconds). The bottom graph shows the measured Twin-
kle state versus slot numbers aligned with time; this subsection shows the active por-
tion of a cycle (slots not shown are idle). Note that the radio is always off for Idle slots
and that for Transmit slots the on time is just long enough to transmit the queued mes-
sages. In this experiment, the time slot duration is 128 ms, there are 64 slots per cycle,
and the advertising frequency is once per cycle. This cut shows two advertisement
slots, which is fine given that they are actually in two different cycles.

This experiment validates our methodology and shows that the power estimate for
Twinkle in the previous section is actually conservative (since we count all of the
Transmit slot time).

4.6 Power Savings

Finally, given the validated radio on times, we can estimate the power savings. First,
however we need to know the current draw for a mote depending on whether or not the
radio is on, and/or the CPU is on. With an oscilloscope, we measured the current of the
mica and mica2 motes in three states: asleep, cpu idle, and both cpu and radio on.
The results are shown in Table 6.2

Given these current draws, we estimate power consumption as:

Power (mAh) =
(On time)*(On draw) + (Off time)*(Off draw)

Using this equation and the radio-on times summarized in Table 7, we estimate the
power consumption depicted in Figure 4. In all cases, both Duty Cycling and Twinkle
perform substantially better (lower power) than no power management, so we focus on
the difference between Twinkle and Duty Cycling.

2 Mica2 radio power varies from 7.4 to 15.8 mA depending on transmit power, plus 7.8 mA
for the active CPU draw for a total of 15.2 to 23.6 mA. We use 20mA as an overall estimate.

Fig 3. A subsection of the validation experiment. The top graph shows actual radio on/ off
times in milliseconds. The bottom graph shows the measured Twinkle state versus slot numbers

 aligned with time
.

 Note that the radio is always off for Idle cycles and that for Transmit
 cycles the on time is just long enough to transmit the queued messages

.

Network Power Scheduling for TinyOS Applications 457

The biggest issue for estimating the power savings is whether or not the CPU is
asleep when the radio is off. Neither system needs the CPU per se during idle times,
but some sensors may require CPU power. Thus we expect for both the mica1 and
mica2 the “CPU asleep” numbers are more realistic and we will quote these in our
overall conclusions. However, we include the “CPU on” case for completeness. Note
that even for cases where the CPU is needed for sensor sampling, the “CPU asleep”
graph is more accurate, since the CPU would be asleep most of the time.

For the CPU on case, Twinkle outperforms Duty Cycling by 37% on the mica1
and 8% on the mica2, which has a higher CPU current draw. Compared to no power
management, the advantage for Twinkle is 18X and 5X respectively.

For the more realistic “CPU asleep” case, i.e. the CPU is asleep during Idle slots,
Twinkle outperforms Duty Cycling by 4.4X on the Mica1 and 4.3X on the Mica2.
Note that this is consistent with the 5.2X reduction in radio on time. Compared to no
power management, the advantage for Twinkle is 160X and 150X respectively.

Thus to summarize, for the TinyDB application with the Redwood study workload,
we see a power savings of about 4.3X over Duty Cycling and 150X over no power
management.

5 Related Work

Power consumption is an important issue in wireless sensor networks and energy opti-
mizations are considered at all layers of the hardware and software platform. Many
researchers have investigated energy efficient protocols in software to reduce commu-
nication costs.

In the area of energy-efficient MAC layers, there are two broad classes of
approaches: contention based [22,33,7] and TDMA based [28,1,6]. PAMAS [22]
enhances the MACA protocol with the addition of a signaling channel. It powers down
the radio when it hears transmissions over the data channel or receptions over the sig-
naling channel. S-MAC [33] incorporates periodic listen/sleep windows of fixed sizes
similar to 802.11 PS mode [16]. In order to communicate, neighboring nodes periodi-
cally exchange their listen schedules. In the listen phase nodes transmit RTS/CTS
packets and in the sleep phase nodes either transmit data or sleep if there is no data to

Table 6. Power Consumption of Motes (mA)

Table 7. On Times (seconds per hour)

Scheme Radio On Time Ratio
None 3600 196

Duty Cycling 96 5.2
Twinkle 18.4 1

Mote Asleep CPU Idle CPU+Radio On
Mica1 0.01 0.4 8.0
Mica2 0.03 3.9 20

458 B. Hohlt and E. Brewer

send. T-MAC [7] is a variation on S-MAC. Instead of using a fixed listen window size,
it transmits all messages in bursts of variable length, and sleeps between bursts.

TDMA-based protocols have natural idle times built into their schedules where the
radio can be powered down. Additionally they do not have to keep the radio on to
detect contention and avoid collisions. Centralized energy management [1] uses clus-
ter-heads to manage CPU and radio consumption within a cluster. Centralized solu-
tions generally do not scale well because inter-cluster communication and interference
is hard to manage. Self organization [28] does not use clusters or hierarchies. It has a
notion of super frames similar to TDMA frames for time schedules and requires a
radio with multiple frequencies. It assumes a stationary network and generates static
schedules. This scheme has less than optimal bandwidth allocation. Slot reservations

Fig 4. Estimating power savings for two families of motes (Mica1, top, and Mica2, bottom),
 with the CPU on or asleep when the radio is off. Each vertical axis has a different scale,
and in all cases the “No power savings” column goes off the top (Mica1 28800, Mica2 72000

 mA-secsonds). Light gray is the radio-off power consumed (per hour), while dark gray is the
radio-on power consumed

 Mica1 with CPU on

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

Off Power

On Power

28800

 Mica1 with CPU asleep

0

200

400

600

800

1000

1200

1400

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

28800

 Mica2 with CPU on

0
2000
4000
6000

8000
10000
12000
14000
16000

18000
20000

No Power
Savings

Duty
Cycling

FPS

m
A

-s
ec

on
ds

72000

 Mica2 with CPU asleep

0

500

1000

1500

2000

2500

3000

No Power
Savings

Duty
Cycling

FPS

m
A-

se
co

nd
s

72000

Twinkle

TwinkleTwinkle

Twinkle

.

.

can only be used by the node that has the reservation. Other nodes cannot reuse the slot
reservation.

Network Power Scheduling for TinyOS Applications 459

ReOrgReSync[6] uses a combination of topology management (ReOrg) and chan-
nel access (ReSync) and relies on a backbone for connectivity. Relay Organization is a
topology management protocol which systematically shifts the network's routing bur-
den to energy-rich nodes (wall powered and battery powered nodes). Relay Synchroni-
zation (ReSync), is a TDMA-like protocol that divides time into epochs. Nodes
periodically broadcast small intent messages at a fixed time which indicate when they
will send the next data message. All neighbors listen during each others intent message
times. It assumes a low data rate and only one message per epoch can be sent.

Energy-efficient routing in wireless ad-hoc networks has been explored by many
authors, see [25,34,15,10] for examples. Topology management approaches exploit
redundancy to conserve energy in high-density networks. Redundant nodes from a
routing perspective are detected and deactivated. Examples of these approaches are
GAF [32] and SPAN [3]. Our approach does not seek to find minimum routes or
redundancy. These protocols are designed for systems that require much more general
communication throughout the network.

6 Conclusion

In this paper we have presented our experiences with Twinkle, the next-generation
implementation of FPS, and evaluated its use for two real-world TinyOS applications
and three mote platforms. We demonstrated that Twinkle can save 2-5x of the power
consumption for real applications that already use power management of some kind.
We saw a 2-4x improvement for the GDI application, and about 4x for the TinyDB
Redwoods deployment. We also covered an important enhancement to the idea of net-
work-layer power scheduling — the concept of scheduling partial flows that enable
broadcast — to make network power scheduling a realistic alternative for real deploy-
ments of TinyOS applications.

Acknowledgments. We are much indebted to several individuals of the TinyOS com-
munity for their collaborations, suggestions, and support. Rob Szewczyk for his con-
tinuous help and advice on power management, TinyOS, and GDI. Brano Kusy and
Miklos Maroti for their support on timers and time synchronization. Sam Madden for
his support on TinyDB and Gilman Tolle for his work on the Redwoods database. This
work was supported, in part, by the Defence Department Advanced Research Projects
Agency (grants F33615-01-C-1895 and N6601-99-2-8913), the National Science
Foundation (grant NSF IIS-033017), and Intel Corporation. Research infrastructure
was provided by the National Science Foundation (grant IEA-9802069).

References
[1] K.A. Arisha, M.A. Youssef, M.F. Younis, "Energy-aware TDMA based MAC for sensor

networks," IEEE IMPACCT 2002, New York City, NY, USA, May 2002.
[2] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser, H. O. Marcy, "Wireless

integrated network sensors: low power systems on a chip," ESSCIRC '98. Proceedings of
the 24th European Solid-State Circuits Conference, The Hague, Netherlands, September
1998.

460 B. Hohlt and E. Brewer

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks," MobiCom
2001, Rome Italy, July 2001.

[4] Chipcon. http://www.chipcon.com/files/CC1000_Data_Sheet_2_3.pdf
[5] W.S. Conner, L. Krishnamurthy, and R. Want, "Making everyday life a little easier using

dense sensor networks," Proceeding of ACM Ubicomp 2001, Atlanta, GA, Oct. 2001.
[6] W.S. Conner, J.Chhabra, M. Yarvis, L.Krishnamurthy, "Experimental Evaluation of

Topology Control and Synchronization for In-building Sensor Network Applications,"
ACM Workshop on Wireless Sensor Networks and Applications, September 2003.

[7] T.van Dam, K. Langendoen, "An Adaptive Energy-Efficient MAC Protocol for Wireless
Sensor Networks," SENSYS 2003, Los Angeles, CA, USA, November 2003.

[8] Digital Sun, Inc.: http://digitalsun.com
[9] L. Doherty, B.A. Warneke, B.E. Boser, K.S.J. Pister, "Energy and Performance

Considerations for Smart Dust," International Journal of Parallel Distributed Systems and
Networks, Volume 4, Number 3, 2001, pp. 121-133.

[10] Z. Haas, J. Halpern, and L. Li, "Gossip-based ad-hoc routing," IEEE INFOCOM 2002,
New York, NY, USA, June 2002.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.S.J. Pister, "System architecture
directions for networked sensors," ASPLOS 2000, Cambridge, MA, USA, November
2000.

[12] J. Hill, D. Culler, "Mica: a wireless platform for deeply embedded networks," IEEE Micro,
22(6):12-24, November/December 2002.

[13] B. Hohlt, L. Doherty, E. Brewer, "Flexible Power Scheduling for Sensor Networks, " IPSN
2004, Berkeley, CA, USA, April 2004.

[14] W. Hong, "TASK In Redwood Trees", http://today.cs.berkeley.edu/retreat-1-04/weihong-
task-redwood-talk.pdf, NEST Retreat, Jan 2004.

[15] B. Karp and H.T. Kung, "GPSR: Greedy Perimeter Stateless Routing for wireless
networks," MobiCom 2000, Boston, MA, USA, August 2000.

[16] LAN MAN Standards Committee of the IEEE Computer Society, "IEEE Standard 802.11,
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,"
IEEE, August 1999.

[17] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, "TAG: a tiny aggregation
service for ad-hoc sensor networks," 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, USA, December 2002.

[18] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, "Wireless sensor
networks for habitat monitoring," WSNA 2002, Atlanta, GA, USA, September 2002.

[19] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, "The Flooding Time Synchronization
Protocol,” SenSys 2004, Baltimore, MD, USA, November 2004.

[20] J.Polastre,J.Hill,D.Culler,"Versatile Low Power Media Access for Wireless Sensor
Networks", SenSys 2004, Baltimore, ML,USA.

[21] G.J. Pottie, W.J. Kaiser, "Wireless Integrated Network Sensors," Communications of the
ACM, vol. 4, no. 5, May 2000.

[22] C.S. Raghavendra and S. Singh, "PAMAS - Power aware multi-access protocol with
signaling for ad hoc networks," ACM Communications Review, vol. 28, no. 33, July 1998.

Network Power Scheduling for TinyOS Applications 461

[23] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, "Energy-aware wireless
microsensor networks," IEEE Signal Processing Magazine, vol. 19, no. 2, March 2002.

[24] RFM Monolithics. http://www.rfm.com/products/data/tr1000.pdf.
[25] E. M. Royer and C-K. Toh. "A review of current routing protocols for ad-hoc mobile

wireless networks," IEEE Personal Communications, April 1999.

[26] Sensicast Systems: http://www.sensicast.com.
[27] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, "Protocols for self-organization of a

wireless sensor network," IEEE Personal Communications, Oct. 2000.
[28] K. Sohrabi and G.J. Pottie, "Performance of a novel self-organization for wireless ad-hoc

sensor networks," IEEE Vehicular Technology Conference, 1999, Houston, TX, May
1999.

[29] P. Buonadonna, J. Hellerstein, W. Hong, D. Gay, S. Madden, "TASK: Sensor Network in a
Box", European Workshop on Wireless Sensor Networks 2005, Istanbul, Turkey, February
2005.

[30] M. Stemm and R. Katz, "Measuring and reducing energy consumption of network
interfaces in hand-held devices," IEICE Trans. on Communications, vol. E80-B, no. 8, pp.
1125-1131, August 1997.

[31] R.Szewczyk, A.Mainwaring, J.Polastre,J.Anderson, D.Culler,"An Analysis of a Large
Scale Habitat Monitoring Application", SenSys 2004,Baltimore, ML,USA, November
2004.

[32] Y. Xu, J. Heidemann, D. Estrin, "Geography-informed energy conservation for ad hoc
routing," MobiCom 2001, Rome, Italy, July 2001.

[33] W. Ye, J. Heidemann, D. Estrin, "An energy-efficient MAC protocol for wireless sensor
networks," IEEE INFOCOM 2002, New York City, NY, USA, June 2002.

[34] Y. Yu, R. Govindan, and D. Estrin. "Geographical and Energy Aware Routing: a recursive
data dissemination protocol for wireless sensor networks," UCLA Computer Science
Department Technical Report UCLA/CSD-TR-01-0023, May 2001.

462 B. Hohlt and E. Brewer

Approximation Algorithms for Power-Aware
Scheduling of Wireless Sensor Networks
with Rate and Duty-Cycle Constraints�

Rajgopal Kannan1 and Shuangqing Wei2

1 Department of Computer Science
2 Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA
{rkanna1, swei}@lsu.edu

www.csc.lsu.edu/∼rkannan, www.ece.lsu.edu/∼swei

Abstract. We develop algorithms for finding the minimum energy
transmission schedule for duty-cycle and rate constrained wireless sen-
sor nodes transmitting over an interference channel. Since traditional
optimization methods using Lagrange multipliers do not work well and
are computationally expensive given the non-convex constraints, we de-
velop fully polynomial approximation schemes (FPAS) for finding op-
timal schedules by considering restricted versions of the problem using
multiple discrete power levels. We first show a simple dynamic program-
ming solution that optimally solves the restricted problem. For two fixed
transmit power levels (0 and P), we then develop a 2-factor approxima-
tion for finding the optimal fixed transmission power level per time slot,
Popt, that generates the optimal (minimum) energy schedule. This can
then be used to develop a (2, 1 + ε)-FPAS that approximates the opti-
mal power consumption and rate constraints to within factors of 2 and
arbitrarily small ε > 0, respectively. Finally, we develop an algorithm
for computing the optimal number of discrete power levels per time slot
(O(1/ε)), and use this to design a (1, 1 + ε)-FPAS that consumes less
energy than the optimal while violating each rate constraint by at most
a 1 + ε factor.

1 Introduction

Energy-efficiency is a critical concern in many wireless networks, such as cellular
networks, ad-hoc networks or wireless sensor networks (WSNs) that consist of
large number of sensor nodes equipped with unreplenishable and limited power
resources. Since wireless communication accounts for a significant portion of
node energy consumption, network lifetime and utility are dependent on the
design of energy-efficient communication schemes including low-power signaling
and energy-efficient multiple access protocols.

Delay is also an important constraint in many wireless network applications,
for example battlefield surveillance or target tracking in which data with finite
� This work was supported by NSF grants IIS-0329738, ITR-0312632 and by AFRL.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 463–479, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

464 R. Kannan and S. Wei

lifetime-information must be delivered before a deadline. Delay constraints in
wireless networks can also be examined in terms of node operation under pe-
riodic duty cycles, in which time is divided into active (awake) and inactive
(asleep) periods. [1], [2, 3] establish the idea of duty cycles in WSNs as a prac-
tical means of conserving node energy. Minimizing transmission energy subject
to latency constraints has been studied [4, 5]. Several approaches for maximizing
information transmission over a shared channel subject to average power con-
straints have been proposed [6, 7, 8, 9, 10]. [11] addresses the issue of minimizing
transmission power, subject to a given amount of information being successfully
transmitted and derives power control multiple access (PCMA) algorithms for
autonomous channel access.

We consider N sensor nodes transmitting to their destinations over a typical
AWGN interference channel over a time period T . These nodes could represent
reasonably close neighbors communicating as part of some MAC protocol. We
assume that time T is divided into M slots of equal duration. Let Pit be the
transmit power used by node i during time slot t, 1 ≤ t ≤ M . Let Rit rep-
resent the achievable transmission rate for node i during time slot t over this
N -node interference channel. Single user decoding is assumed at each receiver
to decode the information from its own transmitter while treating the remaining
information as Gaussian interference. Thus we have,

Rit =
1
2

log2

(
1 +

αt
iiPit

N t
i +

∑
j �=i αt

jiPjt

)
, 1 ≤ i ≤ N, 1 ≤ t ≤ M (1)

where αt
ji represent the channel attenuation at i’s receiver due to transmitter

j, which captures the effects of path-loss, shadowing and frequency nonselective
fading, and N t

i represents the background interference (usually N t
i = N0), during

time slot t. We assume these parameters remain fixed over a (short) time slot of
duration T/M but can vary from slot to slot.

We are interested in the following scheduling and energy minimization prob-
lem (labeled MESP: minimum energy scheduling problem)

min f :
N∑

i=1

M∑
t=1

Pit

s.t g :
M∑

t=1

AitRit ≥ R̃i i = 1, 2, . . . , N

Ait =
{

0 if node i is idle
1 otherwise

M∑
t=1

Ait ≤ μi i = 1, 2, . . . , N

(2)

The objective function in MESP is to determine the schedule which minimizes
the total energy. Since all slots are assumed to be of fixed duration, this is

Approximation Algorithms for Power-Aware Scheduling of WSNs 465

equivalent to minimizing the total transmitted power. Each node must maintain
an average rate constraint R̃i over the M slots. Further, we assume that nodes
operate under duty-cycles where time T is divided into active and idle time
slots, wireless sensor networks for example, operate under such constraints [2, 1].
The duty-cycle constraint of node i is given by μi: the maximum number of
time slots it can remain active, 1 ≤ μi ≤ M , i = 1, 2, . . .N . Ait ∈ {0, 1}
depending on whether the node is idle or active during slot t, 1 ≤ t ≤ M . Note
that in this formulation of MESP, we do not have any overall power budget
constraint (only duty-cycle constraints for limiting node activity) and we are
looking to minimize the total power/energy over the universe of available power
values. Individual/overall power budget constraints can be incorporated in our
algorithm, if desired.

It can be seen that the rate constraints above are non-convex in the power
variables Pit, even for the restricted version of MESP with two users (N = 2).
Unfortunately this implies that traditional analytical optimization methods such
as Lagrange multipliers [12] will not work well, since convexity of the constraints
is a necessary condition for obtaining the global minimum using the Lagrangean
H = f + λkgk (where gk are the constraints), and computing)Pit,λk

= 0.
Moreover finding the global minimum through exhaustive search of all possible
solutions of ∂h/∂Pit = 0 is likely to be computationally expensive. Alternately
computing the optimal dual maxλ minx h() introduces a duality gap which van-
ishes only under certain conditions on the number of constraints and parameters
N and M [12, 13].

In this paper, we develop approximation algorithms for finding the optimal
rate and duty-cycle constrained energy schedule by considering restricted ver-
sions of the problem using discrete power levels. From the algorithmic perspec-
tive, the MESP problem is NP -hard and related to the generalized assignment
problem [14]. We develop fully polynomial approximation schemes (FPAS) for
MESP using ideas related to bin-packing and the knapsack problem [14, 15]. We
first show a simple dynamic programming solution (of exponential complexity in
M) that optimally solves the restricted problem. For two fixed transmit power
levels (0 and P), we then develop a 2-factor approximation for finding the op-
timal fixed transmit power level per time slot, Popt, that generates the optimal
(minimum) energy schedule. This can then be used to develop a (2, 1 + ε)-FPAS
that approximates the optimal power consumption and rate constraints to within
factors of 2 and arbitrarily small ε > 0, respectively. Finally, we develop an al-
gorithm for computing the optimal number of discrete power levels per time slot
(O(1/ε)), and use this to design a (1, 1 + ε)-FPAS that consumes less energy
than the optimal while violating each rate constraint by at most a 1 + ε factor.

2 Basic Dynamic Programming Solution

First, we consider a simple relaxation of the minimum energy scheduling problem
using two discrete transmit power levels. In this restricted version of the problem,
a node is allowed to be either idle or transmit with a given (fixed) power P during

466 R. Kannan and S. Wei

its active slot. We illustrate our schemes using two nodes (N = 2) over M time
slots. As mentioned above, even the restricted two node case is not amenable
to traditional optimization methods. Later in section 6, we extend the dynamic
program and approximations are extended to the N -node, M time slot case.

The restricted optimization problem is described by:

min
2∑

i=1

M∑
t=1

Pit

s.t
M∑

t=1

Rit ≥ R̃i, i = 1, 2

Pit ∈ {0, P}, i = 1, 2; t = 1, . . . , M (3)

Ait =
{

0 if Pit = 0
1 otherwise

M∑
t=1

Ait ≤ μi, i = 1, 2

(4)

We assume that μ1 + μ2 ≥ M , i.e the two nodes have to interleave during
some of the slots. A more restricted version of 4 with αt

ji = αji independent of
t is analyzed in [16].

Let R̄kP,a,b
i,j = {<R1, R2>} represent the set of rate vector (rate pairs) corre-

sponding to cumulative transmission rates for user 1 and user 2 from time slots
i through j, 1 ≤ i ≤ j ≤ M , while using a total power (node 1 + node 2) of
kP . For notational simplicity, if i = j, we drop one of the redundant subscripts
in the rate vector. In the above definition, Rl =

∑j
t=i Rlt, where Rlt, l = 1, 2,

is the achievable rate for node l during time slot t, depending on the actions of
the other node i.e active/asleep. The number of active slots for user 1 and 2 in
this period is denoted by a and b, respectively, where 0 ≤ a, b ≤ j−i+1. Since a
node uses fixed power P during an active slot, a+b = k, in this case. Thus for a
given time slot t, we have four different rate vectors specified by,

R̄0,0,0
t = <0, 0>

R̄P,0,1
t = <0,

1
2

log2
(
1 + αt

22P/N t
2
)
>

R̄P,1,0
t = <

1
2

log2
(
1 + αt

11P/N t
1
)
, 0>

R̄2P,1,1
t = <

1
2

log2

(
1 +

αt
11P

N t
1 + αt

21P

)
,
1
2

log2

(
1 +

αt
22P

N t
2 + αt

12P

)
>

(5)

The restricted version of the problem consists of finding a transmission sched-
ule of minimum total energy in which active nodes transmit at a fixed power
during each active time slot while also satisfying the given duty-cycle and rate

Approximation Algorithms for Power-Aware Scheduling of WSNs 467

constraints. For fixed power level P , the optimal schedule is easily specified by
the following dynamic program which maintains the current best-solution for
each total power level and duty-cycle value. The boundary conditions are given
by the rate vectors in Eq. 5. The recursive formula for each power level kP and
duty-cycles a, b, 1 ≤ k ≤ 2M , 0 ≤ a ≤ μ1, 0 ≤ b ≤ μ2 is

R̄kP,a,b
i,j = vectormax

{
R̄kP,a,b

i,j−1

⋃(
R̄

(k−1)P,a−1,b
i,j−1 + R̄P,1,0

j

)⋃(
R̄

(k−1)P,a,b−1
i,j−1 + R̄P,0,1

j

)
⋃(

R̄
(k−2)P,a−1,b−1
i,j−1 + R̄2P,1,1

j

) }
(6)

where the rate vectors in each union operation above are computed using pairwise
addition of the individual vectors. The vectormax operation eliminates all dom-
inated rate pairs from a set of rate pairs, i.e. ∀{<R1, R2>, <R3, R4>} ∈ R̄kP,a,b

i,j

either R1 > R3 and R2 ≤ R4 or vice versa. Using the recursive function, the
table of rate vector values is evaluated in increasing order of time slots from 1
to M . There are O(MPμ1μ2) rate vectors and the set of feasible schedules cor-
respond to those rate vectors ≥ <R̃1, R̃2> under the usual meaning of vector
comparison. The optimal schedule for a given transmit power level P is the one
whose rate vector satisfies

R̄P
opt = argmin

k=1,2...,2M

{
∃ <R1, R2> ∈ R̄kP,μ1,μ2

1,M | <R1, R2> ≥ <R̃1, R̃2>
}

(7)
In practice, it is likely that many of the vectors in R̄kP,a,b

i,j would be dominated
and hence eliminated by the vectormax operation. However in the worst-case,
even after the vectormax operation, the size of R̄kP,a,b

i,j can quadruple with each
additional slot. Thus the above dynamic program is clearly exponential in terms
of the slot parameter M , even though each slot contains only four rate vectors.
This motivates us to consider a (1+ ε, 1+ ε) FPAS for the problem, as described
in Section 5.

3 2-Approximate Minimum Energy Schedule

Let AP denote the (exponential time) dynamic programming algorithm for find-
ing the optimal schedule under duty-cycle constraints and using only two fixed
transmit power levels of 0 or P per slot. We note it is possible under AP that
∀k, R̄kP,μ1,μ2

1,M < <R̃1, R̃2 >. Thus R̄P
opt = φ and no feasible schedule ex-

ists for the given transmit power value P . In this case, we wish to find the
optimal feasible transmit power P = Popt for which a feasible schedule exists
under AP and that uses minimum possible energy E

Popt

A among all such feasible
powers. In this section, we describe a 2-approximation for finding E

Popt

A . Sub-
sequently (in Section 5), we develop an FPAS using O(1/ε) power levels, that
approximates Popt and the corresponding minimal energy schedule to within an
ε-factor.

468 R. Kannan and S. Wei

Let EP
A denote the total energy of the schedule produced by AP . Let Pa and

Pb, where Pa > Pb, represent two different transmit power levels. Consider two
instances of the scheduling problem. In the first instance, each node can either
transmit at power Pa or be idle during each slot. Likewise, with power Pb in the
second instance.

Claim. For each <R1, R2> ∈ R̄kPb,a,b
i,j there is a rate pair <R3, R4> ∈ R̄kPa,a,b

i,j

such that <R1, R2> < <R3, R4>.

Proof. From Eq. 5 it can be seen that for any slot t, we have R̄kPa,a,b
t >

R̄kPb,a,b
t , k = 1, 2, a = 0, 1, b = 0, 1. The proof follows in a straightforward man-

ner by induction.

Let Pmin be the minimum (fixed) transmit power level per active slot for which
a feasible schedule exists. Without loss of generality, we assume Pmin ≥ 1.

Theorem 1. �Pmin� can be found in O(�log2 Pmin�) calls to the dynamic pro-
gramming algorithm AP .

Proof. Initialize P = 11. While R̄P
opt = φ, set P = 2P and run algorithm AP .

By Claim 1, the values of the rate vectors increase with P and hence the process
will terminate with R̄P

opt �= φ. Let Pm be the terminating value of P which is
found in �log2 Pmin� calls. �Pmin� can then be obtained through binary search
in the interval [Pm/2, Pm] with O(log2(Pm/2)) further calls to AP .

Note that Claim 1 for rate vectors cannot be translated to total energy values
i.e Pa > Pb does not imply EPa

A > EPb

A . EP
A is not convex and can have multiple

local minima for Pa > Pmin. Thus to obtain a 2-approximation of the global
minimum energy schedule, we first need to restrict the space of feasible transmit
powers by finding an upper bound Pmax such that E

Popt

A < EP
A for all P > Pmax.

A simple upper bound is Pmax =
(

μ1+μ2
2

)
Pmin ≤ MPmin. Note that E

Popt

A ≤
EPmin

A ≤ Pmin(μ1+μ2). Since each node is active during at least one slot, EP
A >

EPmin

A for all P > Pmax. Further, since Popt ∈ [Pmin, Pmax], we note that Popt

can be found by searching in an interval of size bounded by O(MPmin).
We can obtain a smaller bound on Pmax (and hence the search space for

Popt) by using the following lemma: Let SP
1 , SP

2 and SP
3 be the set of time slots

occupied by node 1 only, node 2 only and both nodes, under the schedule created
by AP . Let RP

i,SP
i

denote the total rate obtained by node i over SP
i , i = 1, 2.

Let SP
i,s ⊂ SP

i represent the set of |SP
i |/2! time slots with the smallest rates

log2(1 + αt
iiP/N t

i)/2 among the slots in SP
i . Similarly, let SP

3,s(i) ⊂ SP
3 denote

the set of |SP
3 |/4! slots with the smallest rates calculated as log2(1+αt

iiP/N t
i)/2

among the slots in SP
3 and let RP

i,SP
3,s(i) denote the corresponding total rate over

these slots. A sufficient condition for finding Pmax is then given by:

1 Note that a better initial value can be obtained by using P = min(P ′
1, P

′
2)/M from

Eq 10 in the next section.

Approximation Algorithms for Power-Aware Scheduling of WSNs 469

Lemma 1. P ≤ Pmax < 2P if SP
3 ∩ S2P

3 �= ∅, RP
i,SP

3,s(i) ≥ (�|SP
3 |/4�)/2 and

Ri,SP
i,s

≥ (�|SP
i |/2�)/2, i = 1, 2.

For a detailed proof, please refer to [17]. The last rate condition of the lemma
is derived from the fact that doubling the power over any set S of solo slots can
increase the achieved rate by less than |S|/2. Thus if the worst half-set of slots
(SP

i,s) has a total rate at least |SP
i |/4, i = 1, 2, then doubling the power over

the best half-set of slots (thereby expending the same energy) cannot achieve
the same rate as before. The second rate condition is derived using the fact that
doubling the power still leads to overlapping slots. The first condition states that
if overlapping slots persist even after doubling the transmit power, and simul-
taneously the second rate condition is also satisfied with respect to the worst
SP

3,s(i)/4 slots (pretending that each node i is transmitting without interference
from the other in these slots), then no amount of further increases in transmit
power can decrease the overall energy. Thus Pmax < 2P .

We use the above bound on Pmax to obtain a 2-approximation for E
Popt

A , the
energy of the optimal (minimum energy) schedule as follows:

Theorem 2. Let

P ∗ = argmin
P=2tPmin, t=0,1...,�log2

Pmax
Pmin

�
EP

A .

Then EP ∗
A is a 2-approximation to E

Popt

A , the minimum energy schedule gener-
ated by the optimal transmit power Popt. The algorithm for finding EP ∗

A uses
�log2

Pmax

Pmin
� = o(log2 M) calls to AP .

Proof. We run the AP algorithm starting with P = Pmin and doubling P with
each iteration until we reach a Pmax as defined by lemma 1. The total energy
can oscillate between EPmin

A and EPmax
A as we sequentially double the power.

For any solution using power Pa, P < Pa < 2P , the number of active slots
tPa = |SPa

1 |+|SPa
2 |+2|SPa

3 | cannot increase between tP and t2P i.e tP ≥ tPa ≥ t2P

(using claim 1). Thus EPa

A ≥ (1/2)minEP
A , E2P

A . Let P ∗ be the power yielding
the minimum energy among the iterations and choose EP ∗

A as the output of
our algorithm. By the above arguments, EP ∗

A ≤ 2E
Popt

A and therefore this algo-
rithm is a 2-approximation. Since Pmax = o(MPmin, the number of iterations is
o(log2 M).

4 Minimum Energy Schedule with Multiple Power Levels

We now consider the scheduling problem with multiple discretized power levels,
where each node can choose from a set of power levels per time slot. As shown
below, if the power levels are chosen appropriately, the cost of the resulting min-
imum energy schedule approximates the cost of the optimal schedule to within
an ε-factor.

470 R. Kannan and S. Wei

For the optimization problem with multiple power levels, let P and Lt denote
the maximum allowable transmit power and the number of discrete power lev-
els available per time slot, respectively, with values as defined below. For this
problem, the constraint 3 of Eq. 4 is replaced with

Pit ∈ {Pl}, l = 0, 1, . . . Lt; 0=P0 ≤ Pl ≤ PLt =P ; i = 1, 2; t = 1, . . . , M. (8)

Note that the corresponding optimal version of the minimum energy schedul-
ing problem contains the constraint

0 ≤ Pit ≤ P, i = 1, 2; t = 1, . . . , M (9)

Let AP ∗
denote the optimal algorithm for the above restricted version of

MESP with per slot maximum power constraints (Eq. 9), i.e nodes select an
optimal power value 0 ≤ P ∗

it ≤ P in each slot, to satisfy their rate and duty-cycle
constraints. Let R∗

it denote the corresponding optimal rate achieved per time slot,
i = 1, 2, t = 1, 2, . . .M . Finally, let P ∗ =

∑∑
P ∗

it and R∗
i =

∑
t R∗

it denote the
overall optimal power and rate allocations. In general, an (α, β) approximation
of the optimal minimum energy scheduling problem is one which provides a
feasible schedule with total power P̂ ≤ αP ∗ and each rate constraint violated
by at most a β-factor i.e βR̂i ≥ R∗

i , for each node i. Note that R∗
i ≥ R̃i and

hence βR̂i ≥ R̃i. Given some ε > 0, we first show the construction of a more
computationally expensive (1 + ε, 1 + ε)-approximation in order to illustrate
our approach and then describe a more efficient (1, 1 + ε)-approximation to the
optimal.

Let P ′ = P ′
1 + P ′

2, where P ′
i is the solution to the problem

min P ′
i =

M∑
t=1

Pit, i = 1, 2

s.t
M∑

t=1

1
2

log2

(
1 +

αt
iiPit

N t
i

)
≥ R̃i, i = 1, 2

Pit ≥ 0 i = 1, 2; t = 1, .., M
M∑

t=1

Ait ≤ μi, i = 1, 2

Ait =
{

0 if Pit = 0
1 otherwise

(10)

P ′
j is the solution to the problem of zero-interference scheduling of node j with

variable (non-discrete) power levels and can be found using standard Lagrange
multiplier techniques [12]. Thus P ′ is a lower bound for the minimum energy
scheduling problem using discrete power levels. Now define

Approximation Algorithms for Power-Aware Scheduling of WSNs 471

q = mini,t

{
P ′
M ,

αt
ii

αt
ji

(
2εR̃i/M − 1

)}
, i, j = 1, 2, 1 ≤ t ≤ M . Let k be the largest

solution to the equation kq = 2 lnkP such that

e/P < k ≤ 2(2εR̃i/M − 1)

q
(
1 + ε − 2εR̃i/M

) (11)

else set k = 0. For the given ε > 0, choose δ1 = εq
2+kq . If k = 0, let r0 = 2P

qε !,
otherwise r0 = � 2+kq)

εkq �. Let s0 = ln1+kδ1 P/r0δ1!.
Allocate power to nodes in each time slot by dividing the total available power

P into the following Lt = r0 + s0 + 2 discrete power levels.

Pr =
{

rδ1, 0 ≤ r ≤ r0
(1 + kδ1)r−r0Pr0 , r0 + 1 ≤ r ≤ r0 + s0

Pr0+s0+1 = P

(12)

Lemma 2. For given max power level P and constraints R̃i, the number of
discrete power levels per slot Lt is O(1

qε).

Proof. Note that we are allocating power levels by dividing the range of avail-
able power into two types of intervals: the first r0 intervals of fixed size δ1 and
remaining intervals of geometrically increasing size. Since geometric intervals are
small in the beginning, the total number of power levels would be much larger
using only geometrically increasing intervals. Therefore we use intervals of fixed
size initially and choose integer r0 such that the size of the first geometric inter-
val, kδ2

1r0 is the same as the size of the previous fixed interval δ1. The overall
objective is to find optimal values of k and δ1 that minimize the total number of
power levels, yet allow us to closely approximate the overall energy consumption
and rate constraints. From the energy approximation requirements (as shown
below), we will get the constraint δ1 = qε/(2 + kq). Hence kδ1 < ε and thus for
small ε, the total number of levels Lt = r0 + s0 = 1/(kδ1) + ln1+kδ1 kP can be
approximated by 1+ln kP

kδ1
= (1/ε)(1 + ln kP)(1 + 2/(kq)). Thus the objective is

to find k that minimizes Lt. The solution to this minimization is ln kP = kq/2
subject to ln kP > 1. If k does not satisfy these conditions then δ1 = qε/2 and
the number of power levels is � 2P

qε �.
The remaining constraints on k as specified in Eq. 11, are obtained from the rate
approximation requirements shown below.

Theorem 3. For small ε > 0, let AP̂ denote the modified version of the (expo-
nential) dynamic programming algorithm AP in which each node can select from
discrete power levels per time slot as specified by Eq. 12, subject to overall duty-
cycle and rate constraints R̃i(1−ε). Then AP̂ is a (1 + ε, 1 + ε)-approximation
of AP ∗

.

472 R. Kannan and S. Wei

Proof. Divide the set of time slots T = {1, 2, . . . , M} into disjoint sets T11 and
T12 (resp. T21 and T22) such that

t ∈ T11(resp. T21) if P ∗
1t(resp. P ∗

2t) ∈ [0, r0δ1]
t ∈ T12(resp. T22) if P ∗

1t(resp. P ∗
2t) ∈ (r0δ1, P]

(13)

Let P̂it and R̂it denote the (discrete) power levels and rate allocations per
node per time slot under AP̂ . Since AP̂ considers combinations of power levels
over M slots, the errors in power levels and rate allocations per slot (either
absolute or relative) must be bounded from above. Consider the solution in
AP̂ that simply rounds up the optimal power level in each slot to the nearest
(larger) discrete power level. For this solution, the absolute error is bounded by
P̂it − P ∗

it < δ1, t ∈ Ti1, and the relative error by P̂it < (1 + kδ1)P ∗
it, t ∈ Ti2,

i = 1, 2. Therefore we have

P̂ =
∑

i

∑
t∈Ti1

P̂it +
∑

i

∑
t∈Ti2

P̂it

≤ P ∗ +
qε (|T11| + |T21|)

2 + kq
+

kqε

2 + kq

∑
i

∑
t∈Ti2

P ∗
it

≤ P ∗ +
2Mqε

2 + kq
+

εkq

2 + kq
P ∗ (14)

The overall relative error in energy Perr, of this solution P̂ is defined as

Perr =
P̂ − P ∗

P ∗ (15)

Therefore we can bound the relative error as

Perr =
2ε

2 + kq
· Mq

P ∗ +
εkq

kq + 2
≤ ε (16)

since q ≤ P ′/M ≤ P ∗/M as P ′ is a lower bound for the optimal energy value
P ∗. Hence this particular solution of algorithm AP̂ approximates the optimal
energy value of the minimum energy schedule to within an ε factor.

To complete the proof, we just need to show that the above power allocation
is also a feasible solution in terms of the rate constraints i.e the overall rates
achieved by AP̂ also approximate each rate constraint to within an ε factor.
First consider the achieved rate R̂1t, for the case t ∈ T21.

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21(P
∗
2t+δ1)

)

≥ 1
2

log2

⎛⎝1 +
αt

11P
∗
1t

N t
1 + αt

21P
∗
2t

· 1

1 + αt
21δ1

N t
1+αt

21P ∗
2t

⎞⎠

Approximation Algorithms for Power-Aware Scheduling of WSNs 473

≥ R∗
1t −

1
2

log2

⎛⎝1 +
δ1

P ∗
2t + N t

1
αt

11
· αt

11
αt

21

αt
21)

⎞⎠ (17)

Using the fact that P ∗
2t ≥ 0, and the background noise N t

1/αt
11 ≥ 1 for each

time slot t ∈ T11, we can bound the absolute R1 rate error = R∗
1−R̂1 over all

such time slots by

M

2
log2

(
1 + max

t

(
αt

21

αt
11

)
δ1

)
≤ εR̃1

2

by using the fact that δ1 ≤ εq ≤ mint

(
αt

11
αt

21

)
ε
(
22εR̃1/M − 1

)
.

Next, for t ∈ T22 (when k > 0), we get

R̂1t =
1
2

log2

(
1 +

αt
11P̂1t

N t
1 + αt

21P̂2t

)

≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t(1 + kδ1)

)
≥ 1

2
log2

(
1 +

1
1+kδ1

· αt
11P

∗
1t

N t
1

1+kδ1
+ αt

21P
∗
2t

)
Since kδ1 ≥ 0, this implies

R̂1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

N t
1 + αt

21P
∗
2t

)
− 1

2
log2(1 + kδ1)

= R∗
1t −

1
2

log2(1 + kδ1) (18)

Hence the total error in R1 over all the time slots when t ∈ T22 is at most
(M/2) log2(1 + kδ1) ≤ εR̃1/2 using the upper bound on k as specified in Eq. 11.
Combining the two cases, the total absolute error in R1 = R̃1−R̂1 ≤ εR̃1 and
thus the relative error in R1 is bounded by ε i.e R̂1 ≥ R̃1(1 − ε). The analysis is
identical for rate R2. Since algorithm AP̂ uses R̃i(1 − ε) as the rate constraint
for user i, therefore the choice of power levels described above is a feasible choice
and hence the algorithm is a (1 + ε, 1 + ε) approximation.

For the algorithm above, note that the number of discrete power levels per slot
Lt, is a function of the channel quality parameters αt

ji/αt
ii. While the α’s are

exponentially distributed random variables with typically small means [18], the
ratios can still be quite large, thereby increasing the number of levels. Therefore
we consider a more optimal scheme where the rate and energy approximations
are obtained independent of channel quality parameters.

Let R̃m = min(R̃1, R̃2) and k1 = (M log2(1+P)−2R̃m)/ log2

(
1+P

1+1/k

)
. Define

δ1 > 0 and k > 0 as the solutions to

min
1

kδ1
+ ln1+kδ1 kP

474 R. Kannan and S. Wei

s.t k1δ1 + M log2(1 + kδ1) = 2εR̃m

k >
1

22R̃m/M − 1
(19)

δ1 and k can be obtained using standard constrained minimization techniques
such as Lagrange multipliers [12]. However if no solution exists above, then δ1
and k are the solutions obtained by replacing the constraints in Eq. 19 above by
the constraint

δ1 + log2(1 + kδ1) =
2εR̃m

M
(20)

If no solution still exists, then δ1 = εR̃m/M and k = (2εR̃m/M − 1)/δ1. Now
divide the available power per time slot into discrete power levels as specified by
Eq. 12 using the δ1 and k values above.

Theorem 4. For ε > 0, let AP denote the (exponential) dynamic programming
algorithm for finding a minimal energy schedule using the discrete power levels
defined above, subject to overall duty-cycle and rate constraints R̃i(1−ε). Then
AP is a (1, 1 + ε)-approximation of AP ∗

.

Proof. For each slot t, round down the optimal power level choice P ∗
it to the

nearest discrete power level, represented by P it and let Rit denote the corre-
sponding achieved rate per slot. As before, divide the M time slots into sets
Tij , i, j = 1, 2, based on the value of P ∗

it. We show below that P it represents a
feasible allocation of power levels under the rate constraints R̃i/(1−ε). Hence
AP is a (1, 1 + ε)-approximation since the total energy consumption of AP is at
most

∑∑
P it ≤ ∑∑

P ∗
it.

First, for t ∈ T12, using P 1t ≥ P ∗
1t/(1 + kδ1) and P 2t ≤ P ∗

2t, we get

R1t ≥ 1
2

log2

(
1 +

αt
11P

∗
1t

(1 + kδ1)(N t
1 + αt

21P 2t)

)
≥ R∗

1t −
1
2

log2(1 + kδ1) (21)

Thus the absolute error in R1t per time slot for this case is ≤ 1
2 log2(1 + kδ1).

Next, for t ∈ T11, define the total interference, I1t = (N t
1 + αt

21P 2t)/αt
11, and

likewise I∗1t, where I∗1t ≥ I1t ≥ 1 (minimum total interference ≥ 1). Therefore
we have,

R∗
1t − R1t ≤ 1

2
log2

(
1 +

P ∗
1t

I1t

)
− 1

2
log2

(
1 +

P 1t

I1t

)
Using the fact that lnx − ln y < x − y for x > y > 1, we get R∗

1t − R1t <
(P ∗

1t − P 1t)/2 ≤ δ1/2. Thus the absolute error in R1t per time slot for this case
is ≤ δ1/2.

Approximation Algorithms for Power-Aware Scheduling of WSNs 475

Combining the two cases, we can bound the overall rate error over M time
slots as

Terr =
|T11|δ1

2
+

|T12| log2(1 + kδ1)
2

(22)

For AP to be a (1, 1 + ε) algorithm, we must have Terr ≤ εR̃1. To finish the
proof, note that the maximum R1 rate we can obtain under this algorithm in
any t ∈ T12 is 1

2 log2(1+P) and 1
2 log2(1+r0δ1) = 1

2 log2(1+1/k) in any t ∈ T11.
The maximum value of |T12| is M . (Clearly log2(1+P) should be ≥ 2R̃1(1−ε)/M ,
otherwise AP does not have a solution). However the maximum value of |T11|
is |T11| ≤ (M log2(1 + P) − 2R̃1)/ log2

(
1+P

1+1/k

)
if log2(1 + 1/k) < 2R̃1/M else

|T11| ≤ M . When |T11| takes the first value, the total number of power levels per
slot is minimized by choosing δ1 and k as in Eq. 19, whereas in the second case
it is minimized by Eq. 20. If both cases do not yield a solution then we set the
two error components δ1 = log2(1 + kδ1) = εR̃m/M which makes the relative
error over M slots ≤ ε as desired.

Finally, we note that the worst-case values of k and kδ1 are O(εR̃m/M) and
therefore

Theorem 5. Given rate constraints R̃i and max power P , the number of dis-
crete power levels per slot is O(1

ε).

Note that the time complexity of AP is still exponential. Using the fact that the
number of power levels per slot required to closely approximate rate and energy
constraints is O(1

ε), we develop an FPAS in the next Section.

5 An FPAS for Rate Constraints

We now describe a simple Fully Polynomial Approximation Scheme that solves
the minimum energy scheduling problem by using a β-relaxation on the rate
constraints for some arbitrary constant β > 0. For clarity, we describe the FPAS
using two power levels 0 and P per time slot. The algorithm for the multiple
power level case is a simple extension as described later.

The FPAS solves the same restricted problem of Eq. 4 with only each rate
constraint replaced by

M∑
t=1

Rit ≥ (1 − β)R̃i i = 1, 2 (23)

For any δ > 0, define the following

Definition 1. A rate vector <R1, R2> δ-dominates another vector <R3, R4>
iff either R3(1−δ) ≤ R1 ≤ R3 and R2 ≥ R4 or R3 ≤ R1(1−δ) and R4(1−δ) ≤ R2.
For R1 ≥ R̃1, the δ-dominant vector is the one with max R2 among all such
vectors.

476 R. Kannan and S. Wei

Note that dominance (under standard vector comparison) implies δ-dominance
but not vice-versa.

Definition 2. Let R̄ be a set of rate vectors. Define the operation vector-
maxdelta(R̄) as one that eliminates all δ-dominated and dominated vectors
from R̄.

Operation vectormaxdelta is equivalent to dividing the two-dimensional vector
space into horizontal and vertical strips, each of whose left endpoint is (1−δ)
times its right endpoint and choosing at most one vector per strip. A simple
algorithm for implementing vectormaxdelta(R̄) is as follows. Assume R̄ has been
sorted by R1 values. First obtain the δ-dominant vector for R1 ≥ R̃1 if such R1’s
exist. Then find the δ-dominant vectors successively in the strips defined by R1
intervals (R̃1(1−δ), R̃1], (R̃1(1−δ)2, R̃1(1−δ)] (R̃1(1−δ)3, R̃1(1−δ)2] and so on.
Dominated vectors are eliminated simultaneously. Since R̄ has been sorted by
R1, this can be done in one pass through R̄, in decreasing order of R1 values.

Choose δ = β
2M . Let AP

β denote the following dynamic programming algo-
rithm for the fixed power minimum energy scheduling problem. The boundary
conditions (i.e rate vectors for each slot t) are the same as before in Eq. 5.
The main recursive step in the algorithm is derived by replacing the vectormax
operation with vectormaxdelta. Let R̂kP,a,b

i,j represent the set of δ-dominating
rate pairs corresponding to cumulative transmission rates for user 1 and user 2
from time slots i through j, 1 ≤ i ≤ j ≤ M , while using a total power of kP ,
1 ≤ k ≤ 2M .

R̂kP,a,b
i,j = vectormaxdelta

{
R̂kP,a,b

i,j−1

⋃(
R̂

(k−1)P,a−1,b
i,j−1 + R̂P,1,0

j

)
⋃(

R̂
(k−1)P,a,b−1
i,j−1 + R̂P,0,1

j

)⋃(
R̂

(k−2)P,a−1,b−1
i,j−1 + R̂2P,1,1

j

)}
(24)

The terminating condition for the algorithm occurs when the rate vectors are
≥ R̃i(1 − β), i = 1, 2. The optimal schedule corresponds to the minimum total
power rate vector that satisfies the terminating condition.

Theorem 6. AP
β is a FPAS for the minimum energy scheduling problem with

two fixed transmit power choices 0 or P per slot.

Proof. First we show that the running time of AP
β is polynomial in 1/β. The

number of δ-dominant vectors in R̂kP,a,b
i,j−1 is bounded by

1 + ln1+δ R̃1 = 1 +
ln R̃1

ln(1 + δ)
= O

(
M

β
· ln R̃1

)
since we keep only one vector for each 1−δ-factor interval. and using 1/(1− δ) =
1 + δ. The running time for the creation of each R̂kP,a,b

i,j is also polynomial
since it includes sorting followed by the vectormaxdelta operation. There are
O(MPμ1μ2) such rate vector sets, each of size polynomial in 1/β and hence the
overall running time is also polynomial in 1/β.

Approximation Algorithms for Power-Aware Scheduling of WSNs 477

Next we need to show that algorithm AP
β provides a β-approximation of the

rate constraints. Let <R1, R2> ∈ R̄kP,a,b
1,j be an arbitrary non-dominated vector

from the exponential time algorithm AP up to time slot j. We can show by
induction that ∃ <R3, R4 > ∈ R̂kP,a,b

1,j such that R3 ≥ R1(1 − δ)j and R4 ≥
R2(1 − δ)j . The ‘parent’ of <R1, R2> (the vector that produced <R1, R2> in
stage j−1) is approximated within (1− δ)j−1 by the induction hypothesis. After
combining with the vectors of stage j and implementing vectormaxdelta, at most
a further (1− δ)-factor error in R1 and R2 is introduced. Thus the total error in
each dimension is bounded by (1 − δ)j after j slots. Therefore every rate vector
in R̄kP,μ1,μ2

1,M is approximated to within (1− δ)M by a rate vector from algorithm
AP

β . Using δ = β/2M , we can see that there exist ‘approximate’ rate vectors
<R3, R4> ∈ R̂kP,μ1,μ2

1,M such that R3 ≥ R1(1 − β) and R4 ≥ R2(1 − β) for all
‘actual’ rate vectors <R1, R2> ∈ R̄kP,μ1,μ2

1,M . Hence AP
β is a β-approximation.

Algorithm AP
β above can be easily modified to incorporate multiple power lev-

els per slot. For any small α > 0, choose ε = β = α/2 and then set δ1 and
k as per Eq. 19 with Lt power levels per user per slot. Eq. 5 is modified to
reflect (Lt)2 = O(1/α2) (from Theorem 5) total rate vectors per time slot t,
corresponding to all combinations of power levels. Define a new algorithm APLt

β

in which the vectormaxdelta operation applies to combinations of these (Lt)2

rate vectors. The total number of table entries (for rate vectors) in the modified
dynamic program is now increased to (Lt)2MPμ1μ2. However by applying the
vectormaxdelta operation, the size of each rate vector set remains the same size,
O(1/β), as before.

Theorem 7. For any α > 0 and ε = β = α/2, APLt

β is a (1, 1 + α)-Fully Poly-
nomial Approximation Scheme for the minimum energy scheduling problem with
Lt power levels per slot.

Proof. By choosing multiple power levels as defined above, each rate vector is
no more than a 1−ε = (1−α/2)-factor away from the ideal rate vector for that
stage. For each such vector, the vectormax operation selects another which is at
most another 1−α/2-factor away. Thus at the end of algorithm APLt

β , the rate
constraints are violated by at most a factor of (1 − α/2)2 < (1 − α). For given
M , P , μ1 and μ2, the total number of table entries and related operations is
O(1/α2) and hence APLt

β is a (1, 1 + α) FPAS.

Finally, we note that the 2-factor approximation of Section 3 that finds a min-
imal energy schedule corresponding to optimal transmit power Popt can be im-
proved by using APLt

β instead of the exponential AP . We increase P by a factor
of 1+ kδ1 = 1+α in each iteration rather than doubling as in Theorem 2.
Unlike the two fixed transmit powers case, E

P (1+kδ1)

APLt
β

≤ EP

APLt
β

since the for-

mer contains the schedule of the latter as a subset. The other arguments of
Theorem 2 remain valid and by outputting the lowest energy value from the

478 R. Kannan and S. Wei

iterations, we obtain a (1 + α, 1 + α)-approximation algorithm that finds the
optimal maximum transmit power level Popt and the corresponding minimum
energy schedule in O(log1+kδ1

Popt/Pmin) = O(1
α · Popt

Pmin
) = O(M

α) iterations
(since Popt ≤ Pmax ≤ MPmin), where each iteration takes time O(1/α2). Since
this is the solution to the unrestricted MESP problem of Eq. 2, we have

Theorem 8. There is a (1 + α, 1 + α) FPAS for solving the unrestricted MESP
problem.

6 Multiple Node Case

Even with N nodes, the number of discrete power levels Lt, required to approxi-
mate each nodes rate and overall energy within a (1+α)-factor, remains the same
as defined by Eq. 12 and Eq. 19 since the arguments of Theorem 4 apply even
with interference from multiple nodes. Hence each node can select from O(1/α)
power levels per slot. Even with only 2 power levels, the number of rate vectors
per slot is 2N , and in general O(1/α)N . However, we can extend the preceding
algorithm to the multiple node case by defining δ-dominance for N -tuple rate
vectors. If the number of users is treated as a fixed constant N , this extended
algorithm is still an FPAS since 1) the number of rate vectors per slot t is polyno-
mial in 1/α and 2) the size of each table entry (corresponding to the rate vector
set upto the jth slot) is O

((
M ln R̃m

α)N−1
))

, where R̃m = mini{R̃i}, since the

number of δ-dominant vectors in the smallest dimension is O((M ln R̃m)/β) and
we are considering dominant vectors over an N -dimensional hypercube of vector
elements.

7 Conclusions

We have considered the problem of finding a minimum energy transmission
schedule for duty-cycle and rate constrained wireless sensor nodes. Since tra-
ditional optimization methods using Lagrange multipliers are computationally
expensive given the non-convex constraints, we develop fully polynomial time ap-
proximation schemes by considering restricted versions of the problem using dis-
crete power levels. We derive an (1+ε, 1+ε)-FPAS for MESP that approximates
the optimal energy consumption and rate constraints to within an 1 + ε-factor.

References

1. Singh, S., Raghavendra, C.: Pamas: Power aware multi-access protocol with sig-
nalling for ad hoc networks (1999)

2. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks (2002)

3. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adap-
tive sleeping for wireless sensor networks (2003)

Approximation Algorithms for Power-Aware Scheduling of WSNs 479

4. Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet trans-
mission over a wireless link. IEEE/ACM Transactions on Networking 10 (2002)
487– 499

5. Uysal-Biyikoglu, E., Gamal, A.E.: On adaptive transmission for energy efficiency
in wireless data networks. IEEE Trans. Inform. Theory (2004)

6. Hanly, S., Tse, D.: Power control and capacity of spread-spectrum wireless net-
works. Automat. 35(12) (1999) 1987–2012

7. Wang, K., Chiasserini, C., Rao, R., Proakis, J.: A distributed joint scheduling and
power control algorithm for multicasting in wireless ad hoc networks. In: IEEE
International Conference on Communications, 2003. ICC ’03. Volume 1. (2003)
725–731

8. ElBatt, T., Ephremides, A.: Joint scheduling and power control for wireless ad hoc
networks. IEEE Transactions on Wireless Communications 3 (2004) 74–85

9. Foschini, G.J., Miljanic, Z.: A simple distributed autonomous power control al-
gorithm and its convergence. IEEE Transactions on Vehicular Technology (1993)
641–646

10. Bambos, N.: Toward power-sensitive network architectures in wireless communi-
cations: concepts, issues, and design concepts. IEEE Personal Communications
(1998) 50–59

11. Bambos, N., Kandukuri, S.: Power control multiple access (pcma). Wireless Net-
works (1999)

12. Bertsekas, D.P.: Nonlinear Programming. Second edn. Athena Scientific, Belmont,
Massachusetts (1999)

13. Bertsekas, D., Lauer, G., Sandell, N., Posbergh, T.: Optimal short-term scheduling
of large-scale power systems. IEEE Transactions on Automatic Control (1983) 1–11

14. Dorit Hochbaum, E.: Approximation Algorithms for NP-Hard Problems. First edn.
PWS Publishing Company, Boston, MA (1997)

15. Martello, S., Toth, P.: Knapsack Problems. First edn. J. Wiley and Sons, Chichester
(1990)

16. Kannan, R., Wei, S., Chakravarthi, V., Seetharaman, G.: Using misbehavior to
analyze strategic versus aggregate energy minimization in wireless sensor networks
(2006)

17. Kannan, R., Wei, S.: Lsu-cs-tr-06-3. Technical report, LSU (2006)
18. Cover, T.M., Thomas, J.A.: Elements of Information Theory. First edn. Wiley,

New York (1991)

MobiRoute: Routing Towards a Mobile Sink
for Improving Lifetime in Sensor Networks�

Jun Luo, Jacques Panchard, Micha�l Piórkowski, Matthias Grossglauser,
and Jean-Pierre Hubaux

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. Improving network lifetime is a fundamental challenge of
wireless sensor networks. One possible solution consists in making use of
mobile sinks. Whereas theoretical analysis shows that this approach does
indeed benefit network lifetime, practical routing protocols that support
sink mobility are still missing. In this paper, in line with our previous
efforts, we investigate the approach that makes use of a mobile sink for
balancing the traffic load and in turn improving network lifetime. We
engineer a routing protocol, MobiRoute, that effectively supports sink
mobility. Through intensive simulations in TOSSIM with a mobile sink
and an implementation of MobiRoute, we prove the feasibility of the
mobile sink approach by demonstrating the improved network lifetime
in several deployment scenarios.

1 Introduction

Many proposals on using mobile sinks to improve the lifetime of wireless sen-
sor networks (WSNs) have appeared recently [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, the
doubt that moving sinks is practical persists in the research community (e.g.,
[10]). One of the major concerns behind this doubt is that mobility inevitably
incurs additional overhead in data communication protocols and the overhead
can potentially offset the benefit brought by mobility. In this paper, we intend
to dismiss the doubt.

We focus on a scenario where all nodes are fixed and have limited energy
reserves and where a mobile sink endowed with significantly more resources
serves as the data collector. In this scenario, the sink mobility can increase
network lifetime through two different methods, depending on the relationship
between the sink moving speed and the tolerable delay of the data delivery.

In the fast mobility regime, the speed produces tolerable data delivery delay.
The WSNs may then take advantage of mobility capacity [11]. This mobile relay
� The work presented in this paper was supported (in part) by the National Com-

petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322. (http://www.terminodes.org)

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 480–497, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MobiRoute: Routing Towards a Mobile Sink 481

approach [1, 2, 3] uses the mobile sink to transport data with its mechanical move-
ments. It trades data delivery latency for the reduction of node energy consump-
tion. We refer to [3] and [4] for simulations and field studies in this regime. In the
slow mobility regime, the sink mobility takes a discrete form: the movement trace
consists of several anchor points between which the sink moves and at which it
pauses. Consequently, the network cannot benefit from mobility capacity. How-
ever, it has recently been observed [5, 6, 7, 8, 9] that sink mobility can still improve
network lifetime. The reason is that the typical many-to-one traffic pattern in
WSNs imposes a heavy forwarding load on the nodes close to sinks. While no en-
ergy conserving protocol alleviates such a load, moving the sink (even very infre-
quently) can distribute over time the role of bottleneck nodes and thus even out
the load. Unfortunately, theoretical analysis [5, 6, 7, 8, 9] may produce misleading
results due to its simplified system model (an example is given in Section 5: foot-
note 4); simulations involving a detailed protocol implementation are necessary to
fully understand the benefit of using mobile sinks.

We argue that the slow mobility conditions exist in many realistic applica-
tions of WSNs. For example, suppose that a WSN is equipped with batteries
that cannot be replaced, e.g., because the sensor nodes are not accessible, or be-
cause changing batteries would be hazardous or costly. This may be the case for
sensors in smart buildings, where batteries might be designed to last for decades,
and for environmental or military sensing under hostile or dangerous conditions
(e.g., avalanche monitoring). In this case, it may be desirable and comparatively
simple to move a sink infrequently (e.g., once a day or a week) by a human
or by a robot. For example, in the avalanche monitoring scenario, a sink may
be deployed at the periphery1 of the monitored area and then moved once in
a while by a helicopter. In the building scenario, the sink can be “virtually”
moved: computers in different offices serve as the sink in shifts. In the military
surveillance scenario, moving the sink may require some effort, but it can be
acceptable if done infrequently.

Numerous routing protocols have been proposed in the last decade to support
data communications in either mobile ad hoc networks (MANETs) or WSNs. On
one hand, the protocols for MANETs (e.g., [12, 13]) are definitely an overkill for
supporting mobile sinks because the basic assumption in MANETs is that every
node moves in an unpredictable way. On the other hand, the protocols for WSNs
usually take static sinks for granted (e.g., [14, 15], although some exceptions exist
[16, 17, 18, 3]). It is true that a routing protocol that supports mobile sinks to
collect data in WSNs, compared with existing protocols for static WSNs, will
have higher protocol complexity and overhead. However, the following favorable
features of the sink mobility (in the low mobility regime) and of the existing
routing protocols help to limit the side effects:

– The mobility is controllable and thus predictable,
– The pause time of a sink along its moving trace is much longer than the

actual moving time,
1 As we have shown in [8], the optimum trace (in terms of network lifetime) for a

mobile sink is the network periphery.

482 J. Luo et al.

– Existing routing protocols usually possess proactive features to cope with
the dynamics in link quality; this can be exploited to support sink mobility.

In the spirit of [8] (where we theoretically prove the superiority of mobile
sinks over static ones), we further investigate in this paper the performance,
with respect to both lifetime and reliability (measured by packet delivery ratio),
of WSNs with a mobile sink. We consider a scenario where nodes periodically
transfer data through multi-hop routes towards the sink, while the sink intermit-
tently changes its position according to certain predefined traces. We propose a
routing protocol, MobiRoute, dedicated to support sink mobility. It takes into
account the favorable features we mentioned above and thus only marginally
increases the protocol complexity and overhead. We use TOSSIM [19] as the
simulator. Our simulation results demonstrate the efficiency of MobiRoute, in
terms of both an improved network lifetime and an undegraded reliability, in
several deployment scenarios. Our contribution with respect to [5, 6, 7, 8, 9] are:

– Our investigation is based on a practical routing protocol. Consequently, we
take into account realistic conditions such as control overhead with a routing
protocol and collision/overhearing [20, 21] at the MAC layer.

– We also look at the reliability issue incurred by sink mobility, which is not
considered by the numerical simulations of the previous work.

The rest of this paper is organized as follows: Section 2 surveys related work.
Section 3 clarifies our metrics and methodologies. Section 4 presents our Mo-
biRoute protocol. Section 5 describes the algorithm that controls the sink mo-
bility in an adaptive way. Simulation results are reported in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

In this section, we briefly survey the existing routing protocols that are designed
to support sink mobility. Whereas the previous proposals [5, 6, 7, 8, 9] serve as
the theoretical basis of this paper, we will not discuss them further because this
paper focuses on the practicality of sink mobility instead of theoretical analysis.
We refer to Section 1 for the principle of these proposals.

There are a few proposals for data collection with mobile sinks [16, 17, 18, 3].
While most of them [16, 17, 18] consider sink mobility as an inherent behavior of
WSNs and try to cope with it, only [3] share the same opinion of exploiting
controllable sink mobility as ours.

The two-tier data dissemination (TTDD) approach [16] is actually based on
the existing idea of virtual backbone. The backbone (or grid in TTDD’s termi-
nology) is formed proactively upon detection of a stimulus. The mobile sinks
send queries to the nearest grid points with a flooding. Queries are routed along
the grid and data trace the reverse path back to the sinks. As a consequence,
the control overhead introduced by sink mobility is limited to the grid cell where
a sink is located. Aiming at further limiting the widespread diffusion of control

MobiRoute: Routing Towards a Mobile Sink 483

messages introduced by sink mobility, the scalable energy-efficient asynchronous
dissemination (SEAD) protocol [17] assigns particular nodes as the access nodes
and relies on such fixed anchors to limit the control traffic. Mobile sinks only
need to select one of their neighbors as an access node and maintain the link
with it. SEAD constructs an energy-efficient dissemination tree from a source to
difference access nodes. Data are routed along the tree and then unicast from the
access nodes to their sinks. To handle mobility, sink may handoff from one access
node to the other if the tradeoff between the energy consumed to build another
tree and the data delivery latency exceeds a given threshold. Both TTDD and
SEAD heavily rely on the assumption of location-aware sensor nodes, which are
not required in our case. Moreover, the data generation model is also different
from ours. Under our data generation model (where every node produces data
with the same rate), the virtual backbone used in TTDD to carry most traffic
would become fixed and the delayed handoff in SEAD could lead to subopti-
mal routing trees for a substantial amount of time; they both offset the load
balancing effect resulting from sink mobility.

The hybrid learning-enforced time domain routing (HLETDR) proposed in
[18] comes a bit closer to our situation. They assume a somewhat fixed sink
trace and the same data generation model as ours. However, instead of requiring
the sink to inform other nodes about its location changes, HLETDR lets sen-
sor nodes to figure out the sink trace through a learning-based approach. This
learning process is done through positive and negative reinforcements according
to the probability density function indicating how far the sink is from the nodes
close to the sink trace. Tour period of the sink is divided into m domains. When
a node has data to be forwarded, the probability of selecting next hop is deter-
mined according to its possibility being on a shortest path to the sink in that
time domain. HLETDR has a high complexity of the routing table, i.e., O(m),
when a fine time granularity is required. In addition, the relatively slow learning
procedure limits the adaptability of the sink mobility (which is very crucial for
load balancing in our case).

The routing protocol described in [3] is based on directed diffusion [14], a
routing protocol dedicated to data-centric2 communications. [3] extends directed
diffusion by adding mainly three components: 1) a pre-move phase for the nodes
to learn the sink trace, 2) an acknowledgement-retransmit scheme to handle
packets loss during handoff, and 3) a pre-fetch mechanism to improve the data
delivery. The data generation model assumed in [3] is quite different from ours:
nodes send data only when the data are queried whereas nodes proactively push
data to the sink in our model. In addition, the sink moves continuously in [3] be-
cause their protocols work in the fast mobility regime (see Section 1 for details).
Therefore, the control objective is the moving speed for [3], whereas we consider
the adjustment of pause times. In this paper, we take an approach similar to
that of [3] in that, instead of developing a routing protocol from scratch, we
extend an existing routing protocol with the ability of handling sink mobility.

2 Data generated by sensor nodes are named by attribute-value pairs. A node requests
data by sending interests for named data rather than for named nodes.

484 J. Luo et al.

3 Problem, Metrics and Methodology

We define network lifetime as the time period for the first node to run out of
its energy reserve [22]. When evaluating this quantity, we convert the problem
of maximizing network lifetime to a min-max problem in terms of the radio
energy consumption of individual nodes. Another performance index we want to
evaluate is the packet delivery ratio (or reliability). In fact, a possible side-effect
brought by sink mobility could be an increase in packet loss due to occasional
topology changes; the lifetime elongation resulting from sink mobility is justifi-
able only if the increase in packet loss is tolerable.

We assume that nodes generate data and send them to the sink with the same
rate. In our approach, the mobility pattern of a sink takes a discrete form [6]: the
moving trace consists of several anchor points between which the sink moves and
at which the sink pauses. We require each epoch (the time during which the sink
pauses) to be much longer than the moving time, such that the routing overhead
introduced by sink mobility becomes negligible due to its amortization across a
long epoch. Imposing these anchor points simplifies the design of the mobile sink3

and limits the extra overhead introduced to the routing protocol (see Section 4
for details). In addition, a continuous movement is not necessary, as a granularity
of (sink) displacement smaller than the magnitude of the effective radio range
may not lead to any topological change (whereas topological changes are what
we expect from the sink mobility). In order to better adapt to the topology and
dynamics of a given network, we also intend to control the sink mobility on-line
(based on the off-line optimization described in [8]).

Our experiment methodology involves simulations with TOSSIM [19]. The
main benefit of using the TOSSIM simulator is that the protocol used for sim-
ulations can be directly adopted by real sensor nodes. We simulate a set of
networks with nodes on 4×4, 5×5, and 7×7 point lattices; these scenarios rep-
resent outdoor WSNs in general. We also simulate a network that we intend to
deploy as an in-building testbed.

4 MobiRoute: Routing Towards a Mobile Sink

According to the definition of discrete mobility pattern described in Section 3,
the sink changes its location from time to time. A routing protocol that transfers
data towards such a sink should perform the following operations that are not
needed for traditional WSNs:

1. Notify a node when its link with the sink gets broken due to mobility.
2. Inform the whole network of the topological changes incurred by mobility.
3. Minimize the packet loss during the sink moving period.

Operation 1 seems to be encompassed by 2, but the level of urgency is different.
Packets forwarded by a last-hop node will get lost if the node does not detect the
3 The mobile sink can simply be a laptop (moved occasionally by a human), rather

than a sophisticate robot as used in [3].

MobiRoute: Routing Towards a Mobile Sink 485

1

2
4

65

s
01

3

s
02

s
1

s
0

s
Sink (subscript
indicates different locations)

anchor point

1 Static node

Link before sink moving

Link after sink moving

Link appear during
sink moving

Link broken during
sink moving

Sink trace

s
Sink temporary location
when moving

Fig. 1. This example illustrates possible scenarios where additional operations are nec-
essary. Assuming the sink, after its (long) pause at s0, moves to s1, (1) the link breakage
happening when the sink reaches intermediate location s01 (where it loses connectiv-
ity with node 1) should be notified to node 1, otherwise the node will have to drop
packets sent from other nodes, (2) nodes 3, 4, and 6 should be informed about the topo-
logical changes at a proper time, otherwise, for example, 6 might take the following
sub-optimal routing path: 6 → 4 → 1 → 2 → s.

Pause

MovePre-pause

Pre-move

Fig. 2. States and transitions involved in MobiRoute. Note that only the protocol
running at the sink side has the pre-move state.

link breakage, while a remote node can still send its data to the sink successfully
without knowing the topological changes. However, the routing optimality is
compromised without operation 2. It is not possible to avoid packet loss, because
a realistic failure detector (which usually relies on a timer) always has some delay.
Therefore, the goal of operation 3 is to minimize rather than eliminate packet
loss. Possible scenarios related to these operations are illustrated in Fig. 1.

Our routing protocol, MobiRoute, is a superset of Berkeley MintRoute [15].
MobiRoute extends MintRoute by adding functions that perform the aforemen-
tioned operations. We first introduce MintRoute briefly in Section 4.1, then we
describe the extended functions of MobiRoute separately in Sections 4.2 to 4.4.
The state diagram shown in Fig. 2 is used when we present MobiRoute.

4.1 MintRoute

Berkeley MintRoute [15] is a routing protocol designed specifically for the all-
to-one data transmission style of WSNs. It takes a distributed distance-vector
based approach: route messages (i.e., control packets) are exchanged periodi-
cally among neighbor nodes, and the next hop nodes (or parents in MintRoute

486 J. Luo et al.

nomenclature) are chosen by evaluating the costs of routing data through dif-
ferent neighbors. The exchanged route messages not only help to measure the
distance (in terms of the number of possible transmissions) from the sink but
also provide a way to evaluate the link qualities (from both directions) between
nodes. As a result, MintRoute applies a Minimum Transmission (MT) metric,
where the goal is to minimize the total number of transmissions (including re-
transmissions). Since the data rate in WSNs is low, route messages do not need
to be exchanged frequently (the rate is actually a multiple of the data rate in
MintRoute). This helps MintRoute to reduce its energy consumption. Although
MintRoute does not explicitly apply a metric that considers load balancing, the
protocol, according to our experience, balances the traffic load with occasional
switches of nodes’ parents (which is a direct consequence of the MT metric).
This feature makes MintRoute a leading candidate for supporting sink mobility.
Finally, MintRoute applies a sequence number for each packet to detect packet
loss and thus evaluate link quality; this sequence is shared by both control and
data packets.

4.2 Detecting Link Breakage

In order to inform the nodes located close to the sink trace about the state of
their links with the sink, MobiRoute applies a beacon mechanism. The sink,
during the whole moving period, periodically broadcasts a beacon message (s-
beacon hereafter). A node, upon receiving a s-beacon, sets (or resets) its de-
tecting timer. If the timer times out before receiving the next s-beacon, the
failure detector at this node indicates a link breakage and a new parent is cho-
sen (which is taken care by MintRoute). We now discuss several crucial points
of this seemingly simple mechanism.

First, we require the sink to transit from the pause state to the pre-move
state before physically beginning to move. The sink begins to broadcast s-beacons
under the pre-move state and evolves to the move state after a while. The
sink moves while broadcasting s-beacons under the move state. A node, after
receiving the first s-beacon under its current pause state, transits to the move
state directly. Nevertheless, the pre-move state (of the sink) is necessary: it
guarantees the reception of s-beacons at the nodes’ side before the link quality
changes due to the sink mobility.

Secondly, although only the sink (whose energy reserve is abundant) spends
energy to send s-beacons, nodes also spend energy to receive these beacons.
Therefore, the frequency of s-beacons should not be too high. On the other
hand, low frequency sending retards failure detection, which in turn increases
packet loss. We apply a simple heuristic: the frequency is set in the same order
as the accumulative packet sending rate. For example, if the sending rate of each
node is 1 pkt/min in a 60-node network, the accumulative rate at a last-hop
node is at most 1 packet/second, and the beacon frequency is set to 1Hz. A
related parameter is the timeout value for the detecting timer. Fortunately, the
value can be relatively small, because a node will detect a false-positive when
receiving another s-beacon.

MobiRoute: Routing Towards a Mobile Sink 487

Finally, the beacon mechanism is a costly procedure, regardless of which bea-
con frequency is chosen. Fortunately, since the moving period accounts only for
a small fraction of the network lifetime, its costs will be amortized across the
lifetime. A continuous sink movement, on the contrary, would incur such costs
permanently.

4.3 Conveying Topological Changes

MobiRoute could have relied on MintRoute to propagate the topological changes
resulting from sink mobility. However, the rate of route message exchanges in
MintRoute is very low. Therefore, it takes a long time to convey the topologi-
cal changes to the whole network; during this period, many packets are routed
through sub-optimal paths, which consumes additional energy and thus offsets
the benefit of sink mobility. As a result, MobiRoute needs a speed-up (route
message exchange) rate for propagating the topological changes.

Propagating information throughout a network is a costly procedure (message
complexity O(n)); it cannot be performed frequently. So MobiRoute only per-
forms a propagation upon the sink reaching an anchor, and it tolerates a limited
number of sub-optimal routing during the moving period. The sink enters the
pre-pause state (see Fig. 2) when it stops moving; it then sends route messages
with a speed-up rate, which causes their receivers to enter the same state. Nodes
that receive messages directly from the sink also send speed-up route messages;
they re-evaluate the quality of their links with the sink using these exchanges. A
node receiving speed-up messages indirectly also enters the pre-pause state; it
forwards the message only if its distance towards the sink changes significantly
(e.g., node 6 in Fig. 1 might not forward messages received from node 3). The
energy consumption of the propagation procedure is effectively reduced, because
there are nodes that are not affected for a given move of the sink. Every node
(including the sink) in the pre-pause state transits to the pause state after a
short time span controlled by a timer.

4.4 Minimizing Packet Losses

Although packet loss cannot be avoided during the sink moving period due to
the lag of the failure detector, there are ways to mitigate the losses. Taking
advantage of having a very short moving period (which we would not have if the
sink moved continuously), the protocol tries to reduce the sending rate of the
last-hop nodes, by asking them to buffer data packets using the interface queue
(QueuedSend module) in MintRoute. We also add the following command to
QueueControl interface, such that the routing module can access the interface
queue to change the next-hop address of the buffered packets upon detecting a
link failure.

Nodes can only buffer data packets; control packets should still be sent.
However, if we simply picked up control packets from the interface queue and
sent them, there would be gaps among the sequence numbers (remember that
MintRoute applies the same sequence for both control and data packets). These

488 J. Luo et al.

command void QueueControl.setAddrInQueue(uint16_t parent)
{

uint16_t i;
if (!fQueueIdle)

for (i = dequeue_next; i != enqueue_next;
i = (i + 1) % MESSAGE_QUEUE_SIZE)
msgqueue[i].address = parent;

}

gaps would mislead a neighbor node about a degradation in the link quality.
Two solutions can be applied: 1) using separate sequences and queues for data
and control packets or 2) rearranging the sequence number within the queue,
such that packets sent have consecutive sequence numbers. In the short term,
we adopt the second solution because it is easy to implement, but the first could
be desirable in a long-run perspective.

5 Adaptively Controlled Mobility

According to our simulation results in Section 6, a mobility strategy that adapts
to the network topology (for which no a priori knowledge exists) performs better
than a static schedule. In this section, we describe the adaptive algorithm to
control sink mobility. Our algorithm adaptively changes the epoch of the sink at
each anchor point, according to the power consumption profile of the network.
We derive the algorithm from the following linear program:

Maximize lifetime T =
∑

k

tk (1)

Constraints:
∑

k

tkPk ≤ E (2)

where Pk and E are vectors that represent the power consumptions of each node
(referred to as P-profile hereafter) when the sink pauses at a certain anchor
point k and the initial energy reserves of all nodes, respectively. This formulation
basically means that we weigh, through the epoch tk, the anchor points based on
the corresponding P-profile Pks, in such a way that the Pks that complement each
other are favored. Although this LP formulation is similar to what is described in
[6, 7], our contribution lies in the fact that we define the Pks by instrumenting the
prototype of a routing protocol, while [6, 7] only manipulate flows on a graph4.

In practice, we propose the following 2-phase algorithm to approximate the
above programming problem:
4 In fact, manipulating flow without bearing in mind the behaviors of a realistic routing

protocol may leads to a misleading conclusion. For example, the formulation in [6]
tries to maximize the lifetime by considering only a subset of flow (which is chosen to
simplify the problem). However, this biased choice produces a significant deviation
(in terms of the anchor points) from the theoretical optimum [23], on which our
empirical settings (see Section 6) are based.

MobiRoute: Routing Towards a Mobile Sink 489

– Phase I–Initialization: The mobile sink visits the anchor points one by one
and pauses at each point for a short sampling period. During each sampling
period, the sink collects the power consumption records from all nodes and
builds a P-profile for that anchor point. At the end of this phase, the sink
performs the programming (1) and drops an anchor point if its weight tk is
extremely low. It is not worth keeping such a point because its corresponding
epoch is not long enough to amortize the routing overhead introduced by the
sink mobility.

– Phase II–Operation: The mobile sink goes through the trajectory repeti-
tively but only pauses at those chosen anchor points. At a given point k, the
sink again collects power consumption information and builds a profile Pk.
Based on the new profile and previous profiles for other chosen points, the
programming (1) is re-solved to deduce tk. The actual epoch is computed as
t̂k = tk/δ, where δ > 1 is an integer. Applying the δ makes it possible for the
sink to repeat the movement pattern several turns, which allows the sink to
be more adaptive to the network dynamics.

We have the following remarks on the algorithm:

– If we make a discrete search over the whole surface covered by the network to
obtain the anchor points, the time to finish Phase I could become comparable
to the network lifetime; the algorithm would thus lose its adaptability (e.g.,
the sink might not even get a chance to enter Phase II). Alternatively, we
can search over a “good” trace. A candidate of such a trace could be the
periphery of the network [8].

– The sink could have directly applied the results (i.e., tks) of the first phase
to the second phase if the routing topology were fixed. However, according
to our experiences with real WSNs, the routing topology keeps evolving even
with static nodes. As a result, the P-profiles obtained from the first phase
can only be considered as estimations and should be updated if new profiles
are available.

6 Simulations

We report two sets of simulations with TOSSIM in this section. In one set, net-
work nodes are located on point lattices; simulation results of this set represent
outdoor WSNs in general. In another set, nodes form a ring; the simulations
emulate our future field tests with an in-building WSN.

6.1 Grid Networks

We arrange nodes on a point lattice of size 4×4, 5×5, and 7×7. For each network,
we either 1) put the sink (node 0) at the network border (the midpoint of one
side), or 2) at the center, or 3) let the sink move around the network periphery.
There is a constant distance between any two consecutive anchor points; the
sink pauses on an anchor point and moves in between two anchors according to

490 J. Luo et al.

100

100

100

100

100
50.0

37.5

62.5

Static node

Mobile sink

Link quality

100

Fig. 3. Neighborhood graph in TinyViz [19]. The number beside a link states the link
quality: 100 stands for a perfect link. The numbers on grid lines represent coordinates.

the instruction from a Tython [24] code. The connectivity5 of a node with other
nodes is shown in Fig. 3. The transmission range is set to 1.2 times longer than
the distance between two neighbor nodes. Each node generates a data packet
every 60 seconds. A control packet (route message) is sent every 120 seconds in
the pause state and every 2 seconds (speed-up rate) in the pre-pause state. The
s-beacon rate is one per second. The retransmission is disabled for all nodes if not
stated otherwise. The epoch of non-adaptive mobility allows each node to send
10 data packets (i.e., 600 seconds)6, and the moving time is 10 seconds for the 49
nodes network and 20 seconds for the other two. The sink moves at a speed of 1
ft/s in the move state. The full simulation time is just long enough to let the sink
go through one round of its trip; the simulation for a given network is repeated
10 times. For the measurement of energy consumptions7, we use the number of
(both control and data) packets that a node is involved to characterize the energy
consumption. By doing this, we implicitly assume that 1) radio communication
is the dominating energy consumer, 2) sending and receiving a packet consumes
the same amount of energy, and 3) control and data packets are of the same
size.
5 We take the fixed radius model, although it is less realistic than the empirical one

(we refer to [19] for the definitions of these models). The reason is that, given a
set of geo-distributed nodes, applying the empirical model usually leads to small
network diameter due to the occasional existence of shortcuts. A relatively large
network diameter (up to 10 hops) is essential to fully exhibit the benefit of using a
mobile sink, but increasing the network size to achieve larger diameter results in a
simulation time of unreasonable duration (e.g., 100 hours). By using the fixed radius
model, we simply assume that, for a certain node, only nodes within its effective
region [15] are considered as its neighbors.

6 This duration is way shorter than what could be in a real deployment, where it might
last for days or even weeks. Therefore, the performance of MobiRoute is expected
to be better in practice, thanks to a longer amortization period.

7 Since TOSSIM uses a MAC that never switches off its radio, tools such as Power-
TOSSIM [25] always report a flat energy consumption pattern of a network no matter
where the sink is located. In reality, motes equipped with B-MAC [21] do switch off
their radio when there is no transmission going on.

MobiRoute: Routing Towards a Mobile Sink 491

Static sink at the border Static sink at the center Mobile sink

Fig. 4. Energy consumption of WSNs. Two networks with 25 and 49 nodes, respec-
tively, are simulated. For each network, we either put the sink at the network border
(the midpoint of one side), or at the center, or let the sink move around the network
periphery. For each comparative case (i.e., one row in the figure), the energy consump-
tions are normalized to a common scale factor.

Non-adaptive Mobility. The spatial distributions of energy consumptions
for networks with 25 and 49 nodes are shown in Fig. 4. According to the life-
time definition in Section 3, the smaller the maximum energy consumption in
a network, the longer the network lifetime will be. Comparing the two cases
with a static sink and the case with a mobile sink, we make the following
observations:

492 J. Luo et al.

– The load-balancing effect of using a mobile sink is evident. The network with
a mobile sink always lives longer than the network with a static sink at its
border and no shorter than the network with a static sink at the center.

– In the network of 49 nodes, using a mobile sink is the best choice, irrespec-
tive of whether the overhearing at the MAC layer exists or not. However,
overhearing does offset the benefits of using a mobile sink: the 100% improve-
ment on the lifetime (comparing the network having a mobile sink with the
one having a centered static center) is reduced to 50% if overhearing exists.

– In smaller networks of 16 and 25 nodes (only the latter case is shown in Fig. 4
due to their similarity), using a mobile sink is not necessarily helpful, because
it does not improve the lifetime compared with using a centered static sink
while increasing the accumulative energy consumption of the network.

A straightforward conclusion is that using a mobile sink is more beneficial in
large networks. Since the function of the mobile sink is to disperse the traffic
flows, the network should be large enough to provide nodes with a sufficient
number of alternative routing paths. However, since locating a sink at the net-
work center is not always practical8, using a mobile sink does help to improve
the lifetime in most networks.

Another implication of our observations is that a MAC protocol free of over-
hearing is very important to improve the effectiveness of using a mobile sink.
Unfortunately, the current MAC of motes (i.e., B-MAC [21]) suffers much from
overhearing [26], and protocols with the potential to avoid overhearing (e.g., S-
MAC [16]) do not necessarily have an overall performance better than B-MAC
due to their burdensome synchronization schemes. So, we expect future technol-
ogy to provide sensor nodes with overhearing-free MACs.

We plot the cumulative distribution functions of the packet delivery ratio
in these two networks in Fig. 5. The comparisons are only made between a
centered static sink and a mobile sink, because the ratios are quite similar for
both networks with a static sink. The figures show that, without retransmission,
the packet delivery ratio is always lower in the case of a mobile sink, which is
intuitive (see the reasons that we described in Section 4). Also, the difference
between the two ratios increases with the network size. The reason is that using
a mobile sink increases the worst-case routing path length (actually, a static
sink located at one vertex of the network periphery achieves the same ratio).
This is not a major problem, because we would expect a much higher reliability
in reality, where a node typically sends data only every tens of minutes [26].
Actually, if we enable the retransmission, the packet delivery ratio in the case
of a mobile sink can be as high as that in the case of a static sink, but at the
cost of increased energy consumption (Fig. 6), whose maximum value is still low
enough to justify the benefit of using a mobile sink.

8 For habitat and environment monitoring, unobtrusive observation is key for studying
natural phenomena [26]. Although nodes are small enough for this purpose, a sink
(especially when it has to transmit the collected data out of the network area) can
hardly makes itself invisible in the environment.

MobiRoute: Routing Towards a Mobile Sink 493

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet delivery ratio

E
m

pi
ri

ca
l C

D
F

F(
x)

25 nodes

Mobile sink

Static sink

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet delivery ratio

E
m

pi
ri

ca
l C

D
F

F(
x)

49 nodes

Mobile sink

Static sink

Mobile sink
with retransmission

Fig. 5. Comparisons of packet delivery ratio

Fig. 6. Energy consumption of a WSN with a mobile sink and retransmission enabled.
The scale factors take the same value as used for Fig. 4.

(a) Non-adaptive mobility (b) Adaptive mobility

Fig. 7. Zooming in the distribution of energy consumption with a mobile sink

Adaptive Mobility. Zooming into the spatial distribution of energy consump-
tion in the network with a mobile sink (as shown in Fig. 7 (a)), we observe that
the load taken by nodes near the corner is heavier than that of other nodes.
Applying the algorithm described in Section 5, we actually find that the sink
should pause less time at those anchors near the corner. The resulting load,
shown in Fig. 7 (b), is further balanced; which improves the network lifetime by
about 10%. Note that the sink, in our simulations, only circles around the net-
work twice: one in phase I and another in phase II (see Section 5); the network
lifetime can be further improved with more rounds in phase II.

494 J. Luo et al.

Static node Sink

10

1

1 2 3

4

5

6

9

78

Atrium
14.193

5.543

43.268

11.686

Static node Link quality96.5Sink Data link

97.453

77.387

97.148

96.5

(a) The experimental network (b) Simulation scenario

Fig. 8. The plan of our network deployment (a) and the simulation scenario (b). Nodes
are numbered the same way in (b) as in (a).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node id

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

Static sink
Mobile sink
Mobile sink with adaptive control

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node id

Pa
ck

et
 d

el
iv

er
y

ra
tio

Static sink
Mobile sink
Mobile sink with adaptive control

(a) (b)

Fig. 9. Simulation results. (a) The energy consumptions are normalized by the largest
energy consumption observed (i.e., node 10 in the case of a static sink). (b) The aver-
aging effect arises also for the packet deliver ratio.

6.2 Ring Network

This section presents the simulation with a ring network. We use this simulation
scenario to emulate anetworkdeployed in ourbuilding,as shown inFig. 8(a).While
a static sink9 is located in-between nodes 9 and 10, a mobile sink moves around the
circle and pauses in between two consecutive nodes. We use the empirical model
[19] to characterize the connectivity in this set of simulations. As an example, the
connectivity graph for the sink (node 0) is shown in Fig. 3 (b). Each node generates
a data packet every 30 seconds. A control packet (route message) is sent every 60
seconds in the pause state and every 2 seconds (speed-up rate) in the pre-pause
state. The s-beacon rate is one per second. The retransmission is disabled for all
nodes. Each of the 10 simulations lasts for 17600 seconds and the epoch of non-
adaptive mobility is 1760 seconds. The sink moves at a speed of 1 ft/s in the move
9 The atrium inside of our building prevents us from locating the sink at its optimum po-

sition (i.e. the center of the network). This indeed corroborates our claim in Section 6.1
that locating a sink at the network center is not always practical.

MobiRoute: Routing Towards a Mobile Sink 495

state, and themoving time is 25 seconds. Themeasurement of energy consumptions
is the same as for Section 6.1, and the overhearing is not taken into account.

We illustrate the simulation results with bar graphs in Fig. 9. As shown in
Fig. 9 (a), the load balancing effect is already very evident by simply moving an
uncontrolled sink, which improves the lifetime by 20%. Further improvement is
achieved (an additional 15% of improvement on lifetime compared to the non-
adaptive mobility) by controlling the mobile sink adaptively. The behavior in
packet delivery, plotted in Fig. 9 (b), differs from that shown in Fig. 5; the
averaging effect also arises due to the special network topology. In this specific
scenario, the averaging effect makes a mobile sink beneficial not only to the
network lifetime but also to the reliability, because nodes that are far away from
the static sink perform poorly in terms of the reliability of packet delivery.

7 Conclusion

In this paper, we have presented a routing protocol, MobiRoute, to support
wireless sensor networks (WSNs) with a mobile sink. This is a follow-up of our
previous work [8] where we theoretically proved that moving the sink can im-
prove network lifetime without sacrificing data delivery latency. By intensively
simulating MobiRoute with TOSSIM (in which real implementation codes are
running), we have demonstrated the benefit of using a mobile sink rather than
a static one. We have simulated both general networks with nodes located in
point lattices and a special in-building network with nodes forming a ring. The
results are very promising: a mobile sink, in most cases, improves the network
lifetime with only a modestly degraded reliability in packet delivery.

We are in the process of performing full-scale field tests with the in-building
network. We are also considering more comprehensive simulations to evaluate the
performance of MobiRoute under diverse conditions (e.g., the number and loca-
tion of the anchor points, the pause/move ratio, the node number and density,
and the protocol parameter such as frequency of s-beacons and δ for adaptive
mobility). We will improve MobiRoute based on the experience obtained from
our field tests and simulations.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable
feedback.

References

1. Shah, R., Roy, S., Jain, S., Brunette, W.: Data MULEs: Mobeling a Three-tier
Architecutre for Sparse Sensor Networks. In: Proc. of the 1st IEEE SNPA. (2003)

2. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using Predictable Observer Mobility
for Power Efficient Design of Sensor Networks. In: Proc. of the 2nd IEEE IPSN.
(2003)

496 J. Luo et al.

3. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent Fluid
Infrastructure for Embedded Networks. In: Proc. of the 2nd ACM/USENIX Mo-
biSys. (2004)

4. Jea, D., Somasundara, A., Srivastava, M.: Multiple Controlled Mobile Elements
(Data Mules) for Data Collection in Sensor Networks. In: Proc. of the 1st
IEEE/ACM DCOSS. (2005)

5. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes
for Wireless Sensor Networks with Multiple Mobile Base Stations. In: Proc. of IEEE
Globecom. (2003)

6. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility
for Maximizing Sensor Networks Lifetime. In: Proc. of the 38th HICSS. (2005)

7. Wang, Z., Melachrinoudis, E., Basagni, S.: Voronoi Diagram-Based Linear Pro-
gramming Modeling of Wireless Sensor Networks with a Mobile Sink. In: Proc. of
the IIE Annual Conference and Exposition. (2005)

8. Luo, J., Hubaux, J.P.: Joint Mobility and Routing for Lifetime Elongation in
Wireless Sensor Networks. In: Proc. of the 24th IEEE INFOCOM. (2005)

9. Papadimitriou, I., Georgiadis, L.: Maximum Lifetime Routing to Mobile Sink in
Wireless Sensor Networks. In: Proc. of the 13th IEEE SoftCom. (2005)

10. Wang, W., Srinivasan, V., Chua, K.C.: Using Mobile Relays to Prolong the Lifetime
of Wireless Sensor Networks. In: Proc. of the 11th ACM MobiCom. (2005)

11. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless net-
works. IEEE/ACM Trans. on Networking 10 (2002) 477–486

12. Johnson, D., Maltz, D., Hu, Y.C.: The Dynamic Source Routing Protocol for Mo-
bile Ad Hoc Networks (DSR). (2004) Internet-Draft, draft-ietf-manet-dsr-10.txt.
Work in progress.

13. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector
(AODV) Routing. (2003) IETF RFC 3561, Network Working Group.

14. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. on Networking 11
(2003) 2–16

15. Woo, A., Tong, T., Culler, D.: Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In: Proc. of the 1st ACM SenSys. (2003)

16. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-tier Data Dissemination Model
for Large Scale Wireless Sensor Networks. In: Proc. of the 8th ACM MobiCom.
(2005)

17. Kim, H., Abdelzaher, T., Kwon, W.: Minimum Energy Asynchronous Dissemi-
nation to Mobile Sinks in Wireless Sensor Networks. In: Proc. of the 1st ACM
SenSys. (2003)

18. Baruah, P., Urgaonkar, R., Krishnamachari, B.: Learning Enforced Time Domain
Routing to Mobile Sinks in Wireless Sensor Fields. In: Proc. of the 1st IEEE
EmNets. (2004)

19. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simu-
lation of Entire TinyOS Applications. In: Proc. of the 1st ACM SenSys. (2003)

20. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In: Proc. of the 21st IEEE INFOCOM. (2002)

21. Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless
Sensor Networks. In: Proc. of the 2st ACM SenSys. (2004)

22. Chang, J.H., Tassiulas, L.: Energy Conserving Routing in Wireless Ad-hoc Net-
works. In: Proc. of the 19th IEEE INFOCOM. (2000)

MobiRoute: Routing Towards a Mobile Sink 497

23. Luo, J.: Mobility in Wireless Networks: Friend or Foe – Network Design and
Control in the Age of Mobile Computing. PhD thesis, School of Computer and
Communication Sciences, EPFL, Switzerland (2006)

24. Demmer, M., Levis, P.: Tython: A Dynamic Simulation Environment for Sensor
Networks. (2005) http://www.tinyos.net/tinyos-1.x/doc/tython/tython.html.

25. Shnayder, V., Hempstead, M., Chen, B., Allen, G., Welsh, M.: Simulating the
Power Consumption of Large-Scale Sensor Network Applications. In: Proc. of the
2nd ACM SenSys. (2004)

26. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An Analysis
of a Large Scale Habitat Monitoring Application. In: Proc. of the 2nd ACM SenSys.
(2004)

SenCar: An Energy Efficient Data Gathering
Mechanism for Large Scale Multihop Sensor Networks�

Ming Ma and Yuanyuan Yang

Dept. of Electrical and Computer Engineering
State University of New York,
Stony Brook, NY 11794, USA

{mingma, yang}@ece.sunysb.edu

Abstract. In this paper, we propose a new data gathering mechanism for
large scale multihop sensor networks. A mobile data observer, called Sen-
Car, which could be a mobile robot or a vehicle equipped with a powerful
transceiver and battery, works like a mobile base station in the network.
SenCar starts the data gathering tour periodically from the static data pro-
cessing center, traverses the entire sensor network, gathers the data from
sensors while moving, returns to the starting point, and finally uploads
data to the data processing center. Unlike SenCar, sensors in the network
are static, and can be made very simple and inexpensive. They upload
sensing data to SenCar when SenCar moves close to them. Since sensors
can only communicate with others within a very limited range, pack-
ets from some sensors may need multihop relays to reach SenCar. We
first show that the moving path of SenCar can greatly affect the network
lifetime. We then present heuristic algorithms for planning the moving
path/circle of SenCar and balancing traffic load in the network. We show
that by driving SenCar along a better path and balancing the traffic load
from sensors to SenCar, the network lifetime can be prolonged signifi-
cantly. Our simulation results demonstrate that the proposed data gather-
ing mechanism can greatly prolong the network lifetime compared to a
network which has only a static observer, or a network in which mobile
observer can only move along straight lines.

Keywords: SenCar, Wireless sensor networks, Data gathering, Load
balancing.

1 Introduction and Background

In recent years, wireless sensor networks (WSN) are playing an increasingly important
role in a wide-range of applications, such as medical treatment, outer-space exploration,

� The research work was supported in part by the U.S. National Science Foundation under grant
numbers CCR-0207999 and ECS-0427345 and by the U.S. Army Research Office under grant
number W911NF-04-1-0439.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 498–513, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SenCar: An Energy Efficient Data Gathering Mechanism 499

battlefield surveillance, emergency response, etc. [1, 2, 3, 4, 5]. A wireless sensor net-
work is generally composed of hundreds or thousands of sensor nodes, with each sen-
sor capable of sensing the environment and sending data to data observers. Due to the
limited battery lifetime and low cost requirement, each sensor node is usually equipped
with a simple and low-cost computing module and radio transceiver. Although special
attention has been paid to low power consumption when designing sensors, a sensor
node can survive only very limited lifetime with current technologies [6, 7]. Therefore,
energy efficiency is one of the most critical challenges in applications of large scale,
resource-limited sensor networks.

Resource-limited sensor nodes are usually thrown into an unknown environment
without a pre-configured infrastructure. Before monitoring the environment, sensor
nodes must be able to discover nearby sensors and organize themselves into a network.
After that, sensor nodes begin to sense the field and forward data to a data observer
until they fail or are terminated by the observer. Various types of data gathering mecha-
nisms have been considered and investigated for large scale sensor networks. They can
be roughly classified into following categories. First, in a static sensor network, which
contains a large number of static sensor nodes and a static observer, the observer must
be reachable by all the sensor nodes. Data packets are sent to the observer by one or
more hops of forwarding. In such a network, all data traffic flows to the observer. Thus,
sensors close to the observer consume much more energy than sensors at the margin of
the network. As a result, after these sensors fail, other nodes cannot reach the observer
and the network becomes disconnected, even most of the nodes can still survive for
a long period. Furthermore, in such a static network, every sensor has to be powerful
enough to perform all the functions by itself, such as finding routing paths, obtaining
its location information [17, 18], scheduling the packet transmission, and so on. Thus,
the network architecture with only one static observer is only suitable for a small net-
work. The second type of architecture introduces a hierarchy to the network. By adding
a small number of powerful cluster heads, the network can be divided into clusters. In
such a network, sensor nodes are organized into clusters and form the lower layer of
the network. At the higher layer, cluster heads collect sensing data from sensors and
forward data to outside observers. Such two-layer hybrid networks are more scalable
and energy-efficient than homogeneous sensor networks. However, though increasing
the number of cluster heads may reduce the burden of sensor nodes, the cost of cluster
heads should also be taken into consideration. The third type of sensor networks intro-
duce one or more mobile data observers to collect the data dynamically. A mobile data
observer could be a mobile robot or a vehicle equipped with a powerful transceiver,
battery and large memory. The mobile data observer starts a tour from the base station,
traverses the network, collects sensing data from nearby nodes while moving, returns
and uploads data to a remote data processing center. The moving path and the direction
of the mobile observer can be random or planned. When the mobile observer moves into
the transmission range of some sensors, the sensors send data to the observer directly.
Other sensors, which are too far away from the moving path of the mobile observer, can
upload data through the relaying of other sensors. The relaying path and transmission
time of each packet can be determined by the mobile observer. In addition, a GPS [17]
receiver may be optional for sensors, since sensors can estimate the relative location to

500 M. Ma and Y. Yang

the mobile observer [18] when the mobile observer moves close to them. By introduc-
ing the mobility of the observer, the energy consumption for transmitting packets can
be reduced significantly and sensor nodes can be made simpler and less expensive.

In this paper, we consider the problem of planning the moving path of a mobile
observer and balancing the traffic load from sensors to the mobile observer to prolong
the network lifetime. We define the network lifetime as the lifetime of the first failure
node in the network. We consider applications, such as environment monitoring for
some human-unreachable environment, e.g., outer-space, seabed and so on, where the
sensing data is generally collected at a low rate and sensing data is not so delay-sensitive
that it can be accumulated into fixed-length data packets and uploaded once a while. For
such applications, we have following assumptions. Static sensors are densely deployed
onto a two-dimensional working area. Due to the limited transmission power, sensor
nodes can only reach nearby nodes within a limited disk-shaped range. The total power
consumption for transmitting a packet, including processing power consumption, such
as coding/decoding, modulation/demodulation, A/D-D/A, and so on, and radio power
both are assumed to be proportional to the size of the packet. For the sake of simplicity,
we only consider the major energy consumption for communications and ignore those
for sensing and other tasks. The mobile observer can move to anywhere in the working
area, and is equipped with a more powerful transceiver and battery with much longer
lifetime than sensor nodes. In addition, we assume that the mobile observer has explored
the sensing field before collecting data. The location information and the connection
patterns of sensor nodes have been obtained by the mobile observer during the exploring
phase. In the rest of the paper, we will use SenCar to denote the mobile data observer.

The rest of the paper is organized as follows. Section 2 discusses some related work.
Section 3 presents our data gathering scheme for a network with an arbitrary topology.
Section 4 gives simulation results and some discussions. Finally, Section 5 concludes
the paper.

2 Related Work

Mobility of sensor networks has been studied in some literatures recently
[3, 4, 5, 8, 9, 10, 11]. In [3] and [4], radio-tagged zebras and whales are used as mobile
nodes to collect sensing data in a wild environment. These animal-based nodes wander
randomly in the sensing field, and exchange sensing data only when they move close to
each other. Thus, sensor nodes in such a network are not necessarily connected all the
time. Moreover, the mobility of randomly moving animals is hard to predict and control,
thus the maximum packet delay cannot be guaranteed. For sensor networks deployed in
an urbane area, where public transportation vehicles, such as buses and trains, always
move along the fixed routes. These vehicles can be mounted with transceivers to act
as mobile base stations [8, 9]. Compared to the randomly moving animals, the moving
path and timing are predictable in this case. However, data exchanging still depends on
the existing routes and schedules of the public transportation, and thus is very restric-
tive. In [10], a number of mobile observers, called data mules, traverse the sensing field
along parallel straight lines and gather data from sensors. This scheme works well in a
large scale, uniformly distributed sensor network. However, in practice, data mules may

SenCar: An Energy Efficient Data Gathering Mechanism 501

not always be able to move along straight lines, for example, obstacles or boundaries
may block the moving paths of data mules. Moreover, the performance and cost of the
data mule scheme depends on the number of data mules and the distribution of sensors.
When only a small number of data mules are available and not all sensors are con-
nected, data mules may not cover all the sensors in the network if they only move along
straight lines. [5, 11] also consider mobile observers in sensor networks. [5] mainly dis-
cussed hardware/software implementation of underwater mobile observers, while [11]
proposed an algorithm to schedule the mobile observer, so that there is no data loss due
to the buffer overflow. In order to make a data collecting scheme suitable to various net-
work topologies, it is more realistic and efficient to plan the moving path of the mobile
observer dynamically based on the distribution of sensors. This is the motivation of our
work in this paper. In the following, we will give a data gathering scheme for a network
with an arbitrary topology.

3 Data Gathering Scheme

Sensor networks are usually deployed in dangerous or even human-unreachable areas,
such as volcano, outer-space, seabed and so on. In such environments, human beings
may not move close to the sensing field. A mobile observer, or SenCar, will be sent
out to gather data from sensors periodically. Since the network may contain a large
number of nodes, each tour may take a long time. In order to save the energy, sensors
may turn on their transceivers only when they need to send or relay packets. Except
the transmission period, transceivers of sensors could be turned off. The entire sensor
network can be divided into several clusters, where sensors in each cluster must be
connected to SenCar while it is moving through the cluster. When SenCar moves close
to the cluster, all sensors belonging to the cluster will be waken up and prepare to send
packets. Sensing data can be collected by SenCar while it is traversing the cluster. To
make this scheme work, two issues must be resolved here. The first issue is how to wake
up and turn off sensors only when needed. A radio wake-up scheme was proposed in
[15], which allows the transceivers of sensors to be deactivated when they are idle. The
second issue is how to divide sensors into clusters. As will be described later, a moving
path of SenCar consists of a series of connected line segments. Sensors close to each line
segment will be organized into a cluster by SenCar, such that the entire network can be
divided into a number of clusters. A straightforward way to organize sensor nodes into
clusters is to assign each sensor to the “nearest” line segment in the moving path from
it. The details of clustering algorithm will be introduced in Section 3.3. While moving,
SenCar will poll each sensor one by one to collect data. Relaying path and transmission
time of packets are determined by SenCar. Thus, packet collision can be avoided and no
routing paths need to be maintained by sensors. In addition, while planning the relaying
paths, traffic load needs to be balanced to prolong the lifetime of sensors. Next, we will
describe the data gathering scheme in more detail.

3.1 Load Balancing

As discussed above, due to the different amount of traffic each sensor node relays, some
nodes may fail sooner than others. In order to maximize the network lifetime, relaying

502 M. Ma and Y. Yang

paths must be carefully planned to balance the traffic load. Load balancing problem in
static sensor networks has been investigated in some existing work, such as [12, 13, 14].
Next we will describe how to formalize the problem of maximizing network lifetime in
our network into a network flow problem.

1S
S2

S4 1S

S2

S4S3

S5

S3

S5
 of SenCar

S5’ S5"

S
S

S5 5
5

S3 S3
S3

S3’ S3"

S4 S4
S4

S4’ S4"

S4

S5

S3

1S

S2

1S’ 1S"

1S 1S
1S

S2 S2
S2

S2’ S2"

(a) (b)

C

Moving path

Src Dst

(c)

Pg

Pr

E −
r Tr T

Pr

Pgr T r TE −

Pgr T r T
Pr

E −

r T

r T

r T

r T

r T

Pg

Pr

r T r TE −

Pg

Pr

r T r T
−E

Fig. 1. (a) Connection patterns of a sensor network. (b) Directed graph G(S, c, A) correspond-
ing to the connection patterns of the network. (c) Network flow graph G′(S′, Src, Dst, A′) for
maximizing network lifetime, where the capacities of unmarked arcs are infinity.

Given the connection patterns of the network and the moving path of SenCar, a sen-
sor network can be modeled as a directed graph G(S, c, A), where S = {s1, s2, . . . , sn}
is the set of all sensor nodes, c denotes SenCar and A is the set of all directed links
a(i, j) where i ∈ S, j ∈ S

⋃{c}. For each pair of nodes si, sj ∈ S, if si can reach sj in
one hop, arc a(si, sj) will be added into A. If the moving path of SenCar traverses the
transmission range of si, or equivalently si can reach SenCar in one hop while SenCar
is moving, add arc a(si, c) into G. Fig. 1(a) and (b) shows how to construct the directed
graph from the connection patterns of a network.

Given the directed graph G of a network, its corresponding flow graph
G′(S′, Src, Dst, A′) can be constructed as follows:

SenCar: An Energy Efficient Data Gathering Mechanism 503

– For each si ∈ S, add two vertices s′i and s′′i to S′, and an arc a(s′i, s
′′
i) is added into

A′ with capacity
Esi−(rsi

TPg)
Pr

+ rsiT ;
– For each arc a(si, sj) ∈ A, where si, sj ∈ S , add an arc a(s′′i , s′j) into A′ with

infinity capacity;
– A pair of source and destination nodes Src and Dst are added into G′, and for each

s′i ∈ S′, connect Src and s′i by an arc a(Src, s′i) with capacity rsiT ;
– For each arc a(si, c) ∈ A, where si ∈ S, add an arc a(s′′i , Dst) into A′ with infinity

capacity;

where rsi and Esi denote the data generating rate and energy limit of node si, Pg

and Pr represent the power consumption for generating and relaying a unit of traffic,
respectively, and T is the network lifetime. Since SenCar visits sensors periodically,
say, every ΔT time. We can set T = ΔT at the beginning and increase T by ΔT
every time. For any given T , this problem is a regular maximum flow problem [16] and
can be solved by Ford-Fulkerson algorithm in polynomial time. In this construction,
(rsiT) limits the flow from Src to si and represents the flow generated by si within
time T , which consumes (rsiTPg) energy. Due to the energy constraint of node si, the

maximum flow node si can relay within time T is
Esi−(rsi

TPg)
Pr

. Thus, the total flow

a node si can generate and relay in time T is limited by
Esi−(rsi

TPg)
Pr

+ rsiT . When
the maximum flow equals

∑
si∈S rsiT , it means until time T , all generated traffic by n

sensor nodes is received by SenCar. Thus, all n sensors must be alive until T . We can
keep increasing T and running Ford-Fulkerson algorithm to obtain the maximum flow
for every T value, until the maximum flow is less than

∑
si∈S rsiT , which indicates

some nodes have failed before time T . Finally, the value of T obtained before the last
run of Ford-Fulkerson algorithm is the maximum network lifetime. An example of the
construction from the connection patterns of the network to the flow graph is depicted
in Fig. 1.

We now analyze the time complexity of this algorithm. Let U denote the maximum
units of traffic any sensor node generates and relays within time T ∗, where T ∗ is the
maximum network lifetime obtained by the algorithm. Then

U = max
si∈S

{
Esi − (rsiT

∗Pg)
Pr

+ rsiT
∗
}

The running time of this algorithm is O(Un2), where n is the number of sensor nodes in
the network. Therefore, based on the connection patterns of the network and the moving
path of SenCar, the optimal traffic relaying paths which maximize the network lifetime
can be obtained in polynomial time by running the flow algorithm. Next we will discuss
how to determine the moving path of SenCar.

3.2 Determining Turning Points of the Moving Path

Before formally describing the problem we consider, we first give an example to see
how the moving path of the SenCar affects the network lifetime. As shown in Fig. 2(a),
SenCar traverses the sensing field from A to B, where fifteen nodes are deployed. We
assume that each sensor forwards one packet to SenCar, while SenCar moves from

504 M. Ma and Y. Yang

SenCar
Moving path

Sensor node A B

A B

(b)

(a)

Node 1

Fig. 2. SenCar moves from A to B and collects data from nearby sensors. (a) SenCar moves along
a straight path. (b) SenCar moves along a well-planned path.

A to B. Due to limited transmission power of sensors, packets may need multi-hop
relays to reach SenCar. The sensors are organized into spanning trees to forward packets
to SenCar. We can see that in Fig. 2(a), node 1 is a bottleneck node, because it has
to relay eight packets from itself and its seven child nodes to SenCar. Thus, node 1
consumes energy much faster than other nodes. After node 1 fails, the child nodes
of node 1 cannot reach SenCar any more, unless SenCar changes the moving path.
Fig. 2(b) shows the relaying paths of sensors when the moving path of SenCar is well
planned. We can see that each node has at most one child node and needs to send at most
two packets to SenCar. In this example, if we only consider the energy consumption for
transmission and roughly measure it by the number of packets transmitted, the well-
planned moving path of SenCar can increase the lifetime three times compared to the
straight-line moving path. From this simple example, we observe that a well-planned
moving path of SenCar may minimize the maximum load of any sensor, save a lot
of energy and prolong the network lifetime significantly. In addition to traffic load,
the moving path of SenCar can also affect the directions of traffic flow, thereby have a
significant impact on the network lifetime. Next we consider the problem of maximizing
the lifetime of the network, by carefully planning the moving path of SenCar.

In practice, since it is difficult for vehicles or robots to move along any continu-
ous curve smoothly, we simply assume that the moving path of SenCar consists of
t + 1 connected straight line segments from the starting point A to the end point B.
That means SenCar needs to turn t times before it reaches the end of the path. Let
p1, p2, . . . , pt denote t turning points. Then, the moving path of SenCar can be repre-
sented by A → p1 → p2 → · · · → pt → B. Let (xA, xA), (xB , yB) and (xpi , ypi)
denote the coordinates of A, B and pi, for i = 1, 2, . . . , t. We assume that the x-
coordinate of any sensor is between xA and xB . We will use the divide and conquer
strategy to find t turning points to reduce the maximum traffic load of any sensor needs
to send out. Without loss of generality, let t = 2k−1, where k denotes the rounds of the
path planning algorithm and k = 1, 2, First, given the positions of A and B, we will
find the position of the first turning point p t+1

2
. For the sake of simplicity, we assume

that the first turning point can only be chosen from a finite set of points in the bisector
of the initial path. Let the x-coordinate of the first turning point xp t+1

2
= xA+xB

2 , and

SenCar: An Energy Efficient Data Gathering Mechanism 505

y

y

y

1
2

3

4

Sensing field

Moving Path

Sensor

(a)

(c)

Turning Point

(b)

(d)

A B

A B A B

BA

Fig. 3. SenCar moves from A to B and collects data from nearby sensors (a) SenCar moves from
A to B through a straight path. (b) SenCar moves from A to B with turning point (xA+xB

2 , 2Δy).
(c) SenCar moves from A to B with turning point (xA+xB

2 , Δy). (d) SenCar moves from A to B
with turning point (xA+xB

2 , −Δy).

the y-coordinate of the first turning point yp t+1
2

= m × Δy, where Δy is a fixed grid

length and m can be any integer that ensures (xp t+1
2

, yp t+1
2

) to be within the range

of the sensing field. After a set of eligible possible locations of the turning point are
obtained, we can check each possible turning point and find the one that minimizes
the maximum traffic load a sensor has to send out. For example, in Fig. 3(a), the ini-
tial path of SenCar begins from A to B. Given the grid length Δy and the range of
sensing field, there are three possible locations of the first turning point, located at
(xA+xB

2 , 2Δy), (xA+xB

2 , Δy) and (xA+xB

2 ,−Δy), as shown in Fig. 3(b), (c) and (d).
For each possible turning point, the load balancing algorithm introduced in the previ-
ous subsection can be used to obtain the maximum-minimum lifetime of the sensors
for its corresponding moving path. Fig. 3(a)-(d) show the connection pattern graph of
four different moving paths, where nodes 1, 2, 3 and 4 are the bottleneck nodes in
Fig. 3(a)-(d), which need to send four, six, three and nine packets to SenCar, respec-
tively. Thus, the third moving path, turned at (xA+xB

2 , Δy), provides a longer network
lifetime than others. In the first step, point (xA+xB

2 , Δy) is chosen as the first turning
point of the moving path. Note that sometimes better moving path may not be found
by moving the turning point along the bisector of the current path. In this case, the
new turning point can be simply set to the mid point between two end points of the
current path.

3.3 Clustering the Network Along the Segments of the Moving Path

After the first turning point is obtained, the moving path consists of two connected line
segments. Then, sensors will be organized into two clusters, where each cluster corre-
sponds to a line segment. In order to save energy, two clusters of sensors can be waked
up sequentially. Sensors in one cluster forward packets to SenCar before it makes the
turn, while sensors in the other cluster send data after SenCar turns. A straightforward

506 M. Ma and Y. Yang

Cluster 1 Cluster 2

rt

rt

1s

2s

4s

3s

5s 6s

1s
2s

3s 4s 5s

6s
1s

2s

4s

3s

5s 6s

1l 2l

1l 2l

4s
1s

2s
3s

6s
5s

(a) (b)

(c) (d)

Turning point

Transmission Range

line segment 1 line segment 2

Fig. 4. SenCar moves from A to B and collects data from nearby sensors. (a) Two line segments
of the moving path cross transmission ranges of node s1, s4, s5 and s6. (b) Graph G(S, L, E) of
the network. (c) Clustering obtained from the shortest path tree in G(S, L, E). (d) Shortest path
tree obtained in G(S, L, E).

way to organize sensor nodes into clusters is to assign each sensor to its “nearest” line
segment in the moving path from it. Here, the distance from a sensor to the line segment
in the routing path is measured by the hop count. Given a set of sensors S and a set of
line segments L, clustering the network can be implemented by running Dijkstra shortest
path algorithm in graph G(S, L, E), which can be constructed as follows:

– A root vertex rt is added into V ;
– For each line segment, add a vertex li into L and an edge e(rt, li) into E with

weight 1.
– For each sensor sj ∈ S, add a vertex sj into V ; Connect sj and li by an edge

e(sj , li) with weight 1, if and only if sensor sj can reach line segment li in one
hop;

– For each pair of nodes sj , sk ∈ S, connect sj and sk by an edge e(sj , sk) with
weight 1, if and only if sensor sj and sk can reach each other in one hop;

As shown in Fig. 4(a), two line segments of the moving path cross the transmission
ranges of node s1, s4, s5 and s6. The corresponding graph G(S, L, E) of the network
is shown in Fig. 4(b). By running Dijkstra algorithm in G, we can find the shortest
path from the root vertex to all other vertices, then a shortest path tree can be obtained,
which contains |L| first level vertices. Fig. 4(d) and (c) show the shortest path tree of
G(S, L, E) and the clustering of the network. Each first level vertex represents a line
segment in the moving path. All child vertices of the first level vertex li in G represent
a cluster of sensors corresponding to line segment li in the network.

SenCar: An Energy Efficient Data Gathering Mechanism 507

3.4 Finding the Moving Path: Divide and Conquer

By combining the above algorithms of load balancing, finding turning points and clus-
tering, the moving path planning algorithm can be described as follows: organizing the
network into a cluster, determining the turning point from a set of possible locations
of turning points, revising the path by adding the new turning point, and then dividing
each cluster into two clusters. For each cluster, run the above algorithm recursively. Af-
ter running k rounds of the moving path planning algorithm,

∑k
i=1 2(i−1) turning points

are obtained. Fig. 2 gives an example of the moving path planning algorithm. Fig. 2(a)-
(d) show the moving paths and network flows of the initial, first, second and fourth
round, respectively. We can observe that node 1, 2 and 3 are bottleneck nodes in Fig.
2(a), (b) and (c), which need to relay packets to SenCar from 6, 5 and 2 child nodes, re-
spectively. These bottleneck nodes consume energy much faster than their child nodes.
In Fig. 2(d), SenCar traverses through the transmission range of every node. Thus, each
node can send data to SenCar directly without relaying from other nodes. The moving
path after round 4 increases the lifetime seven times compared to the initial moving
path.

1

2

3

(b)(a)

(c) (d)

Cluster 1
Cluster 2

 Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 1
Sensor

Moving path

Fig. 5. SenCar moves from A to B and collects data from nearby sensors (a) Initial moving path is
a straight line. (b) Moving path contains 1 turning point after round 1. (c) Moving path contains
3 turning points after round 2. (d) Moving path contains 15 turning points after round 4.

In the moving path planning algorithm, we can observe that adding turning points
into the moving path will increase the total moving distance of SenCar, according to the
triangle inequality rule. However, in practice, the total moving distance or the length
of each tour may be restricted by a lot of factors. First, the length of each tour may be
determined by the buffer size and data collecting rate of sensors. Sensing data must be
gathered by SenCar before the buffer overflows. If all sensors have the same memory

508 M. Ma and Y. Yang

Table 1. Moving Path Planning Algorithm

Moving Path Planning Algorithm
;

flag ;
while (flag)

Divide the network into clusters;
for to do

Find the best turning point in cluster from all possible locations of turning points;
Add the best turning point into the moving path;
if the total moving distance/time cannot satisfy the constraints after the new
turning point is added

flag ;
Remove the new turning point from the path;

end if
end for

;
end while

size mem and data rate rate, the maximum length of each tour must be less than mem
rate .

Second, the maximum moving distance of SenCar without recharging may be limited by
its battery capacity. Third, for some delay-sensitive applications, sensing data must be
uploaded to the data processing center within limited time after being collected from the
environment. Thus, in many applications, the recursive moving path planning algorithm
may have to terminate before the distance or time bound is reached.

By incorporating these constraints into the algorithm, we summarize the moving path
planning algorithm in Table 1.

We now analyze the time complexity of this algorithm. Let t denote the total number
of turning points in the moving path, when the algorithm terminates. Suppose that the
sensing field is divided into g grids. In order to determine a turning point, at most g pos-
sible locations of the turning point would be checked. As discussed earlier, it requires
O(Un2) time to obtain the maximum network lifetime for each possible location of the
turning point. Thus, the running time of moving path planning algorithm is O(tgUn2),
where U and n have the same definitions as that in Section 3.1. Finally, we would like to
point out that the moving path planning algorithm is executed offline by SenCar before
the first data gathering tour. After that, only when some nodes fail or the topology of
the network changes, SenCar needs to recalculate the new moving path adaptively.

3.5 Determining the Moving Circle of SenCar

In some applications, SenCar not only needs to traverse the sensing field, but also has to
return to the starting point and upload data to the static data processing center. For such
applications, moving paths become moving circles. Instead of a one-way straight line,
the initial circle becomes a round-trip tour, which consists of two overlapped paths with
the same shape but in opposite directions. The initial circle origins from the starting

SenCar: An Energy Efficient Data Gathering Mechanism 509

point, traverses the network, turns around and then moves back to the starting point.
Both one-way paths of the initial circle pass through the network and divide the net-
work into two parts. Sensors on each side of overlapped paths form a cluster. Each
one-way path corresponds to one cluster and can be considered as the initial path of
its corresponding cluster. Then, the moving path planning algorithm can be executed
recursively in each cluster. Finally, two separate moving paths form a moving circle.

3.6 Avoiding Obstacles in the Sensing Field

We have discussed how to plan the moving path and circle of SenCar in an open sens-
ing field. However, in most real-world applications, the working areas may be partially
bounded, or have some irregular-shaped obstacles located within the sensing area. In
order to make the moving path planning algorithm feasible in these cases, SenCar has
to be able to avoid obstacles. Here, we assume that the complete map of the sensing
field has been obtained before SenCar begins to collect data, which should include the
location and shape information of obstacles in the sensing field. Then it is not difficult
to adjust the basic moving path planning algorithm in Table 1 to avoid obstacles. For
each candidate location of a turning point, SenCar will check if the line segment from
the last turning point to it and the line segment from it to the next turning point are
blocked by obstacles. If so, the candidate location is not eligible to be the turning point.
Fig. 6 shows an example on how to check the eligibility of each possible location of
the turning point. A new path from point A to B will be chosen from A → 1 → B
or A → 2 → B. Since the straight lines between A and 2, and between 2 and A are
blocked by obstacles, 2 is not eligible to be a tuning point. The new path from A to B
can only go through point 1.

Obstacles 1

2

A B

Turning points
Possible locations of turning points

Fig. 6. Planning the moving path in the sensing field with obstacles. The line segments from A to
2 and from 2 to B are blocked by obstacles. Thus, 2 cannot be a turning point, while 1 is eligible
to be a turning point.

4 Simulation Results

We have conducted extensive simulations to validate the algorithms we propose. In the
simulation, we assume that a bunch of sensor nodes are densely deployed in the sensing
field. Two-ray propagation model is used to describe the feature of the physical layer.

510 M. Ma and Y. Yang

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Entrance

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

(a) (b)

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

(c) (d)

Fig. 7. SenCar starts the data gathering circle from the entrance of the building, collects data from
sensors and returns to the entrance. (a) Initial layout of the network. (b) Layout and moving circle
after Round 2. (c) Layout and moving circle after Round 4. (d) Layout and moving circle after
Round 8.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of Rounds

R
el

at
iv

e
N

et
w

or
k

Li
fe

tim
e

Network Lifetime

SenCar vs Static Observer
SenCar vs Mobile Observer (Straight Line)

Fig. 8. The relative network lifetime of Scheme 3 compared to Scheme 1 and Scheme 2

With the maximum transmission power 0.858mw, each node can communicate with
other nodes as far as 40m away. The radio bandwidth is 200kbps. CBR traffic on the
top of UDP is generated to measure the throughput. Each packet has a fixed size of 80
bytes, including header and payload. Let the grid length in the moving path planning

SenCar: An Energy Efficient Data Gathering Mechanism 511

algorithm be 10m. Within each cluster, multi-hop polling protocol [14] is used as the
inner-cluster protocol to avoid packets collision at the MAC layer. We evaluated the
moving planning algorithm for both connected networks and disconnected networks.

4.1 Finding the Moving Circle in an Area with Obstacles

In this scenario, suppose that 800 sensors are densely deployed into a contaminated
chemistry factory building to monitor the density of leaked chemicals. The map of the
building and the initial layout of a bunch of sensors are shown in Fig. 7(a). The building
consists of six 200m×200m large rooms, which are on both sides of a 1000m×100m
aisle. The entire building is bounded by brick walls. SenCar has to move within the
building. SenCar enters the building from the entrance, which is at the coordinates
(0m, 250m), collects data from all sensors, and returns to the entrance after a tour. We
assume that the location information, connection patterns of sensors and the map of the
building have been obtained during the deployment phase. Based on this information,
SenCar calculates routes round by round by using the moving circle planning algorithm.
As shown in Fig. 7, the initial moving circle consists two overlapped, straight-line mov-
ing paths, (0m, 250m) → (1000m, 250m) and (1000m, 250m) → (0m, 250m). Fig.
7(b), (c) and (d) show the moving circle after rounds 2, 4 and 8, respectively. From the
figures, we can observe that, first, SenCar enters every room without hitting the walls of
the building; second, as the number of rounds increases, SenCar moves zigzag around
the building to get closer to the nodes. We next show that the movement of SenCar can
balance the traffic load and prolong the network lifetime.

4.2 Network Lifetime

We now compare the network lifetime of the following three data gathering schemes:
Scheme 1: A static observer placed in the center of the network (at point (500m, 250m));
Scheme 2: A mobile observer which can only move back and forth through thestraight line
between (0m, 250m) and (1000m, 250m); Scheme 3: SenCar which can move through
a well-planned circle that starts and ends at point (0m, 250m). For the network only con-
taining static observer, we measured the optimal network lifetime by using the load bal-
ancing algorithm in [14]. We also evaluated the lifetime of the network, in which a mobile
observer moves through straight lines. The optimal lifetime of the first two schemes is
used as the performance reference for comparison purpose. The relative network life-
times of Scheme 3 compared to Scheme 1 and Scheme 2 are plotted in Fig. 8. From Fig.
8, we observe that the relative network lifetime ratios of SenCar compared to Scheme 1
and Scheme 2 keep increasing from rounds 1 to 10, and reach 29.8 and 4.5 at round 10,
respectively. From this experiment, we can see that a mobile observer can prolong the
network lifetime significantly compared to a static observer. Moreover, a well-planned
moving path performs much better than a fixed straight line path for a mobile observer.

5 Conclusions

In this paper, we have proposed a new data collecting mechanism by introducing a mo-
bile data observer, SenCar, to sensor networks. SenCar works like a mobile base station,

512 M. Ma and Y. Yang

starts the data gathering tour from the outside observer, traverses the entire sensor net-
work, collects the data from nearby sensors, and then returns to the outside observer.
We have showed that the moving path of SenCar can affect the network lifetime sig-
nificantly. We presented a heuristic algorithm for planning the moving path/circle of
SenCar and balancing traffic load in the network. By adopting a load balancing al-
gorithm which finds the turning points and clusters the network recursively, network
lifetime can be prolonged significantly. In addition, SenCar can avoid obstacles while
moving. Our simulation results show that the proposed data gathering mechanism can
prolong the network lifetime about 30 times compared to a network which has only a
static observer, and about 4 times compared to a network whose mobile observer can
only move along straight lines.

References

1. S. Chessa and P. Santi, “Crash faults identification in wireless sensor networks,”
Computer Communications, vol. 25, no. 14, pp. 1273-1282, 2002.

2. L. Schwiebert, S.K. S. Gupta and J. Weinmann, “Research challenges in wireless
networks of biomedical sensors,” ACM MobiCom 2001.

3. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh and D. Rubenstein, “Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences
with zebranet,” in Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), 2002.

4. T. Small and Z. Haas, “The shared wireless infostation model - a new ad hoc net-
working paradigm (or where there is a whale, there is a way),” ACM MobiHoc 2003.

5. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin and P. Corke, “Data collection, storage,
and retrieval with an underwater sensor network,” Proc. of ACM Sensys, 2005.

6. G. Asada, T. Dong, F. Lin, G. Pottie, W. Kaiser and H. Marcy, “Wireless integrated
network sensors: low power systems on a chip,” European Solid State Circuits Con-
ference, 1998.

7. The Ultra Low Power Wireless Sensor Project,
http://www-mtl.mit.edu/ jimg/project top.html, 2004.

8. A Chakrabarty, A Sabharwal and B Aazhang, “Using predictable observer mobility
for power efficient design of a sensor network,” Second International Workshop on
Information Processing in Sensor Networks (IPSN), April 2003.

9. A. Pentland, R. Fletcher and A. Hasson, “Daknet: rethinking connectivity in devel-
oping nations,” IEEE Computer, vol. 37, no. 1, pp. 78-83, January 2004.

10. D. Jea, A.A. Somasundara and M.B. Srivastava, “Multiple controlled mobile ele-
ments (data mules) for data collection in Sensor Networks,” 2005 IEEE/ACM In-
ternational Conference on Distributed Computing in Sensor Systems (DCOSS ’05),
June 2005.

11. A.A. Somasundara, A. Ramamoorthy, M.B. Srivastava, “Mobile element schedul-
ing for efficient data collection in wireless sensor networks with dynamic dead-
lines,” IEEE Real Time Systems Symposium (RTSS), December 2004.

12. J.H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc net-
works,” IEEE INFOCOM 2000.

SenCar: An Energy Efficient Data Gathering Mechanism 513

13. A. Bogdanov, E. Maneva and S. Riesenfeld, “Power-aware base station positioning
for sensor networks,” IEEE INFOCOM 2004..

14. Z. Zhang, M. Ma and Y. Yang, “Energy efficient multi-hop polling in clusters of
two-layered heterogeneous sensor networks,” 19th IEEE International Parallel and
Distributed Processing Symposium, (IPDPS ’05), Denver, 2005.

15. C. Guo, L.C. Zhong and J.M. Rabaey, “Low power distributed MAC for ad hoc
sensor radio networks,” IEEE GLOBECOM 2001

16. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, 1993.

17. E.D. Kaplan, ed., Understanding GPS – Principles and Applications, Artech
House, 1996.

18. S. Capkun, M. Hamdi and J.P. Hubaux, “GPS-free positioning in mobile ad-hoc
networks,” Hawaii Int. Conf. on System Sciences, Jan. 2001.

19. S.S. Skiena, Algorithm Design Manual, Springer-Verlag, pp. 319-322, 1997.

A Distributed Linear Least Squares Method
for Precise Localization with Low Complexity

in Wireless Sensor Networks

Frank Reichenbach1, Alexander Born2, Dirk Timmermann1, and Ralf Bill2

1 University of Rostock, Germany
Institute of Applied Microelectronics and Computer Engineering

{frank.reichenbach, dirk.timmermann}@uni-rostock.de
2 University of Rostock, Germany

Institute for Geodesy and Geoinformatics
{alexander.born, ralf.bill}@uni-rostock.de

Abstract. Localizing sensor nodes is essential due to their random
distribution after deployment. To reach a long network lifetime, which
strongly depends on the limited energy resources of every node, applied
algorithms must be developed with an awareness of computation and
communication cost. In this paper we present a new localization method,
which places a minimum computational requirement on the nodes but
achieves very low localization errors of less than 1%. To achieve this,
we split the complex least squares method into a less central precal-
culation and a simple, distributed subcalculation. This allows precalcu-
lating the complex part on high-performance nodes, e.g. base stations.
Next, sensor nodes estimate their own positions by simple subcalcula-
tion, which does not exhaust the limited resources. We analyzed our
method with three commonly used numerical techniques - normal equa-
tions, qr-factorization, and singular-value decomposition. Simulation re-
sults showed that we reduced the complexity on every node by more
than 47% for normal equations. In addition, the proposed algorithm is
robust with respect to high input errors and has low communication and
memory requirements.

1 Introduction

The increasing miniaturization in the semiconductor field is leading to the evo-
lution of very small and low-cost sensors [1]. Due to their small size they are
strongly limited with respect to processor capacity, memory size and energy re-
sources. Several thousands of such sensor nodes get into wireless contact with
each other and form large ad hoc sensor networks. A wireless sensor network
(WSN) will be placed around a field of interest or within an object. The sensor
nodes are able to monitor different environmental parameters and to transmit
them to a beacon or an infrastructure node. WSN enable new applications such
as timely detection of wood fire or monitoring of artificial dikes.

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 514–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Distributed Linear Least Squares Method for Precise Localization 515

The resulting data are only meaningful when combined with the geographical
position of the sensor. Possible positioning technologies are the Global Posi-
tioning System (GPS) or the Global System for Mobile Communication (GSM)
[2],[3]. These systems are however, due to the size of the equipment, the high
prices and the high energy requirements, unsuitable for miniaturized sensor
nodes and could only be used for a small number of nodes [4].

In this paper we present a new approach to energy-saving determination of
unknown coordinates with a high precision. Using this method, the calculations
are split between the resource-limited sensor nodes and the high-performance
base station.

This paper is structured as follows: In Section 2 we give a basic overview
of the methods for positioning in wireless sensor networks. In Section 3 we de-
scribe the position estimation based on relationships to known points. Then, in
Section 4, we examine the complexity of three classical solution techniques in
order to compare them with our new method. Next, we present in Section 5 our
new approach to split the least squares method with the aim to minimize the
load on the sensor nodes. Furthermore, the new method is analyzed with respect
to complexity, memory requirement and communication effort. After discussing
the simulation results in Section 5, we finally conclude the paper with Section 6.

2 Related Work

For the above-mentioned reasons, existing positioning techniques (e.g. GPS) can-
not be integrated on all sensor nodes. The number of nodes with known position
has to be limited. These nodes are referred to here as beacons, with the remain-
ing nodes classed as sensor nodes. For the positioning of the sensor nodes we
distinguish between approximate and exact methods.

Approximative Localization. Many approximate approaches for the determina-
tion of sensor nodes exist in literature. These algorithms are resource-efficient
but also result in higher positioning errors. Examples of such approaches are the
hybrid methods [5], the Coarse Grained Localization [6], by using local coordi-
nate systems [7], the Approximate Point in Triangulation-algorithm (APIT) [8],
and the Weighted Centroid Localization (WCL) [9].

Exact Localization. In contrast to approximation methods, exact methods use
the known beacon-positions and the distances to the sensor nodes in order to
calculate their coordinates through the solution of non-linear equations. Using
a minimum of three beacons (in two dimensions), the coordinates of the sen-
sor nodes may be determined using intersection. The use of more than three
beacons gives more information in the system and allows the refinement of
the position and the detection and removal of outlying observations. The least
squares method (LSM) is used for the solution of the simultaneous equations. The
LSM produces accurate results, however it is complex and resource-intensive and
therefore not feasible on resource-limited sensor nodes. Savvides et al. described
methods to overcome these problems in [10]. Kwon et al. presented a distributed

516 F. Reichenbach et al.

B1(x,y)

d31

r2

r3

sensor node

beacon

base station

P(x,y) = unknown point

B(x,y) = beacon

dij = distances
between beacons

rj = distances between
sensor node and beacon

B2(x,y)

B3(x,y)

B4(x,y)

B5(x,y)

r4

r5

r1

P(x,y)

d21

d41 d51

Fig. 1. Sensor network with one unknown point and beacons as reference points. Here
beacon one was chosen as linearization tool.

solution using least squares whereby errors in acoustic measurements can be
reduced [11]. Ahmed et al. published a new approach to combine the advan-
tages of absolute and relative localization methods [12]. Moreover, Karalar et
al. developed a low-energy system for positioning using least squares which may
be integrated on individual sensor nodes [13]. A general overview of distributed
positioning systems is given by Langendoen and Reijersin [14].

We demand exact localization methods that work on tiny sensor nodes with
high limited energy resources. To achieve that, we transfer the complex calcula-
tions such as matrix multiplication, matrix inversion, and eigenvalue determina-
tion to the base station that can be e.g. a powerful desktop computer or a more
efficient node in the network. Consequently, only simple calculations have to be
executed on the sensor nodes. Additionally, we reduce the communication and
memory requirements by optimizations of the proposed algorithm.

3 Background: Linearization and Least Squares Method

Estimating the position of an unknown point P (x, y) requires in two-dimensions
at least three known points (see Figure 1). With m known coordinates B(xi, yi)
and its distances ri to them we obtain:

(x − xi)
2 + (y − yi)

2 = r2
i (i = 1, 2, . . . , m). (1)

This system of equations must be linearized with either Taylor series [15] or
a linearization tool [16]. Although the linearization tool is not as exact as the
Taylor series, it requires no mathematical differentiation and it is suitable for a
distributed implementation (discussed later in Section 5). Thus, we use the j’th
equation of (1) as the linearization tool. By adding and subtracting xj and yj

to all other equations this leads to:

(x − xj + xj − xi)
2 + (y − yj + yj − yi)

2 = r2
i (i = 1, 2, . . . , j − 1, j + 1, . . . , m).

(2)

A Distributed Linear Least Squares Method for Precise Localization 517

With the distance rj (ri) that is the distance between the unknown point and
the j’th (i’th) beacon and the distance dij that is the distance between beacon
Bi and Bj this leads, after resolving and simplifying, to:

(x − xj)(xi − xj) + (y − yj)(yi − yj) =
1
2
[
r2
j − r2

i + d2
ij

]
= bij . (3)

Because it is not important which equation we use as a linearization tool, j = 1
is sufficient. This is equal to choosing the first beacon and if i = 2, 3, . . . , m
this leads to a linear system of equations with m − 1 equations and n = 2
unknowns.

(x − x1)(x2 − x1) + (y − y1)(y2 − y1) = 1
2

[
r2
1 − r2

2 + d2
21
]

= b21

(x − x1)(x3 − x1) + (y − y1)(y3 − y1) = 1
2

[
r2
1 − r2

3 + d2
31
]

= b31
...

(x − x1)(xm − x1) + (y − y1)(ym − y1) = 1
2

[
r2
1 − r2

m + d2
m1

]
= bm1

(4)

This system of equations can be written in the matrix form:

Ax = b (5)

with:

A =

⎛⎜⎜⎜⎝
x2 − x1 y2 − y1
x3 − x1 y3 − y1

...
...

xm − x1 ym − y1

⎞⎟⎟⎟⎠ ,x =
(

x − x1
y − y1

)
,b =

⎛⎜⎜⎜⎝
b21
b31
...

bm1

⎞⎟⎟⎟⎠ . (6)

This is the basic form that now has to be solved using the linear least squares
method.

3.1 Solving the Linear Least Squares Problem

Due to the fact that overdetermined systems of equations with m >> n have
not exact one solution for Ax = b, we have to apply the L2-norm [17]. This is
also called the Euclidean Norm, which minimizes the sum of the squares:

M inimize
x ∈ *n ||Ax − b||2. (7)

To summarize (see Figure 2), linear systems of equations can be solved it-
eratively using Splitting techniques or directly with the normal equations or
orthogonal factorization. Existing techniques are numerous but often the dif-
ferences between them are small. For this reason, we focus our studies on three
popular methods - normal equations, qr-factorization, and singular-value decom-
position. For all others we recommend [18].

518 F. Reichenbach et al.

Solving Least Squares

direct
Iterative

(Splitting)

Normal Equations QR-FactorizationJacobiRichardsonGauss-Seidel
Singular-Value-
Decomposition

Fig. 2. Classification of common methods to solve a linear system of equations

Normal Equations. A trivial solution of the least squares problem is to re-
convert after x. In this case, the unique solution of Ax ≈ b is given by:

||Ax − b||2 → AT Ax = AT b. (8)

Solving normal equations is a good choice if the linear system has many more
equations than unknowns, i.e. m >> n, because after the multiplication AT A
the result is only a quadratic [n × n]-matrix. That decreases the following com-
putation and makes it easy to implement in software. However, the numerical
difficulties that can occur sometimes determine a completely wrong position,
which leads to orthogonal techniques.

QR-Factorization. Orthogonal matrices transform vectors in different ways
while they keep the length of the vector. Moreover, orthogonal matrices are
invariant against the L2-norm, i.e. errors are not increased.

The qr-factorization transforms overdetermined linear systems of equations of
the form Ax ≈ b in a triangular system with the same solution, because it is:

‖Ax − b‖2 → ||Q
(

R1
0

)
x − b||2 = ||

(
R1
0

)
x − QTb||2, (9)

where Q is an orthogonal matrix (meaning that QT Q = I) and R1 is an upper
triangular matrix. This factorization is a standard method in numerics, is robust
and stable to execute. In addition, theprocessing of rankdefectmatrices ispossible.

Singular-Value Decomposition. A second method that we want to explain is
the singular-value decomposition. If A has full rank and is a [m×n]-matrix with
m > n, then we can transform Ax ≈ b in a diagonal system with the solution:

||Ax − b||2 → ||U
(

S1

0

)
V T x − b||2 = ||

(
S1

0

)
V T x − UT b||2 = ||

(
S1

0

)
y − UT b||2,

(10)

where U is an orthogonal [m×m]-matrix, V is an orthogonal [n×n]-matrix and
S is a diagonal matrix. The original algorithm has been implemented by Golub
and Reinsch in [19]. This algorithm is also robust and stable to compute, but
requires high computation effort due to root and eigenvalue operations.

A Distributed Linear Least Squares Method for Precise Localization 519

4 Analysis: Complexity of the Methods

In the following, we will analyze the complexity of all three introduced methods.
Although the literature offers numerous specifications, later we will reduce spe-
cific parts of the calculation. In order to mathematically define the complexity,
we count the number of floating point operations (flops), which is commonly
used in literature. The required number of computation cycles strongly depends
on the hardware. Therefore, we count for every operation one flop whether it
is an addition, subtraction, multiplication or division1. At this stage, we do not
consider copying-operations in the memory, because this operation depends on
the individual implementation of the algorithm.

As before, we will confine the explanation to two dimensions. Due to the
linearization with a linearization tool the matrix A and the vector b have (m−1)-
rows. For a clearer understanding we calculate with k-rows and substitute at the
end: m = k + 1.

4.1 Complexity of the Normal Equations

The linear system of equations:

x =
(
AT A

)−1
AT 1

2
[r2

1 − r2 + d2] (11)

has to be solved. We divide the calculation into the following complexities.

1. Multiplying the [n × k]-matrix AT with the [k × n]-matrix A leads to n(n+1)
2

flops2.
2. The [n × n]-matrix, resulting from 1., must be inverted3 with a complexity

of n3.
3. The [n × n]-matrix, resulting from 2., must be multiplied with the [n × k]-

matrix AT , which costs 2n2k − nk flops. This leads to the precalculated
Matrix Ap.

4. The matrix Ap must be multiplied with the k-vector b. This step has a
complexity of 2kn − n flops.

5. The calculation of b needs 5k + 1 flops.

With k = m − 1 this leads to a total complexity of 15m − 5 for the least
squares method with m beacons and n = 2 unknowns.

4.2 Complexity of the QR-Factorization

Now, the complexity for the qr-factorization has to be studied. First the partial
matrices of Q have to be determined, which in our case for n = 2 are limited to
only two matrices; Q1 and Q2.
1 It should be noted that in the arithmetic unit of a processor a division is a more

complex operation than an addition. We will focus on theoretical analysis.
2 Some operations can be saved by multiplying a transposed matrix with itself.
3 The inversion of a matrix is very complex with n3 flops (see [20]).

520 F. Reichenbach et al.

1. The calculation of Q1 needs 5
2k2 + 9

2k − n + 5 flops.
2. The calculation of Q2 needs 5

2 (k − 1)2 + 9
2 (k − 1) − n + 5 flops, because we

do not need to consider the last line in the calculation.
3. The multiplication of Q1Q2A, where Q1 and Q2 have the size k × k, needs

2k3 + 3k2 − 2k flops.
4. The calculation of b needs 5k + 1 flops (see 4.1).
5. For the calculation of QT

1 b it has to be considered, that only the upper two
rows are needed for the multiplication. This leads to 8k − 4 flops.

6. The calculation of Rx ≈ QTb, by back substitution, requires exactly 4 flops.

Summarized, the complexity of the qr-factorization is 4m3 − 5m2 + 13m − 9
2

flops.

4.3 Complexity of the SV-Decomposition

The sv-decomposition is more complicated than the previously discussed proce-
dures, because a determination of eigenvalues is necessary, which has to be de-
termined using several methods. In principal, 9n3 +8n2k+4k2n flops are needed
for the computation of U, V and S referring to [20]. With n = 2 this leads to
8k2 + 24k + 48 flops. Additionally, x must be determined with S1y = UT

1 b and
x = V y. Finally, this leads to a complexity of 8m2 + 25m + 54 flops for the svd.

Now, after discussing the standard methods, we will explain the new approach
for distributing them in wireless sensor networks.

5 New Approach: Distributing Least Squares Problem

Linearizing non linear equations with a linearization tool has a significant ad-
vantage. All elements in matrix A are beacon positions B1(x, y)..Bm(x, y) only.
Moreover, vector b consist of distances between the unknown sensor node and all
beacons r1..rm and distances d1..dm between the first beacon and all others. Con-
sequently, we split the complex computation into two parts - a less complex and
a very simple part. First, we precalculate matrix A into a different form, which
strongly depends on the solution method and will be discussed later. Then, with
this precalculated form, a simple subcalculation starts. This splitting method
works in a similar fashion with all three solution methods.

So far, in sensor networks it is desired to execute the entire localization algo-
rithm on every node; completely distributed. With this assumption, the precal-
culation of a least squares method would be exactly the same on every sensor
node, because matrix A is the same for every sensor node in a static network.
This wastes limited resources and produces high redundancy.

Now, with our distributed approach, the high-performance base station exe-
cutes the complex precalculation and the resource-aware sensor nodes estimate
their own position with the simple subcalculation. In this subcalculation all
sensor nodes use the same precalculated information combined with their indi-
vidual measured distances to every beacon. This assumes that all beacons are
able to communicate with every sensor node directly. This is difficult to achieve

A Distributed Linear Least Squares Method for Precise Localization 521

in real environments, due to obstacles and limited transmission ranges, but can
be solved by multi-hopping techniques [21]. Thereby, beacons send packets over
neighboring nodes hop by hop to the destination node. The number of hops is
an indicator for a distance to the beacon. However, the focus in this paper is not
the distance determination, but the localization process. Before we describe the
methods in detail, we will postulate the entire algorithm.

Distributed Least Squares Algorithm

Step 0: Initialization Phase:
All beacons send their position B(x, y) to the base-
station.

Step 1: Complex Precalculation Phase (central):
Base station builds matrix A and vector dp.
Starting the complex precalculation (result strongly depends
on the solution method).

Step 2: Communication Phase (distributed):
Base station sends precalculated data and vector dp

to all sensor nodes.
Step 3: Simple Subcalculation Phase (distributed):

Sensor nodes determine the distance to every beacon r1..rm.
Sensor nodes receive the precalculated data and vector dp,
built vector b and estimate their own position Pest autonomously.

In the next section, we will adapt the algorithm to all three solution methods
and analyze the results in detail.

5.1 Reduced Complexity

In Section 4.1 we already analyzed the complexity of all three solution methods.
At this point it is important to know what we can save on the sensor nodes
without complex precalculations regarding only the remaining subcalculation.

Normal Equations. We assume the constellation of the network in Figure 3
with sensor nodes, beacons, and a base station. On bases of (11) the base station
precalculates Ap = (AT A)−1AT and dp = d2. The matrix A and vector dp are
sent to all sensor nodes. Together with the distances r to all beacons, which
every sensor node must determine itself, the subcalculation starts:

x = Ap
1
2
(r2

1 − r2 + dp) (12)

This computation requires 8m − 11 flops.

QR-Factorization. Here, the base station transmits the precalculated matrices
Q, R, and also vector dp. With this, every sensor node reduces computation to
the following:

522 F. Reichenbach et al.

sensor node

beacon

base station

x=(ATA)-1AT0.5(r1
2-r2+dp)

Fig. 3. Splitting the normal equations

1. Creating b needs 4k + 1 flops (We use the substitution k=(m-1) again.).
2. Multiplying y = QT

1 b, where QT
1 is a [2×k]-matrix and b is a k-vector needs

8k − 4 flops.
3. Solving Rx ≈ y by back-substitution finally requires 4 flops.

Summing up, the subcalculation requires a reduced complexity of 12m − 11.

SV-Decomposition. As the third method, the sensor nodes receive from the
base station the matrices U, S, V and dp and have to compute:

1. Creating b requires 4k + 1 flops.
2. Solving UT

1 b, where UT
1 is a [2×k]-matrix and b is a k-vector, results in the

vector z and requires 4k − 2 flops.
3. Then, y is calculated by back-substitution of S1y = z. Due to the two zero

elements in S1 this requires only 2 flops.
4. The last part of the calculation requires 6 flops, where x is determined by

x = V y.

Adding all together leads to a reduced complexity of 8m + 1 flops.
To compare all complexities Figure 4 was created. The complete solutions of

the least squares method require much more operations than the reduced meth-
ods. Especially qr-factorization and sv-decomposition would exhaust the sensor
nodes resources, because with only 50 beacons more than 104 floating point op-
erations are required. In contrast, the normal equations are less complex. Obvi-
ously, all reduced calculations decrease the complexity and make the localization
on resource aware sensor nodes feasible. However, a low communication is also
demanded, which we will analyze next.

5.2 Communication Effort

As already described, communicating between sensor nodes is critical and must
be minimized. Particularly, sending data over long distances stresses the en-
ergy capacity of sensor nodes. Communication between base station and bea-
cons is less critical and must be preferred if possible. Therefore, we classify

A Distributed Linear Least Squares Method for Precise Localization 523

5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105

106

Number of Beacons

C
om

pl
ex

ity

Complete Normal Equations
Reduced Normal Equations
Complete QR-Factorization
Reduced QR-Factorization
Complete SV-Decomposition
Reduced SV-Decomposition

Fig. 4. Complexity of all complete and
all reduced calculations in flops

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

Number of Beacons

C
om

m
un

ic
at

io
n

E
ffo

rt

Reduced Normal Equations
Reduced QR-Factorization
Complete Computation
Reduced SV-Decomposition

Fig. 5. Communication effort of all
reduced and the traditional method

communication in two phases. In an uncritical phase, all beacons send their
positions to the base station. This causes no energy loss on the sensor nodes.
Additionally, in a critical phase the base station sends precalculated information
to the sensor nodes that have, in theory, to receive only. Practically, transmit-
ting/sending is never lossless, due to errors in the transmission channel and
protocols that require acknowledge packets etc. Furthermore, the base station
cannot reach every sensor node in one hop, which demands multi-hopping over
some nodes.

Normal Equations. Here, we focus on a theoretical comparison of the algo-
rithms that is, for the moment, independent of protocol definitions and media
access operations. Hence, every sensor node must receive the precalculated ma-
trices and vector dp. The communication effort directly depends on the used
solution method.

At the normal equations the sensor node receives matrix Ap and vector dp,
with [n · (m−1)+(m−1)] elements. This results in receiving (3m−3) elements.

QR-Factorization. This requires transmitting QT
1 with [2 · (m − 1)] elements,

matrix R with only two elements and also dp. Summarized, (3m + 1) elements
must be send in the critical phase.

SV-Decomposition. By applying the sv-decomposition, (3m + 3) elements
must be transmitted, because S1 consists of two elements, UT

1 has [(m − 1) · 2]
elements, the quadratic matrix V consist of two elements and vector dp of (m-1)
elements.

We compared all communication efforts in Figure 5. The communication effort
of all reduced methods is relatively low, comparing to the traditional method
with much computation overhead4. The direct solution of the normal equations

4 “Complete Computation” stands for the classical method, where all beacons send
their positions directly to all sensor nodes. Thus, every sensor node must receive at
least two positions to determine its own position that results in 2m elements.

524 F. Reichenbach et al.

minimizes communication. As an example, with 50 beacons not more than 100
elements must be received.

5.3 Memory Considerations

Normal Case. The reduced calculations must be feasible on sensor nodes with
a very small memory, mostly not more than a few kilobyte RAM. In our case,
the memory consuming operation is always the multiplication of b with the
precalculated data. Without optimizations this would be for the three methods:

1. Ap · 1
2 · (r2

1 − r2 + dp)
2. QT

1 · 1
2 · (r2

1 − r2 + dp)
3. UT

1 · 1
2 · (r2

1 − r2 + dp)

In the worst case Ap, QT
1 , UT

1 , and r plus dp must be stored temporarily
in memory before the execution on the sensor node can start. In more detail,
[2 · (m − 1)] + (m − 1) + (m − 1) = (4m − 4) elements must be stored. On
common microcontrollers, that are presently integrated on sensor node plat-
forms, every element is stored in floating point representation as a 4 byte num-
ber. Accordingly, with m = 100 beacons, already 0.796 kb must be allocated,
for localization only. Normally, the localization task is part of the middleware
that has to execute many more tasks. Besides, temporary variables are needed
that increases the memory consumption. Given these facts, we studied the crit-
ical operations in more detail and will describe optimizations in the next
section.

Optimizations. In reality, input data for sensor nodes arrive in packets and
will be disassembled into a serial data stream. Due to problems in the trans-
mission channel (e.g. different paths or transmission errors) a sorted order of
the incoming packets cannot be guaranteed. The data can arrive in an unsorted
form and the calculation begins after receiving all data.

However, the reduced calculation has a further useful quality. Individual cal-
culations of Ap ·b can be executed after the arrival of only some elements without
collecting all data. Only one accumulator for the position Pest(x) and one for
the position Pest(y) of the sensor node is needed. If we define W = Ap, Q

T
1 , UT

1
independently from the specific method, the following multiplication will always
result:

(
w11 · · · w1(m−1)
w21 · · · w2(m−1)

)⎛⎜⎜⎜⎝
b1
b2
...

b(m−1)

⎞⎟⎟⎟⎠ =
(

w11 · b1 + . . . + w1(m−1) · b(m−1)
w21 · b1 + . . . + w1(m−1) · b(m−1)

)
.

With wij (i = 1..2, j = 1..m − 1) and bs (s = 1..m − 1) the following as-
sumptions can be made. If elements with j = s are available, an immediate
multiplication of wij · bs and a subsequent accumulation in Pest(x, y) is possible.
The index i distinguishes into which accumulator it must be written; Pest(x) at

A Distributed Linear Least Squares Method for Precise Localization 525

i = 1 or Pest(y) at i = 2. Finally, the optimized reduced calculation requires a
worst-case calculation time of (m − 1)/2 if the elements arrive in reverse order.

To avoid the case of unsorted data it is also possible to send the elements
wij , ds in appropriate tuples, e.g. w11, d1; w12, d2; . . . ; wij , ds. In best case, space
in memory has then to be reserved for only a few temporary variables and two
accumulators which reduces memory consumption to a minimum.

5.4 Example

The algorithm is intended for implementation and execution on a sensor plat-
form. Due to this, we have represented the results in Table 1. We assume m = 100
beacons and n = 2 for the second dimension5. Furthermore, we assume that a
floating point representation requires 4 byte of memory.

Table 1. Performance comparison with floating point numbers and 100 beacons. The
communication effort and the memory capacity in the table refer to the reduced methods.

Full Reduced Savings Communication Memory
Algorithm Complexity Complexity Effort Capacity

[flops] [flops] [%] [bytes] [bytes]
Normal Equation 1497 791 47.16 1188 ≈ 1588
QR-Factorization 3951302 1201 99.97 1204 ≈ 1588
SV-Decomposition 82556 803 99.03 1212 ≈ 1588

The direct calculation by normal equations requires minimal computation
whereas the calculation by the qr-factorization requires lowest data traffic. How-
ever, the normal equations are numerically instable and the sensitivity of the
linear equalization problem can deteriorate. Remarkable are the saving of the
calculation for the qr-factorization and the sv-decomposition, because the precal-
culation requires the largest expenditure. Summarized, this overall comparison
shows the potential advantages of the new distributed approach.

5.5 Noisy Observations

Estimating the position basically requires beacon positions and distances. Due
to various error influences, e.g. imprecise measuring of the signal of flight or
defective GPS-coordinates, the applied algorithm must be robust to input errors.
For this reason, we studied the behavior of the described methods in different
simulations concerning noisy distances r and noisy beacon positions B(x, y). To
realize this simulation, we substituted the exact value by a chosen random value
out of a Gaussian distribution rappr , Bappr ∼ N (μexact, σ

2). The exact value was
the arithmetic mean and the variance σ2 was a parameter. We always simulated
with 500 nodes, where 5% were beacons and the rest sensor nodes. We executed
5 It must be considered here to add x1 and y1 to the final coordinates due to the

linearization in (6).

526 F. Reichenbach et al.

10 20 30 40 50 60 70 80 90 1001
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-14

Repetitions

R
el

at
iv

e
Lo

ca
liz

at
io

n
E

rr
or

 [%
]

Least Squares arithmetic mean
Least Squares standard deviation
Least Squares standard deviation
QR-Factorization arithmetic mean
QR-Factorization standard deviation
QR-Factorization standard deviation
SV-Decomposition mean
SV-Decomposition standard deviation
SV-Decomposition standard deviation

Fig. 6. Localization error with exact input

10 20 30 40 50 60 70 80 90 1001
0

1

2

3

4

5

6

7

Variance

R
el

at
iv

e
Lo

ca
liz

at
io

n
E

rr
or

 [%
]

Fig. 7. Error with noisy distances

10 20 30 40 50 60 70 80 90 1001
0

2

4

6

8

10

12

14

R
el

at
iv

e
Lo

ca
liz

at
io

n
E

rr
or

 [%
]

Variance

Fig. 8. Error with noisy beacon positions

10 20 30 40 50 60 70 80 90 1001
0

5

10

15

R
el

at
iv

e
Lo

ca
liz

at
io

n
E

rr
or

 [%
]

Variance

Fig. 9. Error with complete noisy input

numerous series and averaged the results to avoid a strong influence of outliers.
We created a test field with the size 100 × 100 where all nodes were placed by
a uniform distribution. We determined in all simulations the averaged relative
localization error.

In a first simulation we compared the achievable precision of the three methods
that solves the least squares method. Figure 6 shows that with exact input the
error for all three reduced methods ranges only in an interval of 0.5 · 10−14.
Following simulations with noisy input showed the same differences, leading us
to continue simulating using only the normal equations.

Next, a simulation with noisy distances was executed (see Figure 7). An in-
creasing variance of the Gaussian distribution resulted in an increasing relative
localization error up to 6% at σ2 = 100. The standard deviation is relatively
small.

In more simulation series we studied the error for noisy beacon positions. This
simulation describes the behavior of the algorithm in a slightly dynamic network,
where the beacon positions can change after the precalculations are already

A Distributed Linear Least Squares Method for Precise Localization 527

executed and transmitted to the sensor nodes. The sensor nodes would determine
new distances to the beacons but combine them with wrong beacon coordinates.
Figure 8 shows the increasing error that rises over 8% at a variance of 100. The
standard deviation is also higher compared to the previous simulation. Defective
beacon positions influences the results strongly, but normally they are not the
main problem. This means that the algorithm is able to manage slight changes
in a dynamic network with an acceptable error.

In a last simulation we increased the variance for both, distances and beacon
positions. Figure 9 shows the result. Here, the highest error occurs, as it was
expected. However, these results show the robustness of the algorithm.

6 Conclusion

We have presented a new method for exact localization in resource-limited sensor
networks by distributing the least squares method. Usually the calculation of
this method is very complex with an increasing number of beacons. However,
the use of the linearization tool enables us to split the complex calculation into
a complex part, precalculated on the high-performance base station, and a very
simple subcalculation on every sensor node. With low communication traffic the
base station sends precalculated data to all sensor nodes. Sensor nodes must
only receive data and compute their own position autonomously.

Simulations show that a complexity reduction of 99% (for qr-factorization and
singular-value decomposition) and 47% (for normal equations), using 100 bea-
cons, is achievable without increasing the communication requirements. More-
over, we described optimizations where the algorithm starts executing as soon
as the first data arrive at the sensor node. This allowed high savings in the
required memory capacity with only a few kilobytes of memory considered. Cur-
rently, we are studying the algorithm in extensive network simulations. In future,
the implementation on a real sensor platform is planned.

Acknowledgment

This work was supported by the German Research Foundation under grant num-
ber TI254/15-1 and BI467/17-1 (keyword: Geosens). We appreciate comments
given by Edward Nash, which helped us to improve this paper.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38 (2002) 393–422

2. Bill, R., Cap, C., Kohfahl, M., Mund, T.: Indoor and outdoor positioning in mobile
environments a review and some investigations on wlan positioning. Geographic
Information Sciences 10 (2004) 91–98

3. Gibson, J.: The mobile communications handbook. CRC Press (1996)

528 F. Reichenbach et al.

4. Min, R., Bhardwaj, M., Cho, S., Sinha, A., Shih, E., Wang, A., Chandrakasan, A.:
Low-power wireless sensor networks. In: International Conference on VLSI Design.
(2001) 205–210

5. Savarese, C., Rabaey, J., Langendoen, K.: Robust positioning algorithms for dis-
tributed ad-hoc wireless sensor networks. In: USENIX Technical Annual Confer-
ence. (2002) 317–327

6. Bulusu, N.: Gps-less low cost outdoor localization for very small devices. IEEE
Personal Communications Magazine 7 (2000) 28–34

7. Capkun, S., Hamdi, M., Hubaux, J.P.: Gps-free positioning in mobile ad hoc
networks. Cluster Computing 5 (2002) 157–167

8. Tian, H., Chengdu, H., Brian, B.M., John, S.A., Tarek, A.: Range-free localization
schemes for large scale sensor networks. In: 9th annual international conference on
Mobile computing and networking. (2003) 81–95

9. Blumenthal, J., Reichenbach, F., Timmermann, D.: Precise positioning with a
low complexity algorithm in ad hoc wireless sensor networks. PIK - Praxis der
Informationsverarbeitung und Kommunikation 28 (2005) 80–85

10. Savvides, A., Han, C.C., Srivastava, M.B.: Dynamic fine grained localization in ad-
hoc networks of sensors. In: Seventh Annual ACM/IEEE International Conference
on Mobile Computing and Networking. (2001) 166–179

11. Kwon, Y., Mechitov, K., Sundresh, S., Kim, W., Agha, G.: Resilient localization for
sensor networks in outdoor environments. In: 25th IEEE International Conference
on Distributed Computing Systems. (2005) 643–652

12. Ahmed, A.A., Shi, H., Shang, Y.: Sharp: A new approach to relative localization
in wireless sensor networks. In: Second International Workshop on Wireless Ad
Hoc Networking. (2005) 892–898

13. Karalar, T.C., Yamashita, S., Sheets, M., Rabaey, J.: An integrated, low power
localization system for sensor networks. In: First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services. (2004) 24–30

14. Langendoen, K., Reijers, N.: Distributed localization in wireless sensor networks: A
quantitative comparison. Computer Networks (Elsevier), special issue on Wireless
Sensor Networks 43 (2003) 499–518

15. Niemeier, W.: Ausgleichsrechnung. de Gruyter (2002)
16. Murphy, W.S., Hereman, W.: Determination of a position in three dimensions

using trilateration and approximate distances. (1999)
17. Gramlich, G.: Numerische Mathematik mit Matlab - Eine Einführung für Natur-

wissenschaftler und Ingenieure. dpunkt.verlag (2000)
18. Lawson, C.L., Hanson, R.: Solving Least Squares Problems. Englewood Cliffs, NJ:

Prentice-Hall (1974)
19. Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Square So-

lutions, Linear Algebra, Volume II of Handbook for Automatic Computations.
Springer Verlag (1971)

20. Golub, G.H., Loan, C.F.V.: Matrix Computations. The Johns Hopkins University
Press (1996)

21. Niculescu, D., Nath, B.: Ad hoc positioning system (aps) using aoa. In: Proceedings
of the IEEE Annu. Joint Conf. IEEE Computer and Communications Societies.
(2003) 1734–1743

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 529 – 545, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Consistency-Based On-line Localization
in Sensor Networks

Jessica Feng, Lewis Girod, and Miodrag Potkonjak

4821 Boelter Hall, Los Angeles,
California 90034, USA

{jessicaf, miodrag}@cs.ucla.edu, girod@lecs.cs.ucla.edu

Abstract. We have developed a new on-line error modeling and optimization-
based localization approach for sensor networks in the presence of distance
measurement noise. The approach is solely based on the concept of consistency,
and is developed specifically for the case of on-line localization, which refers to
the situation when references are not available a priori. The localization
problem is formulated as the task of maximizing the consistency between
measurements and calculated distances. In addition, we also present a localized
localization algorithm where a specified communication cost or the location
accuracy is guaranteed while optimizing the other. We evaluated the approach
in (i) both GPS-based and GPS-less scenarios; (ii) 1-D, 2-D and 3-D spaces, on
sets of acoustic ranging-based distance measurements recorded by deployed
sensor networks. The experimental evaluation indicates that localization of only
a few centimeters is consistently achieved when the average and median
distance measurement errors are more than a meter, even when the nodes have
only a few distance measurements. The relative performance in terms of
location accuracy compares favorably with respect to several state-of-the-art
localization approaches. Finally, several insightful observations about the
required conditions for accurate location discovery are deduced by analyzing
the experimental results.

Keywords: Consistency, Location Discovery, Statistical Modeling.

1 Introduction

Sensor networks and pervasive computing systems form one of the fastest growing
computer and networking research frontiers. Once the nodes that form a network or
an infrastructure are deployed, invariably there is a need that each node discovers its
position. Global position system (GPS) can greatly facilitates this task. However, due
to obstacles such as trees and walls, the GPS system often does not lock to satellite
signals. At the same time, GPS systems are relatively expensive and consume a
significant amount of energy. Therefore, usually only a limited subset of nodes is
equipped with GPS; other nodes deduce their locations by measuring distances
between themselves. For this purpose, a variety of distance measurement technologies
have been employed, including signal strength attenuation techniques, ultra wide
band approaches, Doppler-assisted methods, carrier-phase-based measurements
and acoustic signal-based techniques. The technologies differ significantly in terms of

530 J. Feng, L. Girod, and M. Potkonjak

Fig. 1. Motivational example topology

Table 1. The distance measurements information

ID LOCATION REAL GAUSSIAN STAT 1 STAT 2
N1 (75, 195) 45.893 45.791 56.697 44.193
N2 (60, 135) 42.5 43.432 42.895 42.043
N3 (79, 110) 48.654 78.066 49.008 39.964
N4 (122.5, 180) 35.355 35.294 34.355 42.139
N5 (150, 85) 87.5 86.362 56.988 87.479
N6 (75, 159.4) 22.926 53.285 23.001 27.077
N7 (125, 187.5) 42.573 42.938 43.837 41.992
N8 (57.5, 165.4) 41.337 42.831 41.111 49.604
N9 (70, 85) 75.208 71.427 87.449 74.574

Table 2. Solutions resulted using different error models (columns) based on different sets of
measurements (rows)

GAUSSIAN STAT 1 STAT 2 CONSISTENCY
GAUSSIAN 0.0208 7.993 4.258 0.0424

STAT 1 8.179 0.0117 5.275 0.0315
STAT 2 7.658 6.042 0.0303 0.0396

maximum and minimum measuring range, resilience toward obstacles, power
consumption, cost of deployment and power budget. Nevertheless they share a
common denominator: distance measurements are prone to both small fluctuation and
occasional large errors [1].

The localization (location discovery) problem can be defined in the following way.
A total of N nodes, K of which (K<<N) have exact information about their positions.
The measured distances, which are subject to errors, between M pairs of nodes are
also available. The goal is to conclude the location (xi, yi) of each node i in such a way
that L(xri–xi, yri–yi) is minimized, where (xri, yri) is the actual location of i. Usually the
targeted error norm L is L1, L2, or L .

It has been proven that location discovery problem is NP-complete [2]. It is also
easy to see that the location discovery problem belongs to the class of nonlinear
programs. A great variety of centralized algorithms (executed at a single place with
the availability of the complete information about all measurements) and localized
algorithms (executed by multiple nodes simultaneously and/or consecutively where

 Consistency-Based On-line Localization in Sensor Networks 531

each node has limited information provided by its neighbors) have been proposed.
They range from iterative linearization and convex programming to conjugate
direction-based and multiresolution search. [1][3] provide comprehensive surveys of
state-of-the-art positioning designs and signal processing techniques. However, the
effectiveness of these algorithms is constrained by the accuracy of the error model.
There is a wide spectrum of available error models ranging from closed form
parametric models to sophisticated kernel estimation-based non-parametric models.
Nevertheless, none of them is a-priori applicable in new environments. The small
example shown in Fig. 1 demonstrates the importance of the correct error model.

Consider 10 nodes N1,...,N10. We assume that the locations of the first nine nodes
are available and error free. The topology of these 10 nodes is taken from a deployed
network. The distances between the nodes are estimated based on the time-of-arrival
of the acoustic signals. The traveling time of the acoustic signals is multiplied with
the speed of the sound to estimate the distances between nodes – the measured
distances [4][5]. Table 1 contains the information about the locations of the nine
nodes (the second column); the real/correct distances obtained using the distance
formula given the real locations of the nodes (the third column); the measured
positions on two different days (the fifth and the sixth columns - STAT1 and STAT2).
All measurements are in meters. In addition, the forth column shows the simulated
distances generated under the widely used assumption of Gaussian noise model [6][7]
on top of the real distances.

The goal is to locate N10 using the measured/simulated distances. We obtain the
solution using the exhaustive search and following the maximum likelihood principle.
Table 2 shows the results in term of location error, i.e. (xr10–x10, yr10–y10). The three
rows indicate which set of measured/simulated distance measurements is used to
derive N10's location (i.e. which type of error is in the distance measurements), and the
four columns indicate the type of errors targeted by the maximum likelihood (i.e. the
error model used as the optimization target). We see that when the correct type of
errors is targeted, low location discrepancy is achieved, indicated by the bold italic
numbers in Table 2. The average location error is between 1 and 3.3cm although
some individual measurements have errors of more than 40m. However, when the
errors in measurements and the optimization targeted error model do not match, the
location error increases significantly. For example, when the Gaussian error model is
assumed for the minimization of errors on the actually collected data - STAT1, the
location error is more than 8m (8.179m). Even when the model obtained on one day is
used as the optimization objective on another day, the resultant location error is still
above 5m (6.042m and 5.275m). Therefore, we conclude that unless an accurate error
model with respect to the measurements is targeted, accurate location discovery is not
possible.

However, a simple condition of pair-wise consistency easily resolves this problem,
at least for the example shown in Fig. 1. We say that a pair of measurements is pair-
wise consistent if the longer measurement corresponds to the longer real distance. The
formal definition of consistency is stated in Section 4. The last column in Table 2
shows the location errors yield based on the on-line localization. Regardless of what
type of errors is in the distance measurements, the location error of N10 is always
around 3cm. The final observation is that maximizing the percentage of consistent
measurements can be easily mapped to nonlinear function minimization problem and
solved using standard software [8].

532 J. Feng, L. Girod, and M. Potkonjak

We will try to demonstrate and statistically prove in the rest of the paper that the
effectiveness of the pair-wise consistency modeling technique is not restricted to
small instances of the problem. Our main technical goal is to demonstrate the
effectiveness of the consistency-based formulation for location discovery in sensor
networks where the location of each node is determined using information about the
distances between limited number of communicating nodes (not limited to only
beacons). We define the calculated distance between two nodes as the distance
calculated by following the distance formula based on the locations proposed by the
localization algorithm. We start by presenting the data acquisition process and
restating the NP-completeness of the localization problem in Section 3. In Section 4,
we demonstrate how to construct a monotonic continuous error model on-line when
no golden standard (real distances) is available. The on-line model is based on the
consistency between the measured and the calculated distances. The developed model
is evaluated in two ways: i) using the standard statistical learn-and-test method; ii)
evaluating the location accuracy when the models are served as the optimization
objective..

2 Related Work

Wireless ad-hoc sensor networks (WASNs) are distributed embedded systems where
each node combines sensing, computing, communication and storage capabilities.
One of the fundamental tasks in WASNs is location discovery, which refers to the
task where all the unknown-location nodes seek to determine the relative and/or
absolute positions using the measured distances between different nodes. Such a
distance can be measured by approaches include acoustic ranging methods [4][9][10],
RSSI and RF proximity estimation [5][6], as well as algorithmic techniques [4][7]. In
this paper, the set of distance measures we use as the demonstrative example was
collected based on the line-of-sight acoustic signals [9][10].

Location discovery algorithms can be either centralized or localized [11].
Centralized algorithms assume that all the measured distances are forwarded to the
center node, which then computes the location of each node using such information.
Localized algorithms do not require the existence of the center node and allows each
node to compute its position based on its local information by atomic multilateration,
a method to estimate the location of a node if it is within the communication range of
at least three beacons [12]. Iterative multilateration algorithm uses atomic
multilateration as the primitive and treats an unknown-location node as a beacon once
its location is resolved [13].

There are in general two different scenarios the location discovery problem is
solved under. One of which assumes the measured distances between communicating
nodes are available. Some of the recent work which are based on this assumption
include [14][15][16]. Niculescu and Nath [16] propose a localization approach which
is based on the basic idea of distance vector routing using only a fraction of beacons,
with the assumption that each sensor node has some combination of ability to measure
range, angle of arrival (AOF), orientation. They propose a lower bound for
positioning error for a range/angle free algorithm, and examine the error
characteristics of various classes of multihop ad-hoc positioning systems (APS)

 Consistency-Based On-line Localization in Sensor Networks 533

algorithms. The local-
ization method prop-osed
by Galstyan et al. [17] is
distributed and on-line,
which means the
localization process is
conducted simultaneously
with an application task.
Sensor nodes use their

geometric constraints induced by radio connectivity and sensing to decrease the
uncertainty of positions. The performance of the algorithm is compared with the
centralized (convex) programming. In addition to static networks, Hu and Evens [15]
introduce the sequential Monte Carlo localization method for mobile networks, which
exploit mobility to improve the accuracy and precision of positioning. A
comprehensive study of the fundamental limitations and location accuracy bound for
mobile positioning is presented in [18]. Sivavakeesar and Pavlou [19] propose an
approach for hierarchically organized networks. By employing the dominating-set to
perform periodic location updates on behalf of other nodes, the approach leads to less
control traffic.

The second scenario which location discovery is solved under does not put any
requirement on the availability of measured distances [20][21][22][23] [24]. He et
al. [20] propose a range-free localization approach which performs the best when an
irregular radio pattern and random node placement are considered. Yis et al. in [21]
presents a localization method that uses the connectivity information (i.e. who is
within the communication ranges of whom) to derive the positions of the unknown
sensor nodes. Bruck et al. [22] study the localization problem in a 2-d and beacon-
free environment, relying only on the local angle measurements. The approach
determines a planar spanner of a unit disk graph, which can be used to generate a
set of virtual coordinates. Finally, Viana et al. [23] argues that traditional
localization schemes depend too much on the spatial distribution, which can lead to
limitations that go against the principles of self-organization. The authors propose a
location service for self-organizing networks that defines a logical multidimensional
space, which is a strict mathematical representation of the network geographic
space.

3 Preliminaries

In this section, we summarize all the necessary preliminaries for the derivation of
pair-wise consistency-based on-line error models. We explain how the distance
measurements were collected and discuss the relationship between the communication
range verses the distance ranging range. Finally, we state the formulation for the
localization problem as an optimization instance, especially as a nonlinear function
minimization instance.

 (a) (b)

Fig. 2(a). A SH4 node. 2(b). An example of the deployment
topology.

534 J. Feng, L. Girod, and M. Potkonjak

3.1 The Distance Measurements

The demonstrative example and all of our experimental results are conducted on sets
of distance measurements that are collected using the acoustic signal detection-based
ranging techniques. The number of deployed sensor nodes varies from 79 to 93, with
the average being 90. The sensor nodes are custom designed based on an SH4
microprocessor running at 200MHz (Fig. 2(a)). The nodes were deployed at the Fort
Leonard Wood Self Healing Minefield Test Facility, which measures 200m x 50m.
The radio signal (communication) range is about 50m. Fig. 2(b) shows an example of
the deployment topology. Each node is equipped with four independent speakers and
microphones as the ranging tool. The distance between two nodes is obtained by
timing the arrival of the acoustic signals [10]. Each node in the network takes turns to
transmit the acoustic signals; all the nodes that receive the signals record the time of
arrival and convert the time of flight to distance in meters. In total, there are 33 sets of
distance measurements collected over the course of few days; each set consists of one
round of acoustic signal transmission by all the nodes. For the sake of simplicity, we
demonstrate the algorithms and techniques on a randomly selected subset of
measurements, and we present the results for ten other randomly selected data sets in
Section 6. The details on the experimental setup and the acoustic detection scheme
used can be found in [9][10]. It is important to note that the techniques we propose in
our study can be applied when no GPS devices are a-prior available, i.e., when no
beacons are present in the network. In both on-line and the localized scenarios, the
nonlinear function minimization formulation remains unchanged except that the
coordinates of the beacons are now unknowns as well. Furthermore, the GPS-less
localization can be viewed as the first step of conducting GPS-based localization. The
nodes are first resolved as if no beacons are available (relative locations with respect
to each other); then the absolute locations can be further derived given the ground
truth of at least three nodes. We experimentally evaluated the GPS-less localization in
Section 6.

From the communication point of view, we distinguish two types of the
communications between a pair of nodes: (i) exchange of the acoustic signals for the
purpose of distance ranging; (ii) and (ii) transmission and reception of radio signals
(in terms of bytes) for the purpose of exchanging information. More specifically, we
denote by Li a set of nodes that receive node i's acoustic signals, therefore can
estimate the distances between themselves to node i. Similarly, Ci denotes a set of
nodes that receive the radio signals from i. We assume that the acoustic signal range
(ASR) is independent from the radio signal range (RSR), which means that it is
possible for a node i to have the distance estimate to another node j (i has received j's
acoustic signals), while i can not exchange information with j (j is out of i's radio
signal range), and vise versa. Furthermore, it is not necessary that all nodes in the
network have the same ASR and RSR properties. This is a more realistic reflection of
the actual deployed networks. For the sake of simplicity, we assume the ASR and the
RSR are of the same range for demonstration, i.e. Li = Ci for each node i.

3.2 Location Discovery

The location discovery problem is traditionally formulated and solved as an
optimization problem with the location error as the minimization objective. The

 Consistency-Based On-line Localization in Sensor Networks 535

basic intuition is that if the locations of the unknown nodes are resolved correctly,
then the measured distances and the corresponding calculated distances should be of
minimum discrepancy based on a specific/assumed error distribution. However, due
to the environmental conditions and the natural imperfection of hardware devices,
errors in measurements are inevitable for economically feasible systems. Most
often, weighted L1, L2 or L norms of individual measurement error are adopted as
the optimization target. Note that these norms implicitly assume a particular
distribution of the measurement error. For example, the L1 norm assumes the errors
follow the uniform distribution. Maximizing the probabilities of certain error values
occurring by following the Gaussian distribution of a particular variance is also a
popular alternative. More recently, error models derived using statistical methods
such as the kernel density estimation technique have also emerged [25]. In our
study, we significantly enhance the application domain of using consistency for
location discovery and its practical importance by developing on-line and
distributed and localized approaches for consistency-based location discovery.

The location discovery problem can be formally stated as follows. In a k
dimensional space, when we consider the homogeneous case where two sensor nodes
i (x1i, x2i,…, xki) and j (x1j, x2j,…, xkj) have measured distance dij, exactly one equation
of the form of Equation (1) can be written where ij denotes the discrepancy between
the calculated distance and the measured distance.

ij

k

l
ljliij dxx −−=

=1

2)(ε (1)

After a set of equations that correspond to the pairs of nodes that have measured
distances are written, where the unknown variables being the coordinates of the
unknown nodes, the system of equations is then linearized and fed to a linear
optimization mechanism. [13] provides a detailed procedure of how the system of
equation is linearized. We formulated the location discovery problem in terms of a
nonlinear function minimization instance where the objective function F has the form
expressed in Equation (2). Function M can take the form of L1, L2 or L norms (F is
subject to minimization), or the Gaussian distribution with various variance or the
statistical error model constructed using the kernel density estimation technique (F is
subject to maximization). In our study, M is the pair-wise consistency-based error
model. Nonlinear programming is a direct extension of linear programming where the
linear objective function is replaced by the nonlinear ones. Nonlinear programming
has advantages in terms of computing power and formulation flexibility. The most
important reason why we formulated the localization problem as a nonlinear
programming is due to the NP-completeness of the localization problem [2].

F = M(ij) (2)

where
ij

k

l
ljliij dxx −−=

=1

2)(ε

for pairs of nodes i and j that have measured distance dij. .

536 J. Feng, L. Girod, and M. Potkonjak

4 On-line Localization

In this section, we introduce an algorithm for location discovery that does not require
the availability of the real distances nor the previously derived off-line error model.
We start by presenting the two main concepts behind the approach: on-line pair-wise
consistency and hidden beacons. Next, we explain how the problem can be solved as
an instance of nonlinear function minimization. Finally, we describe a conceptually
simple approach for simultaneous location discovery and construction of error model
for the set of distance measurements.

We define consistency as the pair-wise relationship between two pairs of
predicting and predicted variables. More specifically, two pairs P1(x1, y1) and P2(x2,
y2) are consistent with respect to each other if and only if (Equation (3)).

((x1 x2) (y1 y2) ∨ (x1 x2) (y1 y2)) (3)

The location discovery problem can be formulated by using only the notion of pair-
wise measurement consistency. The following objective function F (Equation (4))
measures to what extent a proposed solution by the optimization mechanism violates
the consistency requirement. F is subject to minimization.

 22)()(jijiij yyxxc −+−= , (4)

 22)()(lklkkl yyxxc −+−= ,

for pairs of nodes i and j that have measured distance dij, & pairs of nodes k and l
that have measured distance dkl

if ((cij–ckl)·(dij–dkl) < 0)
F += [–((cij–ckl)·(dij–dkl)]

For each pair of nodes i and j that have measured distance dij, cij is the calculated
distance based the locations of i and j proposed by the optimization mechanism.
Simply put, for all other pairs of nodes k and l that have measured distance dkl, if dkl is
shorter or longer than dij, then ckl should be also shorter or longer than cij respectively.
Else, the pair is considered inconsistent, and a weight factor proportional to the
inconsistency is imposed on the objective function. The objective function is to
minimize the overall weight induced on the inconsistent pairs.

It is easy to see that the pair-wise consistency objective formulation shown in
Equation (4) is not sufficient for the actual location discovery. This is so because any
solution that has all distances between nodes multiplied by a factor Q1 satisfies the
consistency constraint equally well as the solution that has the distances between
nodes multiplied by a factor Q2 (Q1 and Q2 are arbitrary positive real numbers).

In order to overcome this problem, we introduce the concept of hidden beacons.
The idea is simple but nevertheless is sufficient to fully resolve the scaling problem.
We intentionally announce the locations of a small number of beacons is not available
and include in the objective function that for each beacon, one more term that
measures the difference between the real location of the beacon and the location
proposed by the optimization mechanism. A significantly large weight factor is
intentionally assigned in front of these terms in order to ensure that the hidden

 Consistency-Based On-line Localization in Sensor Networks 537

beacons are placed as closed as possible to their actual locations. Since the
optimization mechanism has to satisfy the low discrepancy condition for hidden
beacons, the proper scaling of all distances is consequently ensured.

At this point, it is sufficient to invoke the optimization algorithm that minimizes the
following function F2 (Equation (5)), where F is specified in Equation (4):

F2 = F + s (5)

where 22)'()'(sssss yyxx −+−=ε , for all hidden beacons s

(xs’, ys’) is the location proposed by the optimization mechanism; (xs, ys) is the real
location of beacon s.

The specified problem can be solved using variety of heuristic and probabilistic
approaches such as simulated annealing, tabu search and genetic algorithms.
However, in order to make our comparison consistent and to leverage on the power of
nonlinear function minimization, we slightly modified the objective function F2 in the
following way (Equation (6)):

if ((cij–ckl)·(dij–dkl) < 0) (6)
 F += [–((cij–ckl)·(dij–dkl)]

else F += H
where H is a negative real constant

F2 = F + s

where 22)'()'(sssss yyxx −+−=ε

The motivation behind the alternation of the objective function is to provide
nonlinear solver a continuous derivative in regions that are far from the final solution,
so that the optimization can converge faster than in the case where the objective
function is defined only as a binary function over the number of consistent pair of
measurements.

Once we have the approach that produces the locations of all unknown nodes
solely based on the consistency of the measurements and the locations of a small
subset of beacons, it is straightforward to derive the error model for distance
measurements (i.e. optimizing over equation (6) to yield an initial estimate of
locations and distance errors and then switching to the distance error objective for
further optimization). The error model is based on the measured distances and the
corresponding calculated distances (distances derived based on the locations proposed
by the on-line localization). Once the new error model is available, we can use this
error model as the new objective function for the localization, and then consequently
use the new resultant locations to construct the error model in an iterative fashion.
This approach is reflected in all the experimental results presented in Section 6.

We have done two types of evaluation regarding the consistency-based error model
(the PDF): i) whether the error model is a desirable optimization target; ii) whether
the error model produces low location error when applied to the localization task. The
results of the second criterion are presented in the experimental result section (Section
6). In terms of the first criterion, we claim that a desirable optimization objective
should also follow the property of consistency, which means that an improvement in

538 J. Feng, L. Girod, and M. Potkonjak

OF Value

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

Fig. 3. The on-line objective function evaluation

terms of the objective function results
to a smaller average location error. Fig.
3 shows the mean location errors for
different objective function values. The
average consistency of these pairs of
the objective function value and the
location error is 94.5%. In addition, the
least linear squares fit results a slope of
0.896 and residual 0.916 (shown in the
Figure).

5 Localized Algorithm

In this section, we present the localized localization algorithm that utilizes the on-line
nonlinear function minimization-based formulation presented in Section 4. We start
by stating the underlying abstractions and assumptions. Then we present the
algorithm by discussing the dependencies between the centralized and the localized
algorithms. The localization accuracy analysis and the communication cost studies are
presented in Section 6.

From a network topology point of view, we assume stationary wireless sensor
networks that are relatively densely deployed. A densely deployed network provides
sufficient amount of data redundancy, which directly impacts the localization
accuracy and the communication cost. We quantitatively study the tradeoffs between
the average network connectivity, the location accuracy and the communication cost
in Section 6. In addition, we assume that all the N deployed nodes are aware of the
existence of their Ci and Li (Section 3.1). However, node i is not aware of the
properties (e.g. beacon or not, the connectivity) of its neighbors. The communication
cost is computed by accumulating the number of transmitted bytes for the purpose of
localization.

There are two goals in the localized location discovery: i) high location accuracy;
ii) low communication cost. Depending on different availability of resources,
circumstances and application requirements, the problem can be formulated by the
standard primal-dual formulation. For example, one formulation is to have the
location accuracy as the optimization objective while satisfying a specified
communication cost as the constraint. The dual formulation in this case is optimizing
the communication cost while satisfying a specified level of location accuracy. In our
study, we optimize the location accuracy while keeping the communication cost under
a specified level.

The basis of our localized algorithm is a series of invocations of the centralized
algorithm with a specified parameter that limits the effective range of the algorithm.
We first discuss the centralized algorithm. Fig. 4 presents the pseudocode of the
centralized algorithm, which contains three main phases. During the first phase –
Level Discovery phase (LD-phase), a central point of execution (CPE) (e.g. a
gateway) initiates a breath first search (BFS) so that all the nodes in the

 Consistency-Based On-line Localization in Sensor Networks 539

Centralized (Limit)

1. The Gateway initiates the Level Discovery phase (LD-phase)
2. while (the current BFS level < Limit)
3. level discovery messages propagate
4. The leaf nodes initiate the Measurement Gathering phase (MG-phase)
5. Optimization / Solving at the Gateway
6. The Gateway disseminates the results - Result Dissemination phase (RD-phase)

Fig. 4. Pseudocode of the centralized algorithm

1. A random node Initiates the Level Discovery phase (LD-phase)
 invoking Centralized (Level_Limit)
2. while (there exists boundary node i has not initiated the procedure)
3. node i invokes Centralized (Level_Limit)
4. Procedure ends when no more messages progagate

Fig. 5. Pseudocode of the localized algorithm

network/cluster are
aware of the shortest
number of hops to the
CPE (lines 1 to 3). The
messages propagate
during this phase have
length one byte and each
node (including the
boundary/leaf nodes) has
to broadcast exactly
once in order to
complete the BFS. The
possible boundary nodes

have to broadcast once in order to confirm they are indeed on the boundary of the
network/cluster. For centralized algorithm, the Limit is set to a large constant so that
the deepest BFS level is guaranteed to be smaller than Limit.

Once the BFS is completed, i.e. all nodes in the network are aware of their shortest
hops to the CPE, the leaf nodes then initiate the Measurement Gathering phase (MG-
phase) (line 4). During this phase, the neighborhood information and the distance
measurements of all nodes are propagated back to the gateway through the shortest
path identified in the first phase. For each node i, we assume B bytes have to be
allocated for each of i’s LD neighbors j, j∈Li. In our study, B = 3, one byte for the j’s
ID, and two bytes for the distance measurement from i to j. The total number of bytes
transmitted in this phase T is specified in Equation (7), where Vi is the level of node i:

⋅=
N

i
i BVT)((7)

Upon receiving all the distance measurements, the CPE invokes the optimization
mechanism, which employs the on-line formulation as the optimization objective (line
5). Once the results are available, the CPE disseminates the information back to the
nodes in the same fashion as in the first phase – Result Dissemination phase (RD-
phase) (line 6). The only modification is that it is no longer necessary for the leaf
nodes to further propagate the resulting information.

In the localized algorithm (Fig. 5), the key idea is to restrict the BFS not to expand
to the entire network, but a limited area; and invoke the same centralized procedure
with different CPEs. At the beginning, either a random node or the same CPE as in
the centralized case starts the procedure (line 1). The parameter passed down to
Centralized() – Level-Limit, can be either specified by the user or statistically
determined by analyzing the communication cost requirement. As shown in line 2 in
Fig. 4, the BFS terminates when the BFS reaches the Level-Limit. All the boundary
nodes created by the BFS (may or may not be the actual boundary nodes of the
network/cluster) are future CPE candidates. After the first round, either one CPE
candidate or multiple ones can initiate the centralized algorithm. The procedure
terminates when all the possible boundary nodes have confirmed that it cannot reach

540 J. Feng, L. Girod, and M. Potkonjak

M
ea

su
re

m
en

t
E

rr
or

 (
m

et
er

)

Lo

ca
tio

n
 E

rr
o

r
(m

et
er

)
Kernel On-line

GPS-based
On-line

GPS-less
Localized

0.01

0.02

0.03

0.04

0.05

0

 (a) (b) (c)

Fig. 6(a). The measurement error (measured – real) boxplot.
 6(b). The measurement error boxplot zoom view. 6(c). The boxplots
of the location error comparison.

any more other new
nodes, i.e., the actual
boundary of the
network. The term-
ination of the proc-
edure is marked by
no more messages
regarding localization
propagate. We exper-
imentally study how
the comm.-unication
cost of the localized
algorithm scale to

both size and the density of the network using simulation. The comprehensive results
are presented in the following section.

6 Experimental Results

In this section, we experimentally evaluate the three consistency-based on-line
localization algorithms: GPS-based and GPS-less centralized localization and the
localized localization. In GPS-less localization, we first solve the instance without
using any beacon information (obtain relative locations); then map the relative
locations to the absolute positions using the available beacon information. The
executions cross all four scenarios are done on a Pentium III 1200MHz processor.
We conduct analysis of the localization algorithms in terms of the average
connectivity, and the scalability in terms of network size, dimension and different
types of measurement errors. In addition, we also present the results for 10 other
randomly selected data sets. Finally, we compare the relative performance of the
localization algorithms with a sample of previously published algorithms. All
experiments are conducted based on the data produced by the deployed network
(Section 3.1).

Ave. Number of Neighbors

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

3 6 9 12 15

 (a) Ave. Number of Neighbors

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

6 9 12 15

 (b)

Fig. 7(a). The location error boxplots given different average connectivity for on-line GPS-less
LD. 7(b). The location error boxplots given different average connectivity for on-line GPS-
based LD.

 Consistency-Based On-line Localization in Sensor Networks 541

79 20001000500300200150
Network Size

0

0.01

0.02

0.03

0.04

0.05

0.06

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

Fig. 8. The scalability study – location error boxplots given different network sizes

A good way to evaluate the overall effectiveness of both the objective function and
the localization algorithm is to compare the input error (the distance measurements
errors) and the resultant location errors. Fig. 6(a) and 6(b) present the boxplots of the
distance measurement errors. The median of the measurement errors is -0.74m. In
addition, the average measurement error is -6.73m. Fig. 6(c) compares the location
errors of one off-line and three on-line localization algorithms: the centralized off-line
algorithm with error model constructed using the kernel density estimation technique
as the optimization objective [25]; the two on-line centralized localization algorithms:
GPS-based and GPS-less; and finally the on-line localized algorithm. It is common to
expect that the off-line localization algorithms outperform the on-line localization
algorithms (as the plot indicates). However, we can conclude from the plot that our
centralized on-line localization algorithms can achieve comparable results as the off-
line approach, especially in the on-line GPS-less scenario. In addition, we conclude
from the plots that without considering the beacons (GPS-less) yields better median
location error than in the case of when beacons are available. Our explanation for this
surprising finding is that the optimization has more degrees of freedom to alter each
node's positions around in order to improve the objective function as opposed to when
the beacons' positions are fixed. We compare the relative performance with a recent
state-of-the-art literature [2] in terms of the ratio of the resultant location error and the
input error (random noise). The authors introduced random noise which follows the
Gaussian distribution with mean 0 and standard deviation 1cm, 5cm and 10cm. The
resultant mean-square errors are 4.43cm, 14.39cm and 16.22cm respectively (e.g. the
mean location errors are then 2.1cm, 3.8cm and 4.02cm respectively). Therefore, the
corresponding ratio between the location error and the input error are 210%, 76% and
40.2% respectively. In our study, we consider the mean location error of the three
algorithms and then normalize them against the mean input error (0.74m), the
corresponding ratios are 2.35% (on-line GPS-based), 1.96% (on-line GPS-less), 3.7%
(localized).

It is widely assumed that a high degree of connectivity of nodes results in smaller
location errors. Fig. 7(a) and 7(b) show the boxplots of the location error
distribution given different average number of LD neighbors for in both on-line
GPS-less and localized scenarios. We see that while it is important to have more
than minimally required three neighbors, once the number of neighbors per node is

542 J. Feng, L. Girod, and M. Potkonjak

more than 10, one can expect very little further improvement. More importantly, the
quality of the neighboring measurements matters much more than the sheer number
of neighbors.

We have developed an integer linear programming (ILP)-based instance generator,
which creates instances with random node placements while following a specified
measurement error distribution [25]. The scalability analysis is conducted on the
networks created using the ILP-based instance generator with the same error
distribution as in the original instance. We use the on-line GPS-less localization
approach for this study. From Fig. 8, we observe that initially the median location
error increases by more than a factor of 2 when the network size doubles (79 nodes to
150 nodes). However, the increase diminishes with any further size increase. In
addition, we observe that the location error distribution expands to a wider range as
the network size grows. This is an expected consequence of the presence of large
number of nodes. Our interpretation of this phenomenon is that some nodes have
higher probability of getting 'lucky' and vise versa when the network size expands. It
is interesting to note that no instances larger than 300 nodes are solved well using the
centralized execution. Obviously the limit that can be addressed by the optimization
software is reached (300 nodes). The instances larger than this critical point are
solved by grouping 200 nodes consecutively and invoking the optimization in a
distributed fashion.

In addition to network size, we also analyze the scalability in terms of dimensions
and different types of errors in measurements. The study was done on the original
network (79 nodes). Fig. 9(a) shows the location error boxplots when the localization

1D

0

0.01

0.02

0.03

0.005

0.015

0.025

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

3D2D (a) Stat.

0

0.01

0.02

0.03

0.005

0.015

0.025

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

TriangularGaussian (b)

Fig. 9(a). The location error boxplots for different dimensions. 9(b). The location error
boxplots for different types of errors in measurements.

Table 3. Comparison of three previously published LD algorithms with our approaches

AVE. LOCATION ERROR

AVE. INPUT ERROR

N-HOP 5.15
ROBUST 4.43

GPS-BASED
ON_LINE

0.00883

GPS-LESS ON-LINE 0.0066
LOCALIZED 0.0175

 Consistency-Based On-line Localization in Sensor Networks 543

L
o

ca
ti

o
n

 E
rr

o
r

(m
et

er
)

Instance

Fig. 10. The median location error comparison of the centralized off-line LD, the centralized
on-line LD, and the localized LD across 10 independent data sets

is conducted in 1-d, 2-d and 3-d space using on-line GPS-based localization. It is
interesting to note that in 3-d, the medium and the 75% percentile of the location error
increased by almost 50% while the other percentiles have smaller fluctuations. In Fig.
9(b), we compare the performance on three sets of measurements that follow different
types of error distribution. Stat. is the set of measurements we have obtained from the
deployed networks. The other two sets of measurements are generated in simulation.
On top of the real distances, random noise that i) follows the Gaussian distribution
(=0, s=0.5m) and ii) has triangular shape (h=0.5m, b=0.5m) are imposed. The mean
location errors are within 15% of each other for all three sets of measurements. This
finding supports that the consistency-based error model (as the optimization target) is
effective regardless of the types of error distribution.

Furthermore, we examined the consistency of performance on all of the 33 data
sets. For the sake of convenient visualization, Fig. 10 shows the results for 10
randomly selected instances where the number of neighbors is on average six per
node. Centralized GPS-less off-line, centralized GPS- based on-line, and the localized
algorithms are evaluated. Finally, we compare our localization algorithms with two
previously published algorithms: N-hop multilateration [13] and robust positioning
[2]. We compare the ratio of the average location error and the average input error
(measurement error) as in the case of Fig. 6. In N-hop multilateration, the authors
considered a 2cm white Gaussian error, and the average location error achieved in a
network of 50 nodes with 10% initial beacons is 10.3cm. In robust positioning, an
average of 4.43cm location error is achieved when 1cm of input noise is considered.
Note that those two efforts conducted experiments using synthetic data in simulations,
while our experiments are conducted based on the data produced by a deployed sensor
network. The goal of this comparison is solely to demonstrate the performance quality
of our algorithm, where our consistency-based on-line localization algorithms can
achieve average location errors that are much smaller than the input noise.

7 Conclusion

We have developed a new on-line error modeling and location discovery approach
that is solely based on the concept of consistency. The approach does not assume any
a-priori knowledge about the error distribution and the optimization objective is the
consistency between the measurements and the solutions provided by the optimization

544 J. Feng, L. Girod, and M. Potkonjak

mechanism. We also present a localized algorithm that is based on several local
invocations of the on-line centralized algorithm. The approach is evaluated using data
produced from deployed networks. We also compared the performance with several
other state-of-the-art localization methods.

References

1. G. Sun, J. Chen, W. Guo, and K.J.R. Liu, “Signal processing techniques in network-aided
positioning,” IEEE Signal Processing Magazine. 22(4), 2005, pp. 12–23.

2. D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network localization with
noisy range measurements,” International Conference on Embedded Networked Sensor
Systems, 2004, pp. 50–61.

3. A. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location,” IEEE
Signal Processing Magazine. 22(4), 2005, pp. 24–40.

4. A. Ward, A. Jones, A. Hopper, “A new location technique for the active office,” IEEE
Personal Communications. 4(5), 1997, pp. 42–47.

5. P. Bahl, and V.N. Padmanabhan, “RADAR: an in-building RF-based user location and
tracking system,” IEEE InfoCom, 2000, pp.775–84.

6. J. Hightower, R. Want, G. Borriello, “SpotON: An Indoor 3d Location Sensing
Technology Based on RF Signal Strength,” CSE, University of Washington, WA, 2000.

7. C. Savarese, J. Rabaey, and K. Langendoen, “Robust positioning algorithms for distributed
ad-hoc wireless sensor networks,” USENIX Technical Annual Conference, 2002, pp. 317–
327.

8. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction,. Springer-Verlag. NY, 2001.

9. W. Merrill, L. Girod, J. Elson, K. Sohrabi, F. Newberg, and W. Kaiser, “Autonomous
position location in distributed, embedded, wireless systems,” IEEE CAS Workshop on
Wireless Communications and Networking. 2002.

10. W. Merrill, F. Newberg, L. Girod, and K. Sohrabi, “Battlefield ad-hoc LANs: a distributed
processing perspective,” GOMACTech, 2004.

11. N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero, R.L. Moses, and N.S. Correal, “Locating
the nodes. IEEE Signal Processing Magazine, 22(4), 2005, pp. 54–69.

12. J. Feng, F. Koushanfar, and M. Potkonjak, “Localized algorithms for sensor
networks,” Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems.
CRC Press, NY, 2004.

13. A. Savvides, C. Han, and M.B. Strivastava, “Dynamic fine-grained localization in ad-hoc
networks of sensors,” MobiCom’01, 2001, pp. 166–179.

14. X. Sheng, and Y.H. Hu, “Energy based acoustic source localization.,” ACM/IEEE
IPSN’03, 2003, pp. 285–300.

15. L. Hu, and E. Evans, “Localization for mobile sensor networks,” MobiCom’03, 2003, pp.
45–57.

16. D. Niculescu, and B. Nath, “Error characteristics of ad hoc positioning systems (APS),”
MobiCom’04, 2004, pp. 20–30.

17. A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem, “Distributed online
localization in sensor networks using a moving target,” ACM/IEEE IPSN’04, 2004, pp.
61–70.

18. F. Gustafsson, and F. Gunnarsson, “Mobile positioning using wireless networks,” IEEE
Signal Processing Magazine, 22(4), 2005, pp. 41–53.

 Consistency-Based On-line Localization in Sensor Networks 545

19. S. Sivavakeesar, and G. Pavlou, “Scalable location services for hierarchically organized
mobile ad hoc networks,” MobiHoc’05, 2005, pp. 217–228.

20. T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Abdelzaher, “Range-free localization
schemes for large scale sensor networks”, MobiHoc’03, 2003, pp. 81– 95.

21. Y. Shang, W. Ruml, Y. Zhang, and M.P.J. Fromherz, “Localization from mere
connectivity,’ MobiHoc’03, 2003, pp. 201–212.

22. J. Bruck, J. Gao, and A.Jiang, “Localization and routing in sensor networks by local angle
information,” MobiHoc’05, 2005, pp. 181–192.

23. A.C. Viana, M.D. de Amorim, S. Fdida, Y.Viniotis, and J.F. de Rezende, “Easily-managed
and topology-independent location service for self-organizing networks,” MobiHoc’05,
2005, pp. 193–204.

24. S, Guha, R. Murth, and E.G. Sirer, “Sextant: a unified node and event localization
framework using non-convex constraints,” MobiHoc’05, 2005, pp. 206–216.

25. J. Feng, and M. Potkonjak, “Location discovery using data-driven statistical error
modeling,” To appear in IEEE InfoCom’06, 2006.

The Robustness of Localization Algorithms to Signal
Strength Attacks: A Comparative Study

Yingying Chen, Konstantinos Kleisouris, Xiaoyan Li, Wade Trappe,
and Richard P. Martin

Department of Computer Science and Wireless Information Network Laboratory
Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854

{yingche, kkonst, xili, rmartin}@cs.rutgers.edu,
trappe@winlab.rutgers.edu

Abstract. In this paper, we examine several localization algorithms and eval-
uate their robustness to attacks where an adversary attenuates or amplifies the
signal strength at one or more landmarks. We propose several performance met-
rics that quantify the estimator’s precision and error, including Hölder metrics,
which quantify the variability in position space for a given variability in signal
strength space. We then conduct a trace-driven evaluation of several point-based
and area-based algorithms, where we measured their performance as we applied
attacks on real data from two different buildings. We found the median error de-
graded gracefully, with a linear response as a function of the attack strength. We
also found that area-based algorithms experienced a decrease and a spatial-shift
in the returned area under attack, implying that precision increases though bias
is introduced for these schemes. We observed both strong experimental and the-
oretic evidence that all the algorithms have similar average responses to signal
strength attacks.

1 Introduction

Secure localization is important for distributed sensor systems because the position of
sensor nodes is a critical input for many sensor network tasks, such as tracking, monitor-
ing and geometric-based routing. However, assuring the validity of localization results
is not straight-forward because these algorithms rely on physical measurements that
can be affected by non-cryptographic attacks. Although there has been recent research
on securing localization, to date there has been no study on the robustness of localiza-
tion algorithms to physical attacks. In this paper, we investigate the susceptibility of a
wide range of signal strength localization algorithms to attacks on the Received Sig-
nal Strength (RSS). RSS is an attractive basis for localization because all commodity
radio technologies, such as 802.11, 802.15.4, and Bluetooth provide it, and thus the
same algorithms can be applied across different platforms. Also, using RSS allows the
localization system to reuse the existing communication infrastructure, rather than re-
quiring the additional cost needed to deploy specialized localization infrastructure, such
as ceiling-based ultrasound, GPS, or infrared methods.

In this work, we investigate the response of several localization algorithms to unan-
ticipated power losses and gains, i.e. attenuation and amplification attacks. In these

P. Gibbons et al. (Eds.): DCOSS 2006, LNCS 4026, pp. 546–563, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Robustness of Localization Algorithms to Signal Strength Attacks 547

attacks, the attacker modifies the RSS of a sensor node or landmark, for example, by
placing an absorbing or reflecting material around the node. Specifically, we investigate
point-based and area-based RF fingerprinting algorithms, whereby a database of col-
lected RF fingerprints are measured at several landmarks for an initial set of locations.
In order to evaluate the robustness of these algorithms, we provide a generalized char-
acterization of the localization problem, and then present several performance metrics
suitable for quantifying performance. We present a new family of metrics, which we
call Hölder metrics, for quantifying the susceptibility of localization algorithms to per-
turbations in signal strength readings. We use worst-case and average-case versions of
the Hölder metric, which describe the maximum and average variability as a function of
changes in the RSS. We then experimentally evaluate the performance of a wide variety
of localization algorithms after applying attenuation and amplification attacks to real
data measured from two different office buildings.

Using experimentally observed localization performance, we found that the error
for a wide variety of algorithms scaled with surprising similarity under attack. The
single exception was the Bayesian Networks algorithm, which degraded slower than the
others in response to attacks against a single landmark. In addition to our experimental
observations, we found a similar average-case response of the algorithms using our
Hölder metrics. However, we observed that methods which returned an average of likely
positions had less variability and are thus less susceptible than other methods.

We also observed that all algorithms degraded gracefully, experiencing linear scaling
in localization error as a function of the amount of loss or gain (in dB) an attack intro-
duced. This observation applied to various statistical descriptions of the error, leading
us to conclude that no algorithm “collapses" in response to an attack. This is impor-
tant because it means that, for all the algorithms we examined, there is no tipping point
at which an attacker can cause gross errors. In particular, we found the mean error of
most of the algorithms for both buildings scaled between 1.3-1.8 ft/dB when all the
landmarks were attenuated simultaneously, and 0.5-0.8 ft/dB when attenuating a single
landmark. We also showed experimentally that RSS can be easily attenuated by 15 dB,
and that, as a general rule of thumb, very simple signal strength attacks can lead to
localization errors of 20-30 ft.

Finally, we conducted a detailed evaluation of area-based algorithms as this family of
algorithms return a set of potential locations for the transmitter. Thus, it is possible that
these algorithms might return a set with a larger area in response to an attack and could
have less precision (or more uncertainty) under attack. However, we found all three of
our area-based algorithms shifted the returned areas rather than increased returned area.
Further, one of the algorithms, the Area Based Probability (ABP) scheme, significantly
shrank the size of the returned area in response to very large changes in signal strength.

The rest of this paper is organized as follows. We first discuss related work in Section
2. Next, in Section 3 we give an overview of the algorithms used in our study and discuss
how signal strength attacks can be performed. In Section 4, we provide a formal model
of the localization problem as well as introduce the metrics that we use in this paper.
We then examine the performance of the algorithms through an experimental study in
Section 5, and discuss the Hölder metrics for these algorithms in Section 6. Finally, we
conclude in Section 7.

548 Y. Chen et al.

2 Related Work

In general, localization algorithms can be categorized as: range-based vs. range-free,
scene matching, and aggregate or singular. The range-based algorithms involve dis-
tance estimation to landmarks using the measurement of various physical properties
like RSS [1], Time Of Arrival (TOA) [2] and Time Difference Of Arrival (TDOA) [3].
Rather than use precise physical property measurements, range-free algorithms use
coarser metrics like connectivity [4] or hop-counts [5] to landmarks to place bounds
on candidate positions. In scene matching approaches, a radio map of the environment
is constructed, either by measuring actual samples, using signal propagation models,
or some combination of the two. A node then measures a set of radio properties (of-
ten just the RSS of a set of landmarks), the fingerprint, and attempts to match these
to known location(s) on the radio map. These approaches are almost always used in
indoor environments because signal propagation is extensively affected by reflection,
diffraction and scattering, and thus ranging or simple distance bounds cannot be effec-
tively employed. Matching fingerprints to locations can be cast in statistical terms [6,7],
as a machine-learning classifier problem [8], or as a clustering problem [9]. Finally, a
third dimension of classification extends to aggregate or singular algorithms. Aggre-
gate approaches use collections of many nodes in the network in order to localize (of-
ten by flooding), while localization of a node in singular methods only requires it to
communicate to a few landmarks. For example, algorithms using optimization [10] or
multidimensional scaling [4] require many estimates between nodes.

Recently, it has been recognized that there are many non-cryptographic attacks that
can affect localization performance. For example, wormhole attacks tunnel through a
faster channel to shorten the observed distance between two nodes [11]. Compromised
nodes may delay response messages to disrupt distance estimation [12] and compro-
mised landmarks may even broadcast completely invalid information [13]. Physical
barriers can directly distort the physical property used by localization. [12] provided a
thorough survey of potential attacks to various localization algorithms based on their
underlying physical properties.

Secure localization algorithms have been proposed to address these attacks. [14] uses
a distance bounding protocol [15, 16] to upperbound the distance between two nodes.
Location estimation (via multilateration) with distances from the bounding protocol can
be verified against these bounds and any inconsistency will then indicate attack. [17]
uses hidden and mobile base stations to localize and verify location estimate. Since
such base station locations are hard for attackers to infer, it is hard to launch an at-
tack, thereby providing extra security. [18] uses both directional antenna and distance
bounding to achieve security. Compared to all these methods, which employ location
verification and discard location estimate that indicates under attack, [13] and [12] try
to eliminate the effect of attack and still provide good localization. [12] makes use of
the data redundancy and robust statistical methods to achieve reliable localization in
the presence of attacks. [13] proposes to detect attacks based on data inconsistency
from received beacons and to use a greedy search or voting algorithm to eliminate the
malicious beacon information.

In our work, we focus only on fingerprinting algorithms that use RSS, and provide an
investigation into the feasibility of signal strength attacks as well as the susceptibility

The Robustness of Localization Algorithms to Signal Strength Attacks 549

Table 1. Algorithms under study

Algorithm Abbreviation Description

Area-Based
Simple Point Matching SPM Maximum likelihood matching of the RSS to an area using thresholds.
Area Based Probability ABP-α Bayes rule matching of the RSS to an area probabilistically bounded

by the confidence level α%.
Bayesian Network BN Returns the most likely area using a Bayesian network approach.
Point-Based
RADAR R1 Returns the closest record in the Euclidean distance of signal space.
Averaged RADAR R2 Returns the average of the top 2 closest records in the signal map.
Gridded RADAR GR Applies RADAR using an interpolated grid signal map.
Highest Probability P1 Applies maximum likelihood estimation to the received signal.
Averaged Highest Probability P2 Returns the average of the top 2 likelihoods.
Gridded Highest Probability GP Applies likelihoods to an interpolated grid signal map.

of fingerprinting algorithms to such attacks. Of previous work, only [12] proposed a
possible solution to the fingerprint-based localization, but the susceptibility of different
fingerprinting methods was not completely investigated.

3 Algorithms and Signal Strength Attacks

In this paper we are only concerned with localization algorithms that employ signal
strength measurements. There are several ways to classify localization schemes that
use signal strength: range-based schemes, which explicitly involve the calculation of
distances to landmarks; and RF fingerprinting schemes whereby a radio map is con-
structed using prior measurements, and a device is localized by referencing this radio
map. For this study, we focus on indoor localization schemes, and therefore we restrict
our attention to RF fingerprinting methods, which have had more success for indoor
environments. RF fingerprinting methods can be further broken down into two main
categories: point-based methods, and area-based methods.

Point-based methods return an estimated point as a localization result. A primary
example of a point-based method is the RADAR scheme [9]. Variations of RADAR,
such as Averaged RADAR and Gridded RADAR have been proposed in [19]. On the
other hand, area-based algorithms return a most likely area in which the true location
resides. Two examples of area-based localization algorithms are the Area Based Prob-
ability (ABP) method [19] and the Bayesian Networks method [20]. One of the ma-
jor advantages of area-based methods compared to point-based methods is that they
return a region, which has an increased chance of capturing the transmitter’s true
location.

For this paper, we have selected a representative set of algorithms from each class of
RF fingerprinting schemes for conducting our analysis. The algorithms we have selected
are presented in Table 1. Although there are a variety of other fingerprinting localization
algorithms that may be studied, our results are general and can be applied to other
point-based and area-based methods. More details for these algorithms can be found
in [9, 19, 20].

To attack signal-strength based localization systems, an adversary must attenuate or
amplify the RSS readings. This can be done by applying the attack at the transmitting
device, e.g. simply placing foil around the 802.11 card; or by directing the attack at the

550 Y. Chen et al.

landmarks. For example, we may steer the lobes and nulls of an antenna to target select
landmarks. A broad variety of attenuation attacks can be performed by introducing
materials between the landmarks and sensors [12]. We measured the effect of different
materials on the RF propagation when inserted between the landmarks and the sensors.
Figure 1 shows the experimental results. These materials are easy to access and attacks
utilizing these kind of materials can be simply performed with low cost. Based upon
the results in Figure 1, we see that there is a linear relationship between the unattacked
signal strength and the attacked signal strength in dB for various materials. The linear
relationship suggests that there is an easy way for an adversary to control the effect of
his/her attack on the observed signal strength.

−95 −90 −85 −80 −75 −70 −65 −60 −55 −50
−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

Non−attacked signal strength (dBm)

At
ta

ck
ed

 s
ig

na
l s

tre
ng

th
 (d

Bm
)

Signal Attenuation through Various Materials

Thin book
Thick book
Foil
More foil
Water
Human body
Glass
Metal

Fig. 1. Signal attenuation when going through a barrier

In the rest of this paper, we will use the linear attenuation model to describe the ef-
fect of an attack on the RSS readings at one or more landmarks. The resulting attacked
readings are then used to study the consequent effects on localization for the algorithms
surveyed above. In particular, in this study, we apply our attacks to individual land-
marks, which might correspond to placing a barrier directly in front of a landmark, as
well as to the entire set of landmarks, which corresponds to placing a barrier around the
transmitting device. Similar arguments can be made for amplification attacks, whereby
barriers are removed between the source and receivers. Although there are many dif-
ferent and more complex signal strength attack methods that can be used, we believe
their effects will not vary much from the linear signal strength attack model we use in
this paper, and note that such sophisticated attacks could involve much higher cost to
perform.

4 Measuring Attack Susceptibility

The aim of a localization attack is to perturb a set of signal strength readings in order
to have an effect on the localization output. When selecting a localization algorithm,
it is desirable to have a set of metrics by which we can quantify how susceptible a
localization algorithm is to varying levels of attack by an adversary. In this section, we
shall provide a formal specification for an attack, and present several measurement tools
for quantifying the effectiveness of an attack.

The Robustness of Localization Algorithms to Signal Strength Attacks 551

4.1 A Generalized Localization Model

In order to begin, we need to specify a model that captures a variety of RF-fingerprinting
localization algorithms. Let us suppose that we have a domain D in two-dimensions,
such as an office building, over which we wish to localize transmitters. Within D, a set
of n landmarks have been deployed to assist in localization. A wireless device that trans-
mits with a fixed power in an isotropic manner will cause a vector of n signal strength
readings to be measured by the n landmarks. In practice, these n signal strength read-
ings are averaged over a sufficiently large time window to remove statistical variability.
Therefore, corresponding to each location in D, there is an n-dimensional vector of
signal readings s = (s1, s2, · · · , sn) that resides in a range R.

This relationship between positions in D and signal strength vectors defines a fin-
gerprint function F : D → R that takes our real world position (x, y) and maps it to a
signal strength reading s. F has some important properties. First, in practice, F is not
completely specified, but rather a finite set of positions (xj , yj) is used for measuring a
corresponding set of signal strength vectors sj . Additionally, the function F is generally
one-to-one, but is not onto. This means that the inverse of F is a function G that is not
well-defined: There are holes in the n-dimensional space in which R resides for which
there is no well-defined inverse.

It is precisely the inverse function G, though, that allows us to perform localization.
In general, we will have a signal strength reading s for which there is no explicit in-
verse (e.g. perhaps due to noise variability). Instead of using G, which has a domain
restricted to R, we consider various pseudo-inverses Galg of F for which the domain of
Galg is the complete n-dimensional space. Here, the notation Galg indicates that there
may be different algorithmic choices for the pseudo-inverse. For example, we shall de-
note GR to be the RADAR localization algorithm. In general, the function Galg maps
an n-dimensional signal strength vector to a region in D. For point-based localization
algorithms, the image of Galg is a single point corresponding to the localization result.
On the other hand, for area-based methods, the localization algorithm Galg produces a
set of likely positions.

An attack on the localization algorithm is a perturbation to the correct n-dimensional
signal strength vector s to produce a corrupted n-dimensional vector s̃. Corresponding
to the uncorrupted signal strength vector s is a correct localization result p = Galg(s),
while the corrupted signal strength vector produces an attacked localization result p̃ =
Galg(s̃). Here, p and p̃ are set-valued and may either be a single point or a region in D.

4.2 Attack Susceptibility Metrics

We wish to quantify the effect that an attack has on localization by relating the effect
of a change in a signal strength reading s to the resulting change in the localization
result p. We shall use p0 to denote the correct location of a transmitter, p to denote the
estimated location (set) when there is no attack being performed, and p̃ to denote the
position (set) returned by the estimator after an attack has affected the signal strength.
There are several performance metrics that we will use:

Estimator Distance Error: An attack will cause the magnitude of p0 − p̃ to increase.
For a particular localization algorithm Galg we are interested in the statistical charac-

552 Y. Chen et al.

terization of ‖p0 − p̃‖ over all possible locations in the building. The characterization
of ‖p0 − p̃‖ depends on whether a point-based method or an area-based method is
used, and can be described via its mean and distributional behavior. For a point-based
method, we may measure the cumulative distribution (cdf) of the error ‖p0−p̃‖ over the
entire building. For area-based methods, we replace p̃, which is a set, with its median
(along the x and y dimensions separately). Thus, for area-based metrics, we calculate
the CDF of the distance between the median of the estimated locations p̃med and the
true location, i.e. ‖p0 − p̃med‖.

The CDF provides a complete statistical specification of the distance errors. It is of-
ten more desirable to look at the average behavior of the error. For point-based methods,
the average distance error is simply E[‖p0 − p̃‖], which is just the average of ‖p0 − p̃‖
over all locations. Area-based methods allow for more options in defining the average
distance error. First, for a particular value of p0, p̃ is a set of points. For each p0, we
get a collection of error values ‖p0 − q‖, as q varies over points in p̃. For each p0,
we may extract the minimum, 25th percentile, median, 75th percentile, and maximum.
These quartile values of ‖p0 − q‖ are then averaged over the different positions p0.

Estimator Precision: An area-based localization algorithm returns a set p. For local-
ization, precision refers to the size of the returned estimated area. This metric quantifies
the average value of the area of the localized set p over different signal strength read-
ings s. Generally speaking, the smaller the size of the returned area, the more precise
the estimation is. When an attack is conducted, it is possible that the precision of the
answer p̃ is affected.

Precision vs. Perturbation Distance: The perturbation distance is the quantity
‖pmed − p̃med‖. The precision vs. perturbation distance metric depicts the functional
dependency between precision and increased perturbation distance.

Hölder Metrics: In addition to error performance, we are interested in how dramat-
ically the returned results can be perturbed by an attack. Thus, we wish to relate the
magnitude of the perturbation ‖s − s̃‖ to its effect on the localization result, which is
measured by ‖Galg(s) − Galg(s̃)‖. In order to quantify the effect that a change in the
signal strength space has on the position space, we borrow a measure from functional
analysis [21], called the Hölder parameter (also known as the Lipschitz parameter) for
Galg . The Hölder parameter Halg is defined via

Halg = max
s,v

‖Galg(s) − Galg(v)‖
‖s − v‖ .

For continuous Galg , the Hölder parameter measures the maximum (or worst-case) ratio
of variability in position space for a given variability in signal strength space. Since the
traditional Hölder parameter describes the worst-case effect an attack might have, it
is natural to also provide an average-case measurement of an attack, and therefore we
introduce the average-case Hölder parameter

Halg = avgs,v
‖Galg(s) − Galg(v)‖

‖s − v‖ .

These parameters are only defined for continuous functions Galg , and many local-
ization algorithms are not continuous. For example, if we look at GR for RADAR, the

The Robustness of Localization Algorithms to Signal Strength Attacks 553

result of varying a signal strength reading is that it will yield a stair-step behavior in
position space, i.e. small changes will map to the same output and then suddenly, as
we continue changing the signal strength vector, there will be a change to a new posi-
tion estimate (we have switched over to a new Voronoi cell in signal space). In reality,
this behavior does not concern us too much, as we are merely concerned with whether
adjacent Voronoi cells map to close positions. We will revisit this issue in Section 6.
Finally, we emphasize that Hölder metrics measure the perturbability of the returned
results, and do not directly measure error.

5 Experimental Results

In this section we present our experimental results. We first describe our experimental
method. Next, we examine the impact of attacks on the RSS to localization error when
attacking all landmarks simultaneously as well as single-landmark attacks. We then
quantify the algorithms’ linear responses to RSS changes. Finally, we present a preci-
sion study that investigates the impact of attacks on the returned areas for area-based
algorithms.

5.1 Experimental Setup

Figure 2 shows our experimental set up. The floor map on the left, (a) is the 3rd floor of
the CoRE building at Rutgers, which houses the computer science department and has
an area of 200x80ft (16000 ft2). The other floor shown in (b) is an industrial research
laboratory (we call the Industrial Lab), which has an area of 225x144ft (32400 ft2).
The stars are the training points, the small dots are testing points, and the larger squares
are the landmarks, which are 802.11 access points. Notice that the 4 CoRE landmarks
are more co-linear than the 5 landmarks in the Industrial Lab.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

Landmark 1

Landmark 2
Landmark 3

Landmark 4

X (feet)

Y
(fe

et
)

0 50 100 150 200
0

20

40

60

80

100

120

140

Landmark 1 Landmark 2

Landmark 3
Landmark 4

Landmark 5

X (feet)

Y
 (f

ee
t)

(a) CoRE (b) Industrial Lab

Fig. 2. Deployment of landmarks and training locations on the experimental floors

For both attenuation and amplification attacks, we ran the algorithms but modified
the RSS of the testing points. We altered the RSS by +/-5 dB to +/-25 dB, in increments
of 5 dB. We experimented with different ways to handle signals that would fall below

554 Y. Chen et al.

the detectable threshold of -92 dBm for our cards. We found that substituting the mini-
mal signal (-92 dBm) produced about the same localization results and did not require
changing the algorithms to special case missing data.

We experimented different training set sizes, including 35, 115, 225, 253 and 286
points. Although there are some small differences, we found that the behavior of the
algorithms matches previous results and varied little after using 115 training points,
and we thus used a training set size of 115 for this study.

5.2 Localization Error Analysis

In this section, we analyze the estimator distance error through the statistical character-
ization of ‖p0 − p̃‖ by presenting the error CDFs of all the algorithms as a function of
attenuation and amplification attacks. The CDF provides a complete statistical specifi-
cation of the distance errors.

Figure 3(a) shows the normal performance of the algorithms for the CoRE build-
ing and (e) shows the results for the Industrial Lab. For the area-based algorithms, the
median tile error is presented, as well as the minimum and maximum tile errors for
ABP-75. As in previous work, the algorithms all obtain similar performance, with the
exception of BN which slightly under-performs the other algorithms.

Figures 3(b) and 3(c) show the error CDFs under simultaneous landmark attenuation
attacks of 10 and 25 dB for CoRE, respectively, while Figure 3(f) and 3(g) show the
similar results in the industrial lab. First, bulk of the curves shift to the right by roughly
equal amounts: no algorithm is qualitatively more robust than the others. Comparing
the two buildings, the results show that the industrial lab errors are slightly higher for
attacks at equal dB, but again, qualitatively the impact of the building environment is
not very significant.

Figures 3(d) and 3(h) show the error CDFs for the CoRE and Industrial Lab under
a 10 dB amplification attack. The results are qualitatively symmetric with respect to
the outcome of the 10 dB attenuation attack. We found that, in general, comparing
amplifications to attenuations of equal dB, the errors were qualitatively the same.

An interesting feature is that the minimum error for APB-75 also shifts to the right
by roughly the same amount as the other curves. Figures 3(a) and 3(e) show that, in
the non-attacked case, the minimum tile error for ABP-75 is quite small, meaning that
the localized node is almost always within or very close to the returned area. However,
under attacks, the closest part of the returned area moves away from the true location
at the same rate as the median tile. We observed similar effects for the SPM and BN
algorithms.

Next, we examine attacks against a single landmark. We found attacks against cer-
tain landmarks had a much higher impact than against others in the CoRE building.
Figure 4(a) and 4(b) show the difference in the error CDF by comparing attacks of
landmarks 1 and 2. Figure 2(a) shows that landmark 1 is at the southern end of the
building, while landmark 2 is in the center and is close to landmark 4. The tail of the
curves in Figure 4(a) are much worse than for 4(b), showing that when landmark 1 is
attacked significantly more high errors are returned. we observed a similar effect for
amplification attacks.

The Robustness of Localization Algorithms to Signal Strength Attacks 555

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(a) CoRE: No attack (b) CoRE: 10dB attenuation

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(c) CoRE: 25dB attenuation (d) CoRE: 10dB amplification

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(e) Industrial: No attack (f) Industrial: 10dB attenuation

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(g) Industrial: 25dB attenuation (h) Industrial: 10dB amplification

Fig. 3. Error CDF across localization algorithms when attacks are performed on all the landmarks

556 Y. Chen et al.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(a) CoRE: Attenuation, Landmark 1 (b) CoRE: Attenuation, Landmark 2

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (feet)

P
ro

ba
bi

lit
y

Error CDF Across Algorithms

SPMmed
BNmed
ABP75min
ABP75med
ABP75max
R1
R2
GR
P1
P2
GP

(c) Industrial: Attenuation, Landmark 4 (d) Industrial: Attenuation, Landmark 5

Fig. 4. Error CDF across localization algorithms when attacks are performed on an individual
landmark. The attack is 25dB of signal attenuation.

The Industrial Lab results in Figures 4(c) and (d) show much less sensitivity to land-
mark placement compared to the CoRE building. Figure 2(b) shows that landmark 5
is centrally located and we initially suspected this would result in attack sensitivity.
However, the error CDFs show that the remaining 4 landmarks provide sufficient cov-
erage: as landmark 5 is attacked, the error CDFs are not much different from attacking
landmark 4.

5.3 Linear Response

In this section, we show that the average distance error, E[‖p0 − p̃‖], of all the al-
gorithms scales in a linear way to attacks: the localization error changes linearly with
respect to the amount of signal strength change in dB (recall it is a log-scaled change in
power).

Figure 5 plots the median error vs. RSS attenuation for simultaneous landmark at-
tacks in Figure 5(a) and 5(d), and for individual landmarks in the other figures. Points
are measured data, and the lines are linear least-squares fits. The most important feature
is that, in all cases, the median responses of all the algorithms fits a line extremely well,
with an average R2-statistic of 0.98 for both the CoRE and Industrial Lab, and a worse-
case R2 of 0.94 for both buildings. Comparing the slopes across all the algorithms, we
found a mean change in positioning error vs. signal attenuation of 1.55 ft/dB under si-
multaneous attacks with a minimum of 1.3 ft/dB and maximum of 1.8 ft/dB. For the

The Robustness of Localization Algorithms to Signal Strength Attacks 557

single landmark attack, the slope was substantially less, 0.64 ft/dB, although BN de-
grades consistently less than the other algorithms at 0.44 ft/dB. The linear fit results are
quite important as it means that no algorithm has a cliff where the average positioning
error suffers a catastrophic failure under attack. Instead, it remains proportional to the
severity of the attack.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

(a) CoRE: all Landmarks (b) CoRE: Landmark 1 (c) CoRE: Landmark 2

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Signal attenuation (dB)

E
rr

o
r

(f
e

e
t)

Median Mean Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

(d) Industrial: all Landmarks (e) Industrial: Landmark 1 (f) Industrial: Landmark 5

Fig. 5. Median mean error across localization algorithms under attenuation attack

While the median error characterizes the overall response to attacks, it does not ad-
dress whether an attacker can cause a few, large errors. We examined the response of
the maximum error as a function of the strength of the attack, i.e. how the 100th per-
centile error scales as a function of the change in dB. We note that this characterization
is not the same as, nor is directly related to, the Hölder metrics. Those metrics define
the rates of change between physical and signal space within the localization function
itself, while here we characterize the change in the estimator error to the change in
signal, i.e. ‖p0 − p̃‖/‖s − v‖.

Figure 6 plots the worst-case error for each algorithm as a function of signal dB
for the CoRE building. The figure shows that almost all the responses are again linear,
with least-squares fits of R2 values of 0.84 or higher, though SPM does not have a
linear response. The second important point is the algorithms’ responses vary, falling
into three groups. BN, R1 and R2 are quite poor, with the worse case error scaling at
about 4 ft/dB. P1 and P2, are in a second class, scaling at close to 3 ft/dB. The gridded
algorithms, GP and GR, as well as ABP-75 fair better, scaling at 2 ft/dB or less. Finally,

558 Y. Chen et al.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Signal attenuation (dB)

Er
ro

r (
fe

et
)

Worst−case Error

SPM
ABP
BN
R1
R2
GR
P1
P2
GP

Fig. 6. Maximum error as a function of attack strength for CoRE

−5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Signal attenuation (dBm)

Pe
rc

en
ta

ge

Sampling x coordinates

Landmark 1
Landmark 2
Landmark 3
Landmark 4

−5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Signal attenuation (dBm)

Pe
rc

en
ta

ge
Sampling x coordinates

Landmark 1
Landmark 2
Landmark 3
Landmark 4

(a) CoRE: all landmarks (b) CoRE: Landmark 1

Fig. 7. Contribution of each Landmark during sampling in the BN algorithm under attenuation
attacks

SPM is in a class by itself, with a poor linear fit (R2 of 0.61) and the maximum error
topping out at about 85 ft after 15 dB of attack.

Examining the error CDFs and the maximum errors, we can see that most of the
localizations move fairly slowly in response to an attack, at about 1.5 ft/dB. However,
for some of the algorithms, particularly BN, R1 and R2, the top part of the error CDF
moves faster, at about 4 ft/dB. What this means is that, for a select few points, an
attacker can cause more substantial errors of over 100 ft. However, at most places in the
building, an attack can only cause errors with much less magnitude.

Figure 5 show that BN is more robust compared to other algorithms for individual
landmark attacks. Recall BN uses a Monte-Carlo sampling technique (Gibbs sampling)
to compute the full joint-probability distribution for not just the position coordinates,
but also for every node in the Bayesian network. Under a single landmark attack we
found the network reduces the contribution of network nodes directly affected by the
attacked landmark to the full joint-probability distribution while increasing other land-
marks’ contributions. In effect, the network “discounts” the attacked landmark’s con-
tribution to the overall joint-density because the attacked data from that landmark is
highly unlikely given the training data.

To show this effect we developed our own Gibbs sampler so that we could observe
the relative contributions of each node in the Bayesian network to the final answer.

The Robustness of Localization Algorithms to Signal Strength Attacks 559

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area (feet2)

Pr
ob

ab
ili

ty

Precision CDF

normal
5 dB
10 dB
15 dB
20 dB
25 dB

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area (feet2)

Pr
ob

ab
ili

ty

Precision CDF

normal
5 dB
10 dB
15 dB
20 dB
25 dB

(a) CoRE: SPM - Attenuation (b) CoRE: BN - Attenuation

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area (feet2)

Pr
ob

ab
ili

ty

Precision CDF

normal
5 dB
10 dB
15 dB
20 dB
25 dB

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision (feet2)

Pr
ob

ab
ili

ty

Precision CDF

normal
5 dB
10 dB
15 dB
20 dB
25 dB

(c) CoRE: ABP - Attenuation (d) Industrial: ABP - Amplification

Fig. 8. Analysis of precision CDF across area-based algorithms. The attack is performed on all
the landmarks.

Figure 7 shows the percentage contribution for each landmark to overall joint-density.
For instance, in CoRE, the contribution of each landmark starts almost uniformly. When
Landmark 1 under attack, the contribution of Landmark 1 goes from 0.25 down to 0.15.

5.4 Precision Study

In this section, we examine the area-based algorithms’ precision in response to attacks.
Figure 8 shows the CDF of the precision (i.e. size of the returned area) for different
area-based algorithms under attack for all the landmarks in CoRE and Industrial Lab.
We found the algorithms did not become less precise in response to attacks, but rather,
the algorithms tended to shift and shrink the returned areas. Figure 8(a) shows a small
average shrinkage for SPM in the CoRE building, and likewise, 8(b) shows a similar
effect for BN.

ABP-75 had the most dramatic effect. Figures 8(c) and 8(d) show the precision
versus the attack strength for both buildings. The shrinkages are quite substantial. We
found that, under attack, the probability densities of the tiles shrank to small values that
were located on a few tiles– reflecting the fact that an attack causes there not to be a
likely position to localize a node. We also found that this effect held for amplification
attacks, as is shown in Figure 8(d). The shrinking precision behavior may be useful for
attack detection, although a full characterization of how this effect occurs remains for
future work.

Examining this effect further, Figure 9 presents the precision vs. the attack strength,
with a least squares line fit. Figure 9(a) shows the effect when attacking all landmarks

560 Y. Chen et al.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Distance difference (feet)

A
ve

ra
ge

 p
re

ci
si

on
 (f

ee
t 2)

SPMmed
ABPmed
BNmed

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Distance difference (feet)

A
ve

ra
ge

 p
re

ci
si

on
 (f

ee
t 2)

SPMmed
ABPmed
BNmed

(a) CoRE: all landmarks (b) CoRE: Landmark 1

Fig. 9. Precision vs. perturbation distance under attenuation attack

on the CoRE building. Figure 9(b) shows a downward trend, but much weaker, when at-
tacking one landmark. We observed similar results for the Industrial Lab. We see mostly
linear changes in precision in response to attacks, although with great differences be-
tween the algorithms. The figures show that the decrease in precision as function of dB
is particularly strong for ABP-75.

6 Discussion About Hölder Metrics

In the previous section we examined the experimental results, and looked at the perfor-
mance of several localization algorithms in terms of error and precision. We now focus
on the performance of these localization algorithms in terms of the Hölder metrics. The
Hölder metrics measure the variability of the returned answer in response to changes in
the signal strength vectors.

We first discuss the practical aspects of measuring H and H for different algorithms.
In Section 4, the Hölder parameters are defined by calculating the maximum and av-
erage over the entire n-dimensional signal strength space. In practice, it is necessary
to perform a sampling technique to measure H and H . Additionally, as noted earlier,
the definition of H and H are only suitable for (Hölder) continuous functions Galg .
In reality, several localization algorithms, such as RADAR, are not continuous and in-
volve the tessellation of the signal strength space into Voronoi cells Vj , and thus only
a discrete set of localization results are produced (image of Vj under Galg). Hence, for
any s ∈ Vj we have GR(s) = (xj , yj). Unfortunately, for neighboring Voronoi cells,
we may take s ∈ Vj and v ∈ Vi such that they are arbitrarily close (i.e. ‖s − v‖ → 0),
while ‖GR(s) − GR(v)‖ �= 0. In such a case, the formal calculation of H and H is
not possible. However, for our purposes, we are only interested in measuring the notion
of adjacency of Voronoi cells in signal space yielding close localization results. Thus,
our calculation of H and H is only performed over the centroids of the various Voronoi
cells for localization algorithms that tessellate of signal strength space.

The Hölder parameters for the different localization algorithms are presented in Ta-
ble 2. Examining these results, there are several important observations that can be
made. First, if we examine the results for H we see that, for each building, all of the
algorithms have very similar H values. Hence, we may conclude that the average vari-

The Robustness of Localization Algorithms to Signal Strength Attacks 561

Table 2. Analysis of (worst-case) H and (average-case) H

Algorithms CoRE: H LAB: H CoRE: H LAB: H

Area-Based
SPM 23.7646 11.0659 1.8856 2.3548

ABP-75 20.0347 23.0652 1.8548 2.3424
BN 31.7324 14.9168 2.0595 2.5873

Point-Based
R1 36.2400 20.7846 1.9750 2.3677
R2 19.8586 8.7313 1.9138 2.3058
GR 35.9880 20.6886 1.9691 2.3628
P1 20.8832 20.7846 1.9793 2.3683
P2 19.8586 8.7313 1.9178 2.3058
GP 21.8303 20.6886 1.9649 2.2882

ability of the returned localization result to a change in the signal strength vector is
roughly the same for all algorithms. This is an important result as it means, regardless
of which RF fingerprinting localization system we deploy, the average susceptibility of
the returned results to an attack is essentially identical.

However, if we examine the results for H , which reflects the worst-case susceptibil-
ity, then we see that there are some differences across the algorithms. First, comparing
H and H for both point-based and area-based algorithms, we see that the worst-case
variability can be much larger than the average variability. Additionally, the point-based
methods appear to cluster. Notably, RADAR (R1) and Gridded Radar (GR) have similar
performance across both CoRE and the Industrial Lab, while averaged RADAR (R2)
and averaged Highest Probability (P2) have similar performance across both buildings.
A very interesting phenomena is observed by looking at the algorithms that returned
an average of likely locations (R2 and P2). Across both buildings these algorithms ex-
hibited less variability compared to other algorithms. This is to be expected as averag-
ing is a smoothing operation, which reduces variations in a function. This observation
suggests that R2 and P2 are more robust from a worst-case point-of-view than other
point-based algorithms.

7 Conclusion

In this paper, we analyzed the robustness of RF-fingerprinting localization algorithms
to attacks that target signal strength measurements. We first examined the feasibility
of conducting amplification and attenuation attacks, and observed a linear dependency
between non-attacked signal strength and attacked signal strength readings for different
barriers placed between the transmitter and a landmark receiver. We provided a set of
performance metrics for quantifying the effectiveness of an attenuation/amplification
attack. Our metrics included localization error, the precision of area-based algorithms,
and a new family of metrics, called Hölder metrics, that quantify the variability of the re-
turned answer versus change in the signal strength vectors. We conducted a trace-driven
evaluation of several point-based and area-based localization algorithms where the lin-
ear attack model was applied to data measured in two different office buildings. We
found that the localization error scaled similarly for all algorithms under attack. Further,
we found that, when attacked, area-based algorithms did not experience a degradation

562 Y. Chen et al.

in precision although they experienced degradation in accuracy. We then examined the
variability of the localization results under attack by measuring the Hölder metrics. We
found that all algorithms had similar average variability, but those methods returned the
average of a set of most likely positions exhibited less variability. This result suggests
that the average susceptibility of the returned results to an attack is essentially identical
across point-based and area-based algorithms, though it might be desirable to employ
either area-based methods or point-based methods that perform averaging in order to
lessen the worst-case effect of a potential attack.

References

1. Hightower, J., Vakili, C., Borriello, G., Want, R.: (Design and calibration of the spoton
ad-hoc location sensing system) (unpublished).

2. Enge, P., Misra, P.: Global Positioning System: Signals, Measurements and Performance.
Ganga-Jamuna Pr (2001)

3. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In:
Proceedings of the ACM International Conference on Mobile Computing and Networking
(MobiCom). (2000)

4. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from mere connectivity. In:
Proceedings of the Fourth ACM International Symposium on Mobile Ad-Hoc Networking
and Computing (MobiHoc). (2003)

5. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM). (2001) 2926–2931

6. Youssef, M., Agrawal, A., Shankar, A.U.: WLAN location determination via clustering and
probability distributions. In: Proceedings of IEEE PerCom’03, Fort Worth, TX (2003)

7. Roos, T., Myllymaki, P., H.Tirri: A Statistical Modeling Approach to Location Estimation.
IEEE Transactions on Mobile Computing 1(1) (2002)

8. Battiti, R., Brunato, M., Villani, A.: Statistical Learning Theory for Location Fingerprint-
ing in Wireless LANs. Technical Report DIT-02-086, University of Trento, Informatica e
Telecomunicazioni (2002)

9. Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking
system. In: Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM). (2000)

10. Doherty1, L., Pister, K.S.J., ElGhaoui, L.: Convex position estimation in wireless sensor net-
works. In: Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM). (2001)

11. Hu, Y., Perrig, A., Johnson, D.: Packet leashes: a defense against wormhole attacks in wire-
less networks. In: Proceedings of the IEEE International Conference on Computer Commu-
nications (INFOCOM). (2003)

12. Li, Z., Trappe, W., Zhang, Y., Nath, B.: Robust statistical methods for securing wireless
localization in sensor networks. In: Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks (IPSN 2005). (2005)

13. Liu, D., Ning, P., Du, W.: Attack-resistant location estimation in sensor networks. In: Pro-
ceedings of the Fourth International Symposium on Information Processing in Sensor Net-
works (IPSN 2005). (2005)

14. Capkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application to sensor
networks. In: Proceedings of the IEEE International Conference on Computer Communica-
tions (INFOCOM). (2005)

The Robustness of Localization Algorithms to Signal Strength Attacks 563

15. Brands, S., Chaum, D.: Distance-bounding protocols (1994)
16. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings

of the 2003 ACM workshop on wireless security. (2003) 1–10
17. Capkun, S., Hubaux, J.: (Securing localization with hidden and mobile base stations) to

appear in Proceedings of IEEE Infocom 2006.
18. Lazos, L., Poovendran, R., Capkun, S.: Rope: robust position estimation in wireless sensor

networks. In: Proceedings of the Fourth International Symposium on Information Processing
in Sensor Networks (IPSN 2005). (2005) 324–331

19. Elnahrawy, E., Li, X., Martin, R.P.: The limits of localization using signal strength: A com-
parative study. In: Proceedings of the First IEEE International Conference on Sensor and Ad
hoc Communcations and Networks (SECON 2004). (2004)

20. Madigan, D., Elnahrawy, E., Martin, R., Ju, W., Krishnan, P., Krishnakumar, A.S.: Bayesian
indoor positioning systems. In: Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM). (2005) 324–331

21. Lang, S.: Real and Functional Analysis. Springer (1993)

Author Index

Abdelzaher, Tarek 202
Alankus, Gazihan 17
Alanyali, Murat 252
Angluin, Dana 37
Atay, Nuzhet 17

Barooah, Prabir 266
Bayazit, O. Burchan 17
Bhattacharya, Sangeeta 17
Bill, Ralf 514
Born, Alexander 514
Brewer, Eric 443
Buragohain, Chiranjeeb 356

Chatzigiannakis, Ioannis 218
Chen, Yingying 546
Conner, William 202

da Silva, Neimar Machado 266
Delporte-Gallet, Carole 51

El Gamal, Abbas 389
Ercan, Ali O. 389

Fauconnier, Hugues 51
Feng, Jessica 529
Fischer, Michael J. 37
Fok, Chien-Liang 101
Funke, Stefan 234

Gandhi, Sorabh 356
Girod, Lewis 529
Grossglauser, Matthias 480
Guan, Yong 338
Guerraoui, Rachid 51
Guibas, Leonidas J. 234, 389

Hackmann, Gregory 101
Hershberger, John 356
Hespanha, João P. 266
Hohlt, Barbara 443
Hubaux, Jean-Pierre 480

Jarry, Aubin 405
Jia, Lujun 282

Jiang, Hong 37
Jin, Lingling 321
Johnson, Don H. 1

Kannan, Rajgopal 463
Kapadia, Shyam 185
Kinalis, Athanasios 218
Kleisouris, Konstantinos 546
Krishnamachari, Bhaskar 185
Kulkarni, Sandeep S. 119

Leone, Pierre 405
Li, Qun 305
Li, Weijia 321
Li, Xiaoyan 546
Liaskovitis, Periklis 372
Lu, Chenyang 17, 101
Luo, Jun 480

Ma, Ming 498
Martin, Richard P. 546
Mo, Wei 422
Mottola, Luca 150

Nahrstedt, Klara 202
Nguyen, An 234
Nikoletseas, Sotiris 218
Nitta, Christopher 169
Noubir, Guevara 282

Owens, John D. 135

Panchard, Jacques 480
Pandey, Raju 169
Picco, Gian Pietro 150
Piórkowski, Micha�l 480
Potkonjak, Miodrag 529
Powell, Olivier 405

Qiao, Daji 422

Rajaraman, Rajmohan 282
Ramin, Yann 169
Ravishankar, Chinya V. 67
Reichenbach, Frank 514

566 Author Index

Rolim, José 405
Roman, Gruia-Catalin 17, 101
Rozell, Christopher J. 1
Ruppert, Eric 51

Saligrama, Venkatesh 252
Savas, Onur 252
Schurgers, Curt 372
Sundaram, Ravi 282
Suri, Subhash 356
Szumel, Leo 135

Tham, Chen-Khong 85
Timmermann, Dirk 514
Trappe, Wade 546

Wang, Haodong 305
Wang, Limin 119
Wang, Wei 67
Wang, Yusu 234
Wang, Zhengdao 422
Wei, Shuangqing 463
Wei, Yawen 338

Yagan, Daniel 85
Yang, Danny B. 389
Yang, Jun 321
Yang, Yuanyuan 498
Yu, Zhen 338

Zhang, Youtao 321
Zhu, Shanzhong 67

	Frontmatter
	Evaluating Local Contributions to Global Performance in Wireless Sensor and Actuator Networks
	Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments
	Stabilizing Consensus in Mobile Networks
	When Birds Die: Making Population Protocols Fault-Tolerant
	Stochastically Consistent Caching and Dynamic Duty Cycling for Erratic Sensor Sources
	Distributed Model-Free Stochastic Optimization in Wireless Sensor Networks
	Agimone: Middleware Support for Seamless Integration of Sensor and IP Networks
	$<$Emphasis FontCategory={\textquotedbl}SansSerif{\textquotedbl} Type={\textquotedbl}Italic{\textquotedbl}$>$Gappa$<$/Emphasis$>$: Gossip Based Multi-channel Reprogramming for Sensor Networks
	The Virtual Pheromone Communication Primitive
	Logical Neighborhoods: A Programming Abstraction for Wireless Sensor Networks
	Y-Threads: Supporting Concurrency in Wireless Sensor Networks
	Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks
	Using Data Aggregation to Prevent Traffic Analysis in Wireless Sensor Networks
	Efficient and Robust Data Dissemination Using Limited Extra Network Knowledge
	Distance-Sensitive Information Brokerage in Sensor Networks
	Efficient In-Network Processing Through Local Ad-Hoc Information Coalescence
	Distributed Optimal Estimation from Relative Measurements for Localization and Time Synchronization
	GIST: Group-Independent Spanning Tree for Data Aggregation in Dense Sensor Networks
	Distributed User Access Control in Sensor Networks
	Locating Compromised Sensor Nodes Through Incremental Hashing Authentication
	COTA: A Robust Multi-hop Localization Scheme in Wireless Sensor Networks
	Contour Approximation in Sensor Networks
	A Distortion-Aware Scheduling Approach for Wireless Sensor Networks
	Optimal Placement and Selection of Camera Network Nodes for Target Localization
	An Optimal Data Propagation Algorithm for Maximizing the Lifespan of Sensor Networks
	Lifetime Maximization of Sensor Networks Under Connectivity and {\itshape k}-Coverage Constraints
	Network Power Scheduling for TinyOS Applications
	Approximation Algorithms for Power-Aware Scheduling of Wireless Sensor Networks with Rate and Duty-Cycle Constraints
	MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in Sensor Networks
	SenCar: An Energy Efficient Data Gathering Mechanism for Large Scale Multihop Sensor Networks
	A Distributed Linear Least Squares Method for Precise Localization with Low Complexity in Wireless Sensor Networks
	Consistency-Based On-line Localization in Sensor Networks
	The Robustness of Localization Algorithms to Signal Strength Attacks: A Comparative Study
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

